This commit is contained in:
J. Nick Koston 2023-06-05 12:12:51 -05:00
parent 466775a5ba
commit 1d04b22eb2
No known key found for this signature in database
8 changed files with 1274 additions and 0 deletions

View File

@ -0,0 +1,16 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.core import coroutine_with_priority
ratgdo_ns = cg.esphome_ns.namespace("ratgdo")
CONFIG_SCHEMA = cv.All(
cv.Schema({}),
)
@coroutine_with_priority(1.0)
async def to_code(config):
cg.add_library("bblanchon/ArduinoJson", "6.18.5")
cg.add_define("USE_JSON")
cg.add_global(ratgdo_ns.using)

View File

@ -0,0 +1,5 @@
#include <Arduino.h>
#define CODE_LENGTH 19 // the length of each command sent to the door.
extern byte rollingCode[CODE_LENGTH];
extern unsigned int rollingCodeCounter;

View File

@ -0,0 +1,498 @@
/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "common.h"
#include "ratgdo.h"
#include "esphome/core/log.h"
namespace esphome
{
namespace ratgdo
{
static const char *const TAG = "ratgdo";
void RATGDOComponent::setup()
{
pinMode(TRIGGER_OPEN, INPUT_PULLUP);
pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
pinMode(STATUS_DOOR, OUTPUT);
pinMode(STATUS_OBST, OUTPUT);
pinMode(INPUT_RPM1, INPUT_PULLUP); // set to pullup to add support for reed switches
pinMode(INPUT_RPM2, INPUT_PULLUP); // make sure pin doesn't float when using reed switch and fire interrupt by mistake
pinMode(INPUT_OBST, INPUT);
attachInterrupt(TRIGGER_OPEN,isrDoorOpen,CHANGE);
attachInterrupt(TRIGGER_CLOSE,isrDoorClose,CHANGE);
attachInterrupt(TRIGGER_LIGHT,isrLight,CHANGE);
attachInterrupt(INPUT_OBST,isrObstruction,CHANGE);
attachInterrupt(INPUT_RPM1,isrRPM1,RISING);
attachInterrupt(INPUT_RPM2,isrRPM2,RISING);
LittleFS.begin();
readCounterFromFlash();
if(useRollingCodes){
//if(rollingCodeCounter == 0) rollingCodeCounter = 1;
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send reboot/sync to the opener on startup
}else{
ESP_LOGD(TAG, "Rolling codes are disabled.");
}
}
void RATGDOComponent::loop(){
obstructionLoop();
doorStateLoop();
dryContactLoop();
}
} // namespace ratgdo
} // namespace esphome
/*************************** DETECTING THE DOOR STATE ***************************/
void doorStateLoop(){
static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0;
static int lastDirectionChangeCounter = 0;
static int lastCounterMillis = 0;
// Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any bounces
if(!rotaryEncoderDetected){
if(digitalRead(INPUT_RPM1) == LOW){
if(doorState != "reed_closed"){
ESP_LOGD(TAG, "Reed switch closed");
doorState = "reed_closed";
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_closed", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_closed", true);
}
digitalWrite(STATUS_DOOR,HIGH);
}
}else if(doorState != "reed_open"){
ESP_LOGD(TAG, "Reed switch open");
doorState = "reed_open";
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_open", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_open", true);
}
digitalWrite(STATUS_DOOR,LOW);
}
}
// end reed switch handling
// If the previous and the current state of the RPM2 Signal are different, that means there is a rotary encoder detected and the door is moving
if(doorPositionCounter != lastDoorPositionCounter){
rotaryEncoderDetected = true; // this disables the reed switch handler
lastCounterMillis = millis();
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
}
// Wait 5 pulses before updating to door opening status
if(doorPositionCounter - lastDirectionChangeCounter > 5){
if(doorState != "opening"){
ESP_LOGD(TAG,"Door Opening...");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "opening", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "opening", true);
}
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "opening";
}
if(lastDirectionChangeCounter - doorPositionCounter > 5){
if(doorState != "closing"){
ESP_LOGD(TAG,"Door Closing...");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "closing", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "closing", true);
}
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "closing";
}
// 250 millis after the last rotary encoder pulse, the door is stopped
if(millis() - lastCounterMillis > 250){
// if the door was closing, and is now stopped, then the door is closed
if(doorState == "closing"){
doorState = "closed";
ESP_LOGD(TAG,"Closed");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
digitalWrite(STATUS_DOOR,LOW);
}
// if the door was opening, and is now stopped, then the door is open
if(doorState == "opening"){
doorState = "open";
ESP_LOGD(TAG,"Open");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
digitalWrite(STATUS_DOOR,HIGH);
}
}
lastDoorPositionCounter = doorPositionCounter;
}
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR ***************************/
void IRAM_ATTR isrDebounce(const char *type){
static unsigned long lastOpenDoorTime = 0;
static unsigned long lastCloseDoorTime = 0;
static unsigned long lastToggleLightTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if(currentMillis < 2000) return;
if(strcmp(type, "openDoor") == 0){
if(digitalRead(TRIGGER_OPEN) == LOW){
// save the time of the falling edge
lastOpenDoorTime = currentMillis;
}else if(currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000){
// now see if the rising edge was between 500ms and 10 seconds after the falling edge
dryContactDoorOpen = true;
}
}
if(strcmp(type, "closeDoor") == 0){
if(digitalRead(TRIGGER_CLOSE) == LOW){
// save the time of the falling edge
lastCloseDoorTime = currentMillis;
}else if(currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000){
// now see if the rising edge was between 500ms and 10 seconds after the falling edge
dryContactDoorClose = true;
}
}
if(strcmp(type, "toggleLight") == 0){
if(digitalRead(TRIGGER_LIGHT) == LOW){
// save the time of the falling edge
lastToggleLightTime = currentMillis;
}else if(currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000){
// now see if the rising edge was between 500ms and 10 seconds after the falling edge
dryContactToggleLight = true;
}
}
}
void IRAM_ATTR isrDoorOpen(){
isrDebounce("openDoor");
}
void IRAM_ATTR isrDoorClose(){
isrDebounce("closeDoor");
}
void IRAM_ATTR isrLight(){
isrDebounce("toggleLight");
}
// Fire on RISING edge of RPM1
void IRAM_ATTR isrRPM1(){
rpm1Pulsed = true;
}
// Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing:
// RPM1: __|--|___
// RPM2: ___|--|__
// When RPM1 LOW on RPM2 rising edge, door opening:
// RPM1: ___|--|__
// RPM2: __|--|___
void IRAM_ATTR isrRPM2(){
// The encoder updates faster than the ESP wants to process, so by sampling every 5ms we get a more reliable curve
// The counter is behind the actual pulse counter, but it doesn't matter since we only need a reliable linear counter
// to determine the door direction
static unsigned long lastPulse = 0;
unsigned long currentMillis = millis();
if(currentMillis - lastPulse < 5){
return;
}
// In rare situations, the rotary encoder can be parked so that RPM2 continuously fires this ISR.
// This causes the door counter to change value even though the door isn't moving
// To solve this, check to see if RPM1 pulsed. If not, do nothing. If yes, reset the pulsed flag
if(rpm1Pulsed){
rpm1Pulsed = false;
}else{
return;
}
lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is opening
if(digitalRead(INPUT_RPM1)){
doorPositionCounter--;
}else{
doorPositionCounter++;
}
}
// handle changes to the dry contact state
void dryContactLoop(){
if(dryContactDoorOpen){
ESP_LOGD(TAG,"Dry Contact: open the door");
dryContactDoorOpen = false;
openDoor();
}
if(dryContactDoorClose){
ESP_LOGD(TAG,"Dry Contact: close the door");
dryContactDoorClose = false;
closeDoor();
}
if(dryContactToggleLight){
ESP_LOGD(TAG,"Dry Contact: toggle the light");
dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void IRAM_ATTR isrObstruction(){
if(digitalRead(INPUT_OBST)){
lastObstructionHigh = millis();
}else{
obstructionLowCount++;
}
}
void obstructionLoop(){
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if(currentMillis - lastMillis > 50){
// check to see if we got between 3 and 8 low pulses on the line
if(obstructionLowCount >= 3 && obstructionLowCount <= 8){
obstructionCleared();
// if there have been no pulses the line is steady high or low
}else if(obstructionLowCount == 0){
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if(digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70){
obstructionDetected();
}else{
// asleep
}
}
lastMillis = currentMillis;
obstructionLowCount = 0;
}
}
void obstructionDetected(){
static unsigned long lastInterruptTime = 0;
unsigned long interruptTime = millis();
// Anything less than 100ms is a bounce and is ignored
if(interruptTime - lastInterruptTime > 250){
doorIsObstructed = true;
digitalWrite(STATUS_OBST,HIGH);
ESP_LOGD(TAG,"Obstruction Detected");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "obstructed", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "obstructed", true);
}
}
lastInterruptTime = interruptTime;
}
void obstructionCleared(){
if(doorIsObstructed){
doorIsObstructed = false;
digitalWrite(STATUS_OBST,LOW);
ESP_LOGD(TAG,"Obstruction Cleared");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "clear", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "clear", true);
}
}
}
void sendDoorStatus(){
ESP_LOGD(TAG,"Door state %s", doorState);
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
}
void sendCurrentCounter(){
String msg = String(rollingCodeCounter);
ESP_LOGD(TAG, "Current counter %d", rollingCodeCounter);
if(isConfigFileOk){
bootstrapManager.publish(rollingCodeTopic.c_str(), msg.c_str(), true);
}
}
/********************************** MANAGE HARDWARE BUTTON *****************************************/
void manageHardwareButton(){
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept a message
*/
void transmit(byte* payload, unsigned int length){
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the door opener responds to the message
delayMicroseconds(1305);
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
swSerial.write(payload, length);
}
void sync(){
if(!useRollingCodes) return;
getRollingCode("reboot1");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot2");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot3");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot4");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot5");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot6");
transmit(rollingCode,CODE_LENGTH);
delay(45);
writeCounterToFlash();
}
void openDoor(){
if(doorState == "open" || doorState == "opening"){
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
doorState = "opening"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands
if(useRollingCodes){
getRollingCode("door1");
transmit(rollingCode,CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(rollingCode,CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE,CODE_LENGTH);
}
}
void closeDoor(){
if(doorState == "closed" || doorState == "closing"){
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
doorState = "closing"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands
if(useRollingCodes){
getRollingCode("door1");
transmit(rollingCode,CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(rollingCode,CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE,CODE_LENGTH);
}
}
void toggleLight(){
if(useRollingCodes){
getRollingCode("light");
transmit(rollingCode,CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "light_code")
transmit(LIGHT_CODE,CODE_LENGTH);
}
}

108
components/ratgdo/ratgdo.h Normal file
View File

@ -0,0 +1,108 @@
/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#ifndef _RATGDO_H
#define _RATGDO_H
#include "BootstrapManager.h" // Must use the https://github.com/PaulWieland/arduinoImprovBootstrapper fork, ratgdo branch
#include "SoftwareSerial.h" // Using espsoftwareserial https://github.com/plerup/espsoftwareserial
#include "rolling_code.h"
#include "home_assistant.h"
SoftwareSerial swSerial;
/********************************** BOOTSTRAP MANAGER *****************************************/
BootstrapManager bootstrapManager;
/********************************** PIN DEFINITIONS *****************************************/
#define OUTPUT_GDO D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini
#define TRIGGER_OPEN D5 // dry contact for opening door
#define TRIGGER_CLOSE D6 // dry contact for closing door
#define TRIGGER_LIGHT D3 // dry contact for triggering light (no discrete light commands, so toggle only)
#define STATUS_DOOR D0 // output door status, HIGH for open, LOW for closed
#define STATUS_OBST D8 // output for obstruction status, HIGH for obstructed, LOW for clear
#define INPUT_RPM1 D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door opener logic board
#define INPUT_RPM2 D2 // RPM2 rotary encoder input OR not used if using reed switch
#define INPUT_OBST D7 // black obstruction sensor terminal
/********************************** MQTT TOPICS *****************************************/
String doorCommandTopic = ""; // will be mqttTopicPrefix/deviceName/command
String setCounterTopic = ""; // will be mqttTopicPrefix/deviceName/set_code_counter
String doorCommand = ""; // will be [open|close|light]
String overallStatusTopic = ""; // legacy from 1.0. Will be mqttTopicPrefix/deviceName/status
String availabilityStatusTopic = ""; // online|offline
String obstructionStatusTopic = ""; // obstructed|clear
String doorStatusTopic = ""; // open|opening|closing|closed|reed_open|reed_closed
String rollingCodeTopic = ""; // broadcast the current rolling code count for debugging purposes
/********************************** GLOBAL VARS *****************************************/
bool setupComplete = false;
unsigned int rollingCodeCounter;
byte rollingCode[CODE_LENGTH];
String doorState = "unknown"; // will be [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed]
unsigned int obstructionLowCount = 0; // count obstruction low pulses
unsigned long lastObstructionHigh = 0; // count time between high pulses from the obst ISR
bool doorIsObstructed = false;
bool dryContactDoorOpen = false;
bool dryContactDoorClose = false;
bool dryContactToggleLight = false;
int doorPositionCounter = 0; // calculate the door's movement and position
bool rpm1Pulsed = false; // did rpm1 get a pulse or not - eliminates an issue when the sensor is parked on a high pulse which fires rpm2 isr
/********************************** FUNCTION DECLARATION *****************************************/
void callback(char *topic, byte *payload, unsigned int length);
void manageDisconnections();
void manageQueueSubscription();
void manageHardwareButton();
void transmit(byte* payload, unsigned int length);
void sync();
void openDoor();
void closeDoor();
void toggleLight();
void obstructionLoop();
void obstructionDetected();
void obstructionCleared();
void sendDoorStatus();
void doorStateLoop();
void dryContactLoop();
/********************************** INTERRUPT SERVICE ROUTINES ***********************************/
void IRAM_ATTR isrDebounce(const char *type);
void IRAM_ATTR isrDoorOpen();
void IRAM_ATTR isrDoorClose();
void IRAM_ATTR isrLight();
void IRAM_ATTR isrObstruction();
void IRAM_ATTR isrRPM1();
void IRAM_ATTR isrRPM2();
/*** Static Codes ***/
byte SYNC1[] = {0x55,0x01,0x00,0x61,0x12,0x49,0x2c,0x92,0x5b,0x24,0x96,0x86,0x0b,0x65,0x96,0xd9,0x8f,0x26,0x4a};
byte SYNC2[] = {0x55,0x01,0x00,0x08,0x34,0x93,0x49,0xb4,0x92,0x4d,0x20,0x26,0x1b,0x4d,0xb4,0xdb,0xad,0x76,0x93};
byte SYNC3[] = {0x55,0x01,0x00,0x06,0x1b,0x2c,0xbf,0x4b,0x6d,0xb6,0x4b,0x18,0x20,0x92,0x09,0x20,0xf2,0x11,0x2c};
byte SYNC4[] = {0x55,0x01,0x00,0x95,0x29,0x36,0x91,0x29,0x36,0x9a,0x69,0x05,0x2f,0xbe,0xdf,0x6d,0x16,0xcb,0xe7};
byte* SYNC_CODE[] = {SYNC1,SYNC2,SYNC3,SYNC4};
byte DOOR_CODE[] = {0x55,0x01,0x00,0x94,0x3f,0xef,0xbc,0xfb,0x7f,0xbe,0xfc,0xa6,0x1a,0x4d,0xa6,0xda,0x8d,0x36,0xb3};
byte LIGHT_CODE[] = {0x55,0x01,0x00,0x94,0x3f,0xef,0xbc,0xfb,0x7f,0xbe,0xff,0xa6,0x1a,0x4d,0xa6,0xda,0x8d,0x76,0xb1};
#endif

View File

@ -0,0 +1,97 @@
#include "common.h"
#include "rolling_code.h"
#include "secplus.h"
void readCounterFromFlash(){
//Open the file
File file = LittleFS.open("/rollingcode.txt", "r");
//Check if the file exists
if(!file){
Serial.println("rollingcode.txt doesn't exist. creating...");
writeCounterToFlash();
return;
}
rollingCodeCounter = file.parseInt();
//Close the file
file.close();
}
void writeCounterToFlash(){
//Open the file
File file = LittleFS.open("/rollingcode.txt", "w");
//Write to the file
file.print(rollingCodeCounter);
delay(1);
//Close the file
file.close();
Serial.println("Write successful");
}
void getRollingCode(const char *command){
Serial.print("rolling code for ");
Serial.print(rollingCodeCounter);
Serial.print("|");
Serial.print(command);
Serial.print(" : ");
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
if(strcmp(command,"reboot1") == 0){
fixed = 0x400000000;
data = 0x0000618b;
}else if(strcmp(command,"reboot2") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot3") == 0){
fixed = 0;
data = 0x0000b1a0;
}else if(strcmp(command,"reboot4") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot5") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"reboot6") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"door1") == 0){
fixed = 0x200000000;
data = 0x01018280;
}else if(strcmp(command,"door2") == 0){
fixed = 0x200000000;
data = 0x01009280;
}else if(strcmp(command,"light") == 0){
fixed = 0x200000000;
data = 0x00009281;
}else{
Serial.println("ERROR: Invalid command");
return;
}
fixed = fixed | id;
encode_wireline(rollingCodeCounter, fixed, data, rollingCode);
printRollingCode();
if(strcmp(command,"door1") != 0){ // door2 is created with same counter and should always be called after door1
rollingCodeCounter = (rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
void printRollingCode(){
for(int i = 0; i < CODE_LENGTH; i++){
if(rollingCode[i] <= 0x0f) Serial.print("0");
Serial.print(rollingCode[i],HEX);
}
Serial.println("");
}

View File

@ -0,0 +1,18 @@
#ifndef _RATGDO_ROLLING_CODE_H
#define _RATGDO_ROLLING_CODE_H
#include <Arduino.h>
#include <LittleFS.h>
#include <ArduinoJson.h>
#include "BootstrapManager.h"
extern "C" {
#include "secplus.h"
}
void readCounterFromFlash(); // get the rolling code counter from setup.json & return it
void writeCounterToFlash(); // write the counter back to setup.json
void getRollingCode(const char *command); // get the next rolling code for type [reboot1,reboot2,reboot3,reboot4,reboot5,door1,light]
void printRollingCode();
#endif

490
components/ratgdo/secplus.c Normal file
View File

@ -0,0 +1,490 @@
/*
* Copyright 2022 Clayton Smith (argilo@gmail.com)
*
* This file is part of secplus.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#include "secplus.h"
int8_t encode_v1(const uint32_t rolling, uint32_t fixed, uint8_t *symbols1,
uint8_t *symbols2) {
uint32_t rolling_reversed = 0;
int8_t i, half;
uint8_t acc;
uint8_t *symbols;
if (fixed >= 3486784401u) {
return -1;
}
for (i = 1; i < 32; i++) {
rolling_reversed |= ((rolling >> i) & 1) << (32 - i - 1);
}
for (half = 1; half >= 0; half--) {
symbols = (half == 0 ? symbols1 : symbols2);
for (i = 18; i >= 0; i -= 2) {
symbols[i] = rolling_reversed % 3;
rolling_reversed /= 3;
symbols[i + 1] = fixed % 3;
fixed /= 3;
}
acc = 0;
for (i = 0; i < 20; i += 2) {
acc += symbols[i];
acc += symbols[i + 1];
symbols[i + 1] = acc % 3;
}
}
return 0;
}
int8_t decode_v1(const uint8_t *symbols1, const uint8_t *symbols2,
uint32_t *rolling, uint32_t *fixed) {
uint32_t rolling_reversed = 0;
uint8_t acc;
uint8_t digit;
int8_t i, half;
const uint8_t *symbols;
*rolling = 0;
*fixed = 0;
for (half = 0; half < 2; half++) {
symbols = (half == 0 ? symbols1 : symbols2);
acc = 0;
for (i = 0; i < 20; i += 2) {
digit = symbols[i];
rolling_reversed = (rolling_reversed * 3) + digit;
acc += digit;
digit = (60 + symbols[i + 1] - acc) % 3;
*fixed = (*fixed * 3) + digit;
acc += digit;
}
}
for (i = 0; i < 32; i++) {
*rolling |= ((rolling_reversed >> i) & 1) << (32 - i - 1);
}
return 0;
}
static void v2_calc_parity(const uint64_t fixed, uint32_t *data) {
uint32_t parity = (fixed >> 32) & 0xf;
int8_t offset;
*data &= 0xffff0fff;
for (offset = 0; offset < 32; offset += 4) {
parity ^= ((*data >> offset) & 0xf);
}
*data |= (parity << 12);
}
static int8_t v2_check_parity(const uint64_t fixed, const uint32_t data) {
uint32_t parity = (fixed >> 32) & 0xf;
int8_t offset;
for (offset = 0; offset < 32; offset += 4) {
parity ^= ((data >> offset) & 0xf);
}
if (parity != 0) {
return -1;
}
return 0;
}
static void encode_v2_rolling(const uint32_t rolling,
uint32_t *rolling_halves) {
uint32_t rolling_reversed = 0;
int8_t i, half;
for (i = 0; i < 28; i++) {
rolling_reversed |= ((rolling >> i) & 1) << (28 - i - 1);
}
rolling_halves[0] = 0;
rolling_halves[1] = 0;
for (half = 0; half < 2; half++) {
for (i = 0; i < 8; i += 2) {
rolling_halves[half] |= rolling_reversed % 3 << i;
rolling_reversed /= 3;
}
}
for (half = 0; half < 2; half++) {
for (i = 10; i < 18; i += 2) {
rolling_halves[half] |= rolling_reversed % 3 << i;
rolling_reversed /= 3;
}
}
rolling_halves[0] |= (rolling_reversed % 3) << 8;
rolling_reversed /= 3;
rolling_halves[1] |= (rolling_reversed % 3) << 8;
}
static int8_t decode_v2_rolling(const uint32_t *rolling_halves,
uint32_t *rolling) {
int8_t i, half;
uint32_t rolling_reversed;
rolling_reversed = (rolling_halves[1] >> 8) & 3;
rolling_reversed = (rolling_reversed * 3) + ((rolling_halves[0] >> 8) & 3);
for (half = 1; half >= 0; half--) {
for (i = 16; i >= 10; i -= 2) {
rolling_reversed =
(rolling_reversed * 3) + ((rolling_halves[half] >> i) & 3);
}
}
for (half = 1; half >= 0; half--) {
for (i = 6; i >= 0; i -= 2) {
rolling_reversed =
(rolling_reversed * 3) + ((rolling_halves[half] >> i) & 3);
}
}
if (rolling_reversed >= 0x10000000) {
return -1;
}
*rolling = 0;
for (i = 0; i < 28; i++) {
*rolling |= ((rolling_reversed >> i) & 1) << (28 - i - 1);
}
return 0;
}
static int8_t v2_combine_halves(const uint8_t frame_type,
const uint32_t *rolling_halves,
const uint32_t *fixed_halves,
const uint16_t *data_halves, uint32_t *rolling,
uint64_t *fixed, uint32_t *data) {
int8_t err = 0;
err = decode_v2_rolling(rolling_halves, rolling);
if (err < 0) {
return err;
}
*fixed = ((uint64_t)fixed_halves[0] << 20) | fixed_halves[1];
if (frame_type == 1) {
*data = ((uint32_t)data_halves[0] << 16) | data_halves[1];
err = v2_check_parity(*fixed, *data);
if (err < 0) {
return err;
}
}
return 0;
}
static const int8_t ORDER[16] = {9, 33, 6, -1, 24, 18, 36, -1,
24, 36, 6, -1, -1, -1, -1, -1};
static const int8_t INVERT[16] = {6, 2, 1, -1, 7, 5, 3, -1,
4, 0, 5, -1, -1, -1, -1, -1};
static void v2_scramble(const uint32_t *parts, const uint8_t frame_type,
uint8_t *packet_half) {
const int8_t order = ORDER[packet_half[0] >> 4];
const int8_t invert = INVERT[packet_half[0] & 0xf];
int8_t i;
uint8_t out_offset = 10;
int8_t end;
uint32_t parts_permuted[3];
end = (frame_type == 0 ? 5 : 8);
for (i = 1; i < end; i++) {
packet_half[i] = 0;
}
parts_permuted[0] =
(invert & 4) ? ~parts[(order >> 4) & 3] : parts[(order >> 4) & 3];
parts_permuted[1] =
(invert & 2) ? ~parts[(order >> 2) & 3] : parts[(order >> 2) & 3];
parts_permuted[2] = (invert & 1) ? ~parts[order & 3] : parts[order & 3];
end = (frame_type == 0 ? 8 : 0);
for (i = 18 - 1; i >= end; i--) {
packet_half[out_offset >> 3] |= ((parts_permuted[0] >> i) & 1)
<< (7 - (out_offset % 8));
out_offset++;
packet_half[out_offset >> 3] |= ((parts_permuted[1] >> i) & 1)
<< (7 - (out_offset % 8));
out_offset++;
packet_half[out_offset >> 3] |= ((parts_permuted[2] >> i) & 1)
<< (7 - (out_offset % 8));
out_offset++;
}
}
static int8_t v2_unscramble(const uint8_t frame_type, const uint8_t indicator,
const uint8_t *packet_half, uint32_t *parts) {
const int8_t order = ORDER[indicator >> 4];
const int8_t invert = INVERT[indicator & 0xf];
int8_t i;
uint8_t out_offset = 10;
const int8_t end = (frame_type == 0 ? 8 : 0);
uint32_t parts_permuted[3] = {0, 0, 0};
if ((order == -1) || (invert == -1)) {
return -1;
}
for (i = 18 - 1; i >= end; i--) {
parts_permuted[0] |=
(uint32_t)((packet_half[out_offset >> 3] >> (7 - (out_offset % 8))) & 1)
<< i;
out_offset++;
parts_permuted[1] |=
(uint32_t)((packet_half[out_offset >> 3] >> (7 - (out_offset % 8))) & 1)
<< i;
out_offset++;
parts_permuted[2] |=
(uint32_t)((packet_half[out_offset >> 3] >> (7 - (out_offset % 8))) & 1)
<< i;
out_offset++;
}
parts[(order >> 4) & 3] =
(invert & 4) ? ~parts_permuted[0] : parts_permuted[0];
parts[(order >> 2) & 3] =
(invert & 2) ? ~parts_permuted[1] : parts_permuted[1];
parts[order & 3] = (invert & 1) ? ~parts_permuted[2] : parts_permuted[2];
return 0;
}
static void encode_v2_half_parts(const uint32_t rolling, const uint32_t fixed,
const uint16_t data, const uint8_t frame_type,
uint8_t *packet_half) {
uint32_t parts[3];
parts[0] = ((fixed >> 10) << 8) | (data >> 8);
parts[1] = ((fixed & 0x3ff) << 8) | (data & 0xff);
parts[2] = rolling;
packet_half[0] = (uint8_t)rolling;
v2_scramble(parts, frame_type, packet_half);
}
static int8_t decode_v2_half_parts(const uint8_t frame_type,
const uint8_t indicator,
const uint8_t *packet_half,
uint32_t *rolling, uint32_t *fixed,
uint16_t *data) {
int8_t err = 0;
int8_t i;
uint32_t parts[3];
err = v2_unscramble(frame_type, indicator, packet_half, parts);
if (err < 0) {
return err;
}
if ((frame_type == 1) && ((parts[2] & 0xff) != indicator)) {
return -1;
}
for (i = 8; i < 18; i += 2) {
if (((parts[2] >> i) & 3) == 3) {
return -1;
}
}
*rolling = (parts[2] & 0x3ff00) | indicator;
*fixed = ((parts[0] & 0x3ff00) << 2) | ((parts[1] & 0x3ff00) >> 8);
*data = ((parts[0] & 0xff) << 8) | (parts[1] & 0xff);
return 0;
}
static int8_t v2_check_limits(const uint32_t rolling, const uint64_t fixed) {
if ((rolling >> 28) != 0) {
return -1;
}
if ((fixed >> 40) != 0) {
return -1;
}
return 0;
}
static void encode_v2_half(const uint32_t rolling, const uint32_t fixed,
const uint16_t data, const uint8_t frame_type,
uint8_t *packet_half) {
encode_v2_half_parts(rolling, fixed, data, frame_type, packet_half);
/* shift indicator two bits to the right */
packet_half[1] |= (packet_half[0] & 0x3) << 6;
packet_half[0] >>= 2;
/* set frame type */
packet_half[0] |= (frame_type << 6);
}
int8_t encode_v2(const uint32_t rolling, const uint64_t fixed, uint32_t data,
const uint8_t frame_type, uint8_t *packet1, uint8_t *packet2) {
int8_t err = 0;
uint32_t rolling_halves[2];
err = v2_check_limits(rolling, fixed);
if (err < 0) {
return err;
}
encode_v2_rolling(rolling, rolling_halves);
v2_calc_parity(fixed, &data);
encode_v2_half(rolling_halves[0], fixed >> 20, data >> 16, frame_type,
packet1);
encode_v2_half(rolling_halves[1], fixed & 0xfffff, data & 0xffff, frame_type,
packet2);
return 0;
}
static int8_t decode_v2_half(const uint8_t frame_type,
const uint8_t *packet_half, uint32_t *rolling,
uint32_t *fixed, uint16_t *data) {
int8_t err = 0;
const uint8_t indicator = (packet_half[0] << 2) | (packet_half[1] >> 6);
if ((packet_half[0] >> 6) != frame_type) {
return -1;
}
err = decode_v2_half_parts(frame_type, indicator, packet_half, rolling, fixed,
data);
if (err < 0) {
return err;
}
return 0;
}
int8_t decode_v2(uint8_t frame_type, const uint8_t *packet1,
const uint8_t *packet2, uint32_t *rolling, uint64_t *fixed,
uint32_t *data) {
int8_t err = 0;
uint32_t rolling_halves[2];
uint32_t fixed_halves[2];
uint16_t data_halves[2];
err = decode_v2_half(frame_type, packet1, &rolling_halves[0],
&fixed_halves[0], &data_halves[0]);
if (err < 0) {
return err;
}
err = decode_v2_half(frame_type, packet2, &rolling_halves[1],
&fixed_halves[1], &data_halves[1]);
if (err < 0) {
return err;
}
err = v2_combine_halves(frame_type, rolling_halves, fixed_halves, data_halves,
rolling, fixed, data);
if (err < 0) {
return err;
}
return 0;
}
static void encode_wireline_half(const uint32_t rolling, const uint32_t fixed,
const uint16_t data, uint8_t *packet_half) {
encode_v2_half_parts(rolling, fixed, data, 1, packet_half);
}
int8_t encode_wireline(const uint32_t rolling, const uint64_t fixed,
uint32_t data, uint8_t *packet) {
int8_t err = 0;
uint32_t rolling_halves[2];
err = v2_check_limits(rolling, fixed);
if (err < 0) {
return err;
}
encode_v2_rolling(rolling, rolling_halves);
v2_calc_parity(fixed, &data);
packet[0] = 0x55;
packet[1] = 0x01;
packet[2] = 0x00;
encode_wireline_half(rolling_halves[0], fixed >> 20, data >> 16, &packet[3]);
encode_wireline_half(rolling_halves[1], fixed & 0xfffff, data & 0xffff,
&packet[11]);
return 0;
}
static int8_t decode_wireline_half(const uint8_t *packet_half,
uint32_t *rolling, uint32_t *fixed,
uint16_t *data) {
int8_t err = 0;
const uint8_t indicator = packet_half[0];
if ((packet_half[1] >> 6) != 0) {
return -1;
}
err = decode_v2_half_parts(1, indicator, packet_half, rolling, fixed, data);
if (err < 0) {
return err;
}
return 0;
}
int8_t decode_wireline(const uint8_t *packet, uint32_t *rolling,
uint64_t *fixed, uint32_t *data) {
int8_t err = 0;
uint32_t rolling_halves[2];
uint32_t fixed_halves[2];
uint16_t data_halves[2];
if ((packet[0] != 0x55) || (packet[1] != 0x01) || (packet[2] != 0x00)) {
return -1;
}
err = decode_wireline_half(&packet[3], &rolling_halves[0], &fixed_halves[0],
&data_halves[0]);
if (err < 0) {
return err;
}
err = decode_wireline_half(&packet[11], &rolling_halves[1], &fixed_halves[1],
&data_halves[1]);
if (err < 0) {
return err;
}
err = v2_combine_halves(1, rolling_halves, fixed_halves, data_halves, rolling,
fixed, data);
if (err < 0) {
return err;
}
return 0;
}

View File

@ -0,0 +1,42 @@
/*
* Copyright 2022 Clayton Smith (argilo@gmail.com)
*
* This file is part of secplus.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifndef SECPLUS_H
#define SECPLUS_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
extern int8_t encode_v1(uint32_t rolling, uint32_t fixed, uint8_t *symbols1,
uint8_t *symbols2);
extern int8_t decode_v1(const uint8_t *symbols1, const uint8_t *symbols2,
uint32_t *rolling, uint32_t *fixed);
extern int8_t encode_v2(uint32_t rolling, uint64_t fixed, uint32_t data,
uint8_t frame_type, uint8_t *packet1, uint8_t *packet2);
extern int8_t decode_v2(uint8_t frame_type, const uint8_t *packet1,
const uint8_t *packet2, uint32_t *rolling,
uint64_t *fixed, uint32_t *data);
extern int8_t encode_wireline(uint32_t rolling, uint64_t fixed, uint32_t data,
uint8_t *packet);
extern int8_t decode_wireline(const uint8_t *packet, uint32_t *rolling,
uint64_t *fixed, uint32_t *data);
#ifdef __cplusplus
}
#endif
#endif