fix
This commit is contained in:
parent
0eb1d11cfb
commit
6d45245ede
|
@ -17,512 +17,527 @@
|
|||
namespace esphome {
|
||||
namespace ratgdo {
|
||||
|
||||
static const char *const TAG = "ratgdo";
|
||||
/*** Static Codes ***/
|
||||
static const byte SYNC1[] = {0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
|
||||
0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a};
|
||||
static const byte SYNC2[] = {0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
|
||||
0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93};
|
||||
static const byte SYNC3[] = {0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
|
||||
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c};
|
||||
static const byte SYNC4[] = {0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
|
||||
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7};
|
||||
static const byte *SYNC_CODE[] = {SYNC1, SYNC2, SYNC3, SYNC4};
|
||||
static const char* const TAG = "ratgdo";
|
||||
/*** Static Codes ***/
|
||||
static const byte SYNC1[] = { 0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
|
||||
0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a };
|
||||
static const byte SYNC2[] = { 0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
|
||||
0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93 };
|
||||
static const byte SYNC3[] = { 0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
|
||||
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c };
|
||||
static const byte SYNC4[] = { 0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
|
||||
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7 };
|
||||
static const byte* SYNC_CODE[] = { SYNC1, SYNC2, SYNC3, SYNC4 };
|
||||
|
||||
static const byte DOOR_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
|
||||
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3};
|
||||
static const byte DOOR_CODE[] = { 0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
|
||||
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3 };
|
||||
|
||||
static const byte LIGHT_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
|
||||
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1};
|
||||
static const byte LIGHT_CODE[] = { 0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
|
||||
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1 };
|
||||
|
||||
void RATGDOComponent::setup() {
|
||||
this->pref_ = global_preferences->make_preference<int>(734874333U);
|
||||
if (!this->pref_.load(&this->rollingCodeCounter)) {
|
||||
this->rollingCodeCounter = 0;
|
||||
void RATGDOComponent::setup()
|
||||
{
|
||||
this->pref_ = global_preferences->make_preference<int>(734874333U);
|
||||
if (!this->pref_.load(&this->rollingCodeCounter)) {
|
||||
this->rollingCodeCounter = 0;
|
||||
}
|
||||
|
||||
this->swSerial.begin(9600, SWSERIAL_8N2, -1, OUTPUT_GDO, true);
|
||||
pinMode(TRIGGER_OPEN, INPUT_PULLUP);
|
||||
pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
|
||||
pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
|
||||
pinMode(STATUS_DOOR, OUTPUT);
|
||||
pinMode(STATUS_OBST, OUTPUT);
|
||||
pinMode(INPUT_RPM1,
|
||||
INPUT_PULLUP); // set to pullup to add support for reed switches
|
||||
pinMode(INPUT_RPM2,
|
||||
INPUT_PULLUP); // make sure pin doesn't float when using reed switch
|
||||
// and fire interrupt by mistake
|
||||
pinMode(INPUT_OBST, INPUT);
|
||||
|
||||
attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE);
|
||||
attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE);
|
||||
attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE);
|
||||
attachInterrupt(INPUT_OBST, isrObstruction, CHANGE);
|
||||
attachInterrupt(INPUT_RPM1, isrRPM1, RISING);
|
||||
attachInterrupt(INPUT_RPM2, isrRPM2, RISING);
|
||||
|
||||
if (this->useRollingCodes_) {
|
||||
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
|
||||
sync(); // if rolling codes are being used (rolling code counter > 0), send
|
||||
// reboot/sync to the opener on startup
|
||||
} else {
|
||||
ESP_LOGD(TAG, "Rolling codes are disabled.");
|
||||
}
|
||||
}
|
||||
|
||||
this->swSerial.begin(9600, SWSERIAL_8N2, -1, OUTPUT_GDO, true);
|
||||
pinMode(TRIGGER_OPEN, INPUT_PULLUP);
|
||||
pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
|
||||
pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
|
||||
pinMode(STATUS_DOOR, OUTPUT);
|
||||
pinMode(STATUS_OBST, OUTPUT);
|
||||
pinMode(INPUT_RPM1,
|
||||
INPUT_PULLUP); // set to pullup to add support for reed switches
|
||||
pinMode(INPUT_RPM2,
|
||||
INPUT_PULLUP); // make sure pin doesn't float when using reed switch
|
||||
// and fire interrupt by mistake
|
||||
pinMode(INPUT_OBST, INPUT);
|
||||
|
||||
attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE);
|
||||
attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE);
|
||||
attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE);
|
||||
attachInterrupt(INPUT_OBST, isrObstruction, CHANGE);
|
||||
attachInterrupt(INPUT_RPM1, isrRPM1, RISING);
|
||||
attachInterrupt(INPUT_RPM2, isrRPM2, RISING);
|
||||
|
||||
if (this->useRollingCodes_) {
|
||||
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
|
||||
sync(); // if rolling codes are being used (rolling code counter > 0), send
|
||||
// reboot/sync to the opener on startup
|
||||
} else {
|
||||
ESP_LOGD(TAG, "Rolling codes are disabled.");
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::loop() {
|
||||
obstructionLoop();
|
||||
doorStateLoop();
|
||||
dryContactLoop();
|
||||
}
|
||||
|
||||
void RATGDOComponent::set_rolling_codes(bool useRollingCodes) {
|
||||
this->useRollingCodes_ = useRollingCodes;
|
||||
}
|
||||
|
||||
/*************************** DETECTING THE DOOR STATE
|
||||
* ***************************/
|
||||
void RATGDOComponent::doorStateLoop() {
|
||||
static bool rotaryEncoderDetected = false;
|
||||
static int lastDoorPositionCounter = 0;
|
||||
static int lastDirectionChangeCounter = 0;
|
||||
static int lastCounterMillis = 0;
|
||||
|
||||
// Handle reed switch
|
||||
// This may need to be debounced, but so far in testing I haven't detected any
|
||||
// bounces
|
||||
if (!rotaryEncoderDetected) {
|
||||
if (digitalRead(INPUT_RPM1) == LOW) {
|
||||
if (doorState != "reed_closed") {
|
||||
ESP_LOGD(TAG, "Reed switch closed");
|
||||
this->doorState = "reed_closed";
|
||||
digitalWrite(STATUS_DOOR, HIGH);
|
||||
}
|
||||
} else if (doorState != "reed_open") {
|
||||
ESP_LOGD(TAG, "Reed switch open");
|
||||
this->doorState = "reed_open";
|
||||
digitalWrite(STATUS_DOOR, LOW);
|
||||
}
|
||||
}
|
||||
// end reed switch handling
|
||||
|
||||
// If the previous and the current state of the RPM2 Signal are different,
|
||||
// that means there is a rotary encoder detected and the door is moving
|
||||
if (this->doorPositionCounter != lastDoorPositionCounter) {
|
||||
rotaryEncoderDetected = true; // this disables the reed switch handler
|
||||
lastCounterMillis = millis();
|
||||
|
||||
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
|
||||
}
|
||||
|
||||
// Wait 5 pulses before updating to door opening status
|
||||
if (doorPositionCounter - lastDirectionChangeCounter > 5) {
|
||||
if (this->doorState != "opening") {
|
||||
ESP_LOGD(TAG, "Door Opening...");
|
||||
}
|
||||
lastDirectionChangeCounter = this->doorPositionCounter;
|
||||
this->doorState = "opening";
|
||||
}
|
||||
|
||||
if (lastDirectionChangeCounter - this->doorPositionCounter > 5) {
|
||||
if (this->doorState != "closing") {
|
||||
ESP_LOGD(TAG, "Door Closing...");
|
||||
}
|
||||
lastDirectionChangeCounter = this->doorPositionCounter;
|
||||
this->doorState = "closing";
|
||||
}
|
||||
|
||||
// 250 millis after the last rotary encoder pulse, the door is stopped
|
||||
if (millis() - lastCounterMillis > 250) {
|
||||
// if the door was closing, and is now stopped, then the door is closed
|
||||
if (this->doorState == "closing") {
|
||||
this->doorState = "closed";
|
||||
ESP_LOGD(TAG, "Closed");
|
||||
digitalWrite(STATUS_DOOR, LOW);
|
||||
void RATGDOComponent::loop()
|
||||
{
|
||||
obstructionLoop();
|
||||
doorStateLoop();
|
||||
dryContactLoop();
|
||||
}
|
||||
|
||||
// if the door was opening, and is now stopped, then the door is open
|
||||
if (this->doorState == "opening") {
|
||||
this->doorState = "open";
|
||||
ESP_LOGD(TAG, "Open");
|
||||
digitalWrite(STATUS_DOOR, HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
lastDoorPositionCounter = doorPositionCounter;
|
||||
}
|
||||
|
||||
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
|
||||
* ***************************/
|
||||
void IRAM_ATTR RATGDOComponent::isrDebounce(const char *type) {
|
||||
static unsigned long lastOpenDoorTime = 0;
|
||||
static unsigned long lastCloseDoorTime = 0;
|
||||
static unsigned long lastToggleLightTime = 0;
|
||||
unsigned long currentMillis = millis();
|
||||
|
||||
// Prevent ISR during the first 2 seconds after reboot
|
||||
if (currentMillis < 2000)
|
||||
return;
|
||||
|
||||
if (strcmp(type, "openDoor") == 0) {
|
||||
if (digitalRead(TRIGGER_OPEN) == LOW) {
|
||||
// save the time of the falling edge
|
||||
lastOpenDoorTime = currentMillis;
|
||||
} else if (currentMillis - lastOpenDoorTime > 500 &&
|
||||
currentMillis - lastOpenDoorTime < 10000) {
|
||||
// now see if the rising edge was between 500ms and 10 seconds after the
|
||||
// falling edge
|
||||
this->dryContactDoorOpen = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (strcmp(type, "closeDoor") == 0) {
|
||||
if (digitalRead(TRIGGER_CLOSE) == LOW) {
|
||||
// save the time of the falling edge
|
||||
lastCloseDoorTime = currentMillis;
|
||||
} else if (currentMillis - lastCloseDoorTime > 500 &&
|
||||
currentMillis - lastCloseDoorTime < 10000) {
|
||||
// now see if the rising edge was between 500ms and 10 seconds after the
|
||||
// falling edge
|
||||
this->dryContactDoorClose = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (strcmp(type, "toggleLight") == 0) {
|
||||
if (digitalRead(TRIGGER_LIGHT) == LOW) {
|
||||
// save the time of the falling edge
|
||||
lastToggleLightTime = currentMillis;
|
||||
} else if (currentMillis - lastToggleLightTime > 500 &&
|
||||
currentMillis - lastToggleLightTime < 10000) {
|
||||
// now see if the rising edge was between 500ms and 10 seconds after the
|
||||
// falling edge
|
||||
this->dryContactToggleLight = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM_ATTR RATGDOComponent::isrDoorOpen() { isrDebounce("openDoor"); }
|
||||
|
||||
void IRAM_ATTR RATGDOComponent::isrDoorClose() { isrDebounce("closeDoor"); }
|
||||
|
||||
void IRAM_ATTR RATGDOComponent::isrLight() { isrDebounce("toggleLight"); }
|
||||
|
||||
// Fire on RISING edge of RPM1
|
||||
void IRAM_ATTR RATGDOComponent::isrRPM1() { this->rpm1Pulsed = true; }
|
||||
|
||||
// Fire on RISING edge of RPM2
|
||||
// When RPM1 HIGH on RPM2 rising edge, door closing:
|
||||
// RPM1: __|--|___
|
||||
// RPM2: ___|--|__
|
||||
|
||||
// When RPM1 LOW on RPM2 rising edge, door opening:
|
||||
// RPM1: ___|--|__
|
||||
// RPM2: __|--|___
|
||||
void IRAM_ATTR RATGDOComponent::isrRPM2() {
|
||||
// The encoder updates faster than the ESP wants to process, so by sampling
|
||||
// every 5ms we get a more reliable curve The counter is behind the actual
|
||||
// pulse counter, but it doesn't matter since we only need a reliable linear
|
||||
// counter to determine the door direction
|
||||
static unsigned long lastPulse = 0;
|
||||
unsigned long currentMillis = millis();
|
||||
|
||||
if (currentMillis - lastPulse < 5) {
|
||||
return;
|
||||
}
|
||||
|
||||
// In rare situations, the rotary encoder can be parked so that RPM2
|
||||
// continuously fires this ISR. This causes the door counter to change value
|
||||
// even though the door isn't moving To solve this, check to see if RPM1
|
||||
// pulsed. If not, do nothing. If yes, reset the pulsed flag
|
||||
if (this->rpm1Pulsed) {
|
||||
this->rpm1Pulsed = false;
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
|
||||
lastPulse = millis();
|
||||
|
||||
// If the RPM1 state is different from the RPM2 state, then the door is
|
||||
// opening
|
||||
if (digitalRead(INPUT_RPM1)) {
|
||||
this->doorPositionCounter--;
|
||||
} else {
|
||||
this->doorPositionCounter++;
|
||||
}
|
||||
}
|
||||
|
||||
// handle changes to the dry contact state
|
||||
void RATGDOComponent::dryContactLoop() {
|
||||
if (this->dryContactDoorOpen) {
|
||||
ESP_LOGD(TAG, "Dry Contact: open the door");
|
||||
this->dryContactDoorOpen = false;
|
||||
openDoor();
|
||||
}
|
||||
|
||||
if (this->dryContactDoorClose) {
|
||||
ESP_LOGD(TAG, "Dry Contact: close the door");
|
||||
this->dryContactDoorClose = false;
|
||||
closeDoor();
|
||||
}
|
||||
|
||||
if (this->dryContactToggleLight) {
|
||||
ESP_LOGD(TAG, "Dry Contact: toggle the light");
|
||||
this->dryContactToggleLight = false;
|
||||
toggleLight();
|
||||
}
|
||||
}
|
||||
|
||||
/*************************** OBSTRUCTION DETECTION ***************************/
|
||||
void IRAM_ATTR RATGDOComponent::isrObstruction() {
|
||||
if (digitalRead(INPUT_OBST)) {
|
||||
this->lastObstructionHigh = millis();
|
||||
} else {
|
||||
this->obstructionLowCount++;
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::obstructionLoop() {
|
||||
long currentMillis = millis();
|
||||
static unsigned long lastMillis = 0;
|
||||
|
||||
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
|
||||
// obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
|
||||
// are tricky because the voltage drops slowly when falling asleep and is high
|
||||
// without pulses when waking up
|
||||
|
||||
// If at least 3 low pulses are counted within 50ms, the door is awake, not
|
||||
// obstructed and we don't have to check anything else
|
||||
|
||||
// Every 50ms
|
||||
if (currentMillis - lastMillis > 50) {
|
||||
// check to see if we got between 3 and 8 low pulses on the line
|
||||
if (this->obstructionLowCount >= 3 && this->obstructionLowCount <= 8) {
|
||||
obstructionCleared();
|
||||
|
||||
// if there have been no pulses the line is steady high or low
|
||||
} else if (this->obstructionLowCount == 0) {
|
||||
// if the line is high and the last high pulse was more than 70ms ago,
|
||||
// then there is an obstruction present
|
||||
if (digitalRead(INPUT_OBST) && currentMillis - this->lastObstructionHigh > 70) {
|
||||
obstructionDetected();
|
||||
} else {
|
||||
// asleep
|
||||
}
|
||||
void RATGDOComponent::set_rolling_codes(bool useRollingCodes)
|
||||
{
|
||||
this->useRollingCodes_ = useRollingCodes;
|
||||
}
|
||||
|
||||
lastMillis = currentMillis;
|
||||
this->obstructionLowCount = 0;
|
||||
}
|
||||
}
|
||||
/*************************** DETECTING THE DOOR STATE
|
||||
* ***************************/
|
||||
void RATGDOComponent::doorStateLoop()
|
||||
{
|
||||
static bool rotaryEncoderDetected = false;
|
||||
static int lastDoorPositionCounter = 0;
|
||||
static int lastDirectionChangeCounter = 0;
|
||||
static int lastCounterMillis = 0;
|
||||
|
||||
void RATGDOComponent::obstructionDetected() {
|
||||
static unsigned long lastInterruptTime = 0;
|
||||
unsigned long interruptTime = millis();
|
||||
// Anything less than 100ms is a bounce and is ignored
|
||||
if (interruptTime - lastInterruptTime > 250) {
|
||||
this->doorIsObstructed = true;
|
||||
digitalWrite(STATUS_OBST, HIGH);
|
||||
ESP_LOGD(TAG, "Obstruction Detected");
|
||||
}
|
||||
lastInterruptTime = interruptTime;
|
||||
}
|
||||
// Handle reed switch
|
||||
// This may need to be debounced, but so far in testing I haven't detected any
|
||||
// bounces
|
||||
if (!rotaryEncoderDetected) {
|
||||
if (digitalRead(INPUT_RPM1) == LOW) {
|
||||
if (doorState != "reed_closed") {
|
||||
ESP_LOGD(TAG, "Reed switch closed");
|
||||
this->doorState = "reed_closed";
|
||||
digitalWrite(STATUS_DOOR, HIGH);
|
||||
}
|
||||
} else if (doorState != "reed_open") {
|
||||
ESP_LOGD(TAG, "Reed switch open");
|
||||
this->doorState = "reed_open";
|
||||
digitalWrite(STATUS_DOOR, LOW);
|
||||
}
|
||||
}
|
||||
// end reed switch handling
|
||||
|
||||
void RATGDOComponent::obstructionCleared() {
|
||||
if (this->doorIsObstructed) {
|
||||
this->doorIsObstructed = false;
|
||||
digitalWrite(STATUS_OBST, LOW);
|
||||
ESP_LOGD(TAG, "Obstruction Cleared");
|
||||
}
|
||||
}
|
||||
// If the previous and the current state of the RPM2 Signal are different,
|
||||
// that means there is a rotary encoder detected and the door is moving
|
||||
if (this->doorPositionCounter != lastDoorPositionCounter) {
|
||||
rotaryEncoderDetected = true; // this disables the reed switch handler
|
||||
lastCounterMillis = millis();
|
||||
|
||||
/************************* DOOR COMMUNICATION *************************/
|
||||
/*
|
||||
* Transmit a message to the door opener over uart1
|
||||
* The TX1 pin is controlling a transistor, so the logic is inverted
|
||||
* A HIGH state on TX1 will pull the 12v line LOW
|
||||
*
|
||||
* The opener requires a specific duration low/high pulse before it will accept
|
||||
* a message
|
||||
*/
|
||||
void RATGDOComponent::transmit(byte *payload, unsigned int length) {
|
||||
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the
|
||||
// door opener responds to the message
|
||||
delayMicroseconds(1305);
|
||||
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
|
||||
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
|
||||
}
|
||||
|
||||
delayMicroseconds(1260); // "LOW" pulse duration before the message start
|
||||
this->swSerial.write(payload, length);
|
||||
}
|
||||
// Wait 5 pulses before updating to door opening status
|
||||
if (doorPositionCounter - lastDirectionChangeCounter > 5) {
|
||||
if (this->doorState != "opening") {
|
||||
ESP_LOGD(TAG, "Door Opening...");
|
||||
}
|
||||
lastDirectionChangeCounter = this->doorPositionCounter;
|
||||
this->doorState = "opening";
|
||||
}
|
||||
|
||||
void RATGDOComponent::sync() {
|
||||
if (!this->useRollingCodes_)
|
||||
return;
|
||||
if (lastDirectionChangeCounter - this->doorPositionCounter > 5) {
|
||||
if (this->doorState != "closing") {
|
||||
ESP_LOGD(TAG, "Door Closing...");
|
||||
}
|
||||
lastDirectionChangeCounter = this->doorPositionCounter;
|
||||
this->doorState = "closing";
|
||||
}
|
||||
|
||||
getRollingCode("reboot1");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
// 250 millis after the last rotary encoder pulse, the door is stopped
|
||||
if (millis() - lastCounterMillis > 250) {
|
||||
// if the door was closing, and is now stopped, then the door is closed
|
||||
if (this->doorState == "closing") {
|
||||
this->doorState = "closed";
|
||||
ESP_LOGD(TAG, "Closed");
|
||||
digitalWrite(STATUS_DOOR, LOW);
|
||||
}
|
||||
|
||||
getRollingCode("reboot2");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
// if the door was opening, and is now stopped, then the door is open
|
||||
if (this->doorState == "opening") {
|
||||
this->doorState = "open";
|
||||
ESP_LOGD(TAG, "Open");
|
||||
digitalWrite(STATUS_DOOR, HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
getRollingCode("reboot3");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot4");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot5");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot6");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
}
|
||||
|
||||
void RATGDOComponent::openDoor() {
|
||||
if (this->doorState == "open" || this->doorState == "opening") {
|
||||
ESP_LOGD(TAG, "The door is already %s", doorState);
|
||||
return;
|
||||
}
|
||||
|
||||
this->doorState = "opening"; // It takes a couple of pulses to detect
|
||||
// opening/closing. by setting here, we can avoid
|
||||
// bouncing from rapidly repeated commands
|
||||
|
||||
if (this->useRollingCodes) {
|
||||
getRollingCode("door1");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
delay(40);
|
||||
|
||||
getRollingCode("door2");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
} else {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ESP_LOGD(TAG, "sync_code[%d]", i);
|
||||
|
||||
transmit(SYNC_CODE[i], CODE_LENGTH);
|
||||
delay(45);
|
||||
lastDoorPositionCounter = doorPositionCounter;
|
||||
}
|
||||
ESP_LOGD(TAG, "door_code")
|
||||
transmit(DOOR_CODE, CODE_LENGTH);
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::closeDoor() {
|
||||
if (this->doorState == "closed" || this->doorState == "closing") {
|
||||
ESP_LOGD(TAG, "The door is already %s", this->doorState);
|
||||
return;
|
||||
}
|
||||
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
|
||||
* ***************************/
|
||||
void IRAM_ATTR RATGDOComponent::isrDebounce(const char* type)
|
||||
{
|
||||
static unsigned long lastOpenDoorTime = 0;
|
||||
static unsigned long lastCloseDoorTime = 0;
|
||||
static unsigned long lastToggleLightTime = 0;
|
||||
unsigned long currentMillis = millis();
|
||||
|
||||
this->doorState = "closing"; // It takes a couple of pulses to detect
|
||||
// opening/closing. by setting here, we can avoid
|
||||
// bouncing from rapidly repeated commands
|
||||
// Prevent ISR during the first 2 seconds after reboot
|
||||
if (currentMillis < 2000)
|
||||
return;
|
||||
|
||||
if (this->useRollingCodes_) {
|
||||
getRollingCode("door1");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
if (strcmp(type, "openDoor") == 0) {
|
||||
if (digitalRead(TRIGGER_OPEN) == LOW) {
|
||||
// save the time of the falling edge
|
||||
lastOpenDoorTime = currentMillis;
|
||||
} else if (currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000) {
|
||||
// now see if the rising edge was between 500ms and 10 seconds after the
|
||||
// falling edge
|
||||
this->dryContactDoorOpen = true;
|
||||
}
|
||||
}
|
||||
|
||||
delay(40);
|
||||
if (strcmp(type, "closeDoor") == 0) {
|
||||
if (digitalRead(TRIGGER_CLOSE) == LOW) {
|
||||
// save the time of the falling edge
|
||||
lastCloseDoorTime = currentMillis;
|
||||
} else if (currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000) {
|
||||
// now see if the rising edge was between 500ms and 10 seconds after the
|
||||
// falling edge
|
||||
this->dryContactDoorClose = true;
|
||||
}
|
||||
}
|
||||
|
||||
getRollingCode("door2");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
} else {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ESP_LOGD(TAG, "sync_code[%d]", i);
|
||||
|
||||
transmit(SYNC_CODE[i], CODE_LENGTH);
|
||||
delay(45);
|
||||
if (strcmp(type, "toggleLight") == 0) {
|
||||
if (digitalRead(TRIGGER_LIGHT) == LOW) {
|
||||
// save the time of the falling edge
|
||||
lastToggleLightTime = currentMillis;
|
||||
} else if (currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000) {
|
||||
// now see if the rising edge was between 500ms and 10 seconds after the
|
||||
// falling edge
|
||||
this->dryContactToggleLight = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
ESP_LOGD(TAG, "door_code")
|
||||
transmit(DOOR_CODE, CODE_LENGTH);
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::toggleLight() {
|
||||
if (this->useRollingCodes) {
|
||||
getRollingCode("light");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
} else {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ESP_LOGD(TAG, "sync_code[%d]", i);
|
||||
void IRAM_ATTR RATGDOComponent::isrDoorOpen() { isrDebounce("openDoor"); }
|
||||
|
||||
transmit(SYNC_CODE[i], CODE_LENGTH);
|
||||
delay(45);
|
||||
void IRAM_ATTR RATGDOComponent::isrDoorClose() { isrDebounce("closeDoor"); }
|
||||
|
||||
void IRAM_ATTR RATGDOComponent::isrLight() { isrDebounce("toggleLight"); }
|
||||
|
||||
// Fire on RISING edge of RPM1
|
||||
void IRAM_ATTR RATGDOComponent::isrRPM1() { this->rpm1Pulsed = true; }
|
||||
|
||||
// Fire on RISING edge of RPM2
|
||||
// When RPM1 HIGH on RPM2 rising edge, door closing:
|
||||
// RPM1: __|--|___
|
||||
// RPM2: ___|--|__
|
||||
|
||||
// When RPM1 LOW on RPM2 rising edge, door opening:
|
||||
// RPM1: ___|--|__
|
||||
// RPM2: __|--|___
|
||||
void IRAM_ATTR RATGDOComponent::isrRPM2()
|
||||
{
|
||||
// The encoder updates faster than the ESP wants to process, so by sampling
|
||||
// every 5ms we get a more reliable curve The counter is behind the actual
|
||||
// pulse counter, but it doesn't matter since we only need a reliable linear
|
||||
// counter to determine the door direction
|
||||
static unsigned long lastPulse = 0;
|
||||
unsigned long currentMillis = millis();
|
||||
|
||||
if (currentMillis - lastPulse < 5) {
|
||||
return;
|
||||
}
|
||||
|
||||
// In rare situations, the rotary encoder can be parked so that RPM2
|
||||
// continuously fires this ISR. This causes the door counter to change value
|
||||
// even though the door isn't moving To solve this, check to see if RPM1
|
||||
// pulsed. If not, do nothing. If yes, reset the pulsed flag
|
||||
if (this->rpm1Pulsed) {
|
||||
this->rpm1Pulsed = false;
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
|
||||
lastPulse = millis();
|
||||
|
||||
// If the RPM1 state is different from the RPM2 state, then the door is
|
||||
// opening
|
||||
if (digitalRead(INPUT_RPM1)) {
|
||||
this->doorPositionCounter--;
|
||||
} else {
|
||||
this->doorPositionCounter++;
|
||||
}
|
||||
}
|
||||
ESP_LOGD(TAG, "light_code")
|
||||
transmit(LIGHT_CODE, CODE_LENGTH);
|
||||
}
|
||||
}
|
||||
|
||||
// handle changes to the dry contact state
|
||||
void RATGDOComponent::dryContactLoop()
|
||||
{
|
||||
if (this->dryContactDoorOpen) {
|
||||
ESP_LOGD(TAG, "Dry Contact: open the door");
|
||||
this->dryContactDoorOpen = false;
|
||||
openDoor();
|
||||
}
|
||||
|
||||
void RATGDOComponent::getRollingCode(const char *command){
|
||||
if (this->dryContactDoorClose) {
|
||||
ESP_LOGD(TAG, "Dry Contact: close the door");
|
||||
this->dryContactDoorClose = false;
|
||||
closeDoor();
|
||||
}
|
||||
|
||||
uint64_t id = 0x539;
|
||||
uint64_t fixed = 0;
|
||||
uint32_t data = 0;
|
||||
if (this->dryContactToggleLight) {
|
||||
ESP_LOGD(TAG, "Dry Contact: toggle the light");
|
||||
this->dryContactToggleLight = false;
|
||||
toggleLight();
|
||||
}
|
||||
}
|
||||
|
||||
if(strcmp(command,"reboot1") == 0){
|
||||
fixed = 0x400000000;
|
||||
data = 0x0000618b;
|
||||
}else if(strcmp(command,"reboot2") == 0){
|
||||
fixed = 0;
|
||||
data = 0x01009080;
|
||||
}else if(strcmp(command,"reboot3") == 0){
|
||||
fixed = 0;
|
||||
data = 0x0000b1a0;
|
||||
}else if(strcmp(command,"reboot4") == 0){
|
||||
fixed = 0;
|
||||
data = 0x01009080;
|
||||
}else if(strcmp(command,"reboot5") == 0){
|
||||
fixed = 0x300000000;
|
||||
data = 0x00008092;
|
||||
}else if(strcmp(command,"reboot6") == 0){
|
||||
fixed = 0x300000000;
|
||||
data = 0x00008092;
|
||||
}else if(strcmp(command,"door1") == 0){
|
||||
fixed = 0x200000000;
|
||||
data = 0x01018280;
|
||||
}else if(strcmp(command,"door2") == 0){
|
||||
fixed = 0x200000000;
|
||||
data = 0x01009280;
|
||||
}else if(strcmp(command,"light") == 0){
|
||||
fixed = 0x200000000;
|
||||
data = 0x00009281;
|
||||
}else{
|
||||
ESP_LOGD(TAG,"ERROR: Invalid command");
|
||||
return;
|
||||
}
|
||||
/*************************** OBSTRUCTION DETECTION ***************************/
|
||||
void IRAM_ATTR RATGDOComponent::isrObstruction()
|
||||
{
|
||||
if (digitalRead(INPUT_OBST)) {
|
||||
this->lastObstructionHigh = millis();
|
||||
} else {
|
||||
this->obstructionLowCount++;
|
||||
}
|
||||
}
|
||||
|
||||
fixed = fixed | id;
|
||||
void RATGDOComponent::obstructionLoop()
|
||||
{
|
||||
long currentMillis = millis();
|
||||
static unsigned long lastMillis = 0;
|
||||
|
||||
encode_wireline(this->rollingCodeCounter, fixed, data, this->rollingCode);
|
||||
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
|
||||
// obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
|
||||
// are tricky because the voltage drops slowly when falling asleep and is high
|
||||
// without pulses when waking up
|
||||
|
||||
printRollingCode();
|
||||
// If at least 3 low pulses are counted within 50ms, the door is awake, not
|
||||
// obstructed and we don't have to check anything else
|
||||
|
||||
if(strcmp(command,"door1") != 0){ // door2 is created with same counter and should always be called after door1
|
||||
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// Every 50ms
|
||||
if (currentMillis - lastMillis > 50) {
|
||||
// check to see if we got between 3 and 8 low pulses on the line
|
||||
if (this->obstructionLowCount >= 3 && this->obstructionLowCount <= 8) {
|
||||
obstructionCleared();
|
||||
|
||||
void RATGDOComponent::printRollingCode(){
|
||||
for(int i = 0; i < CODE_LENGTH; i++){
|
||||
if(this->rollingCode[i] <= 0x0f) ESP_LOGD(TAG, "0");
|
||||
ESP_LOGD(TAG, "%x", this->rollingCode[i]);
|
||||
}
|
||||
}
|
||||
// if there have been no pulses the line is steady high or low
|
||||
} else if (this->obstructionLowCount == 0) {
|
||||
// if the line is high and the last high pulse was more than 70ms ago,
|
||||
// then there is an obstruction present
|
||||
if (digitalRead(INPUT_OBST) && currentMillis - this->lastObstructionHigh > 70) {
|
||||
obstructionDetected();
|
||||
} else {
|
||||
// asleep
|
||||
}
|
||||
}
|
||||
|
||||
lastMillis = currentMillis;
|
||||
this->obstructionLowCount = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::obstructionDetected()
|
||||
{
|
||||
static unsigned long lastInterruptTime = 0;
|
||||
unsigned long interruptTime = millis();
|
||||
// Anything less than 100ms is a bounce and is ignored
|
||||
if (interruptTime - lastInterruptTime > 250) {
|
||||
this->doorIsObstructed = true;
|
||||
digitalWrite(STATUS_OBST, HIGH);
|
||||
ESP_LOGD(TAG, "Obstruction Detected");
|
||||
}
|
||||
lastInterruptTime = interruptTime;
|
||||
}
|
||||
|
||||
void RATGDOComponent::obstructionCleared()
|
||||
{
|
||||
if (this->doorIsObstructed) {
|
||||
this->doorIsObstructed = false;
|
||||
digitalWrite(STATUS_OBST, LOW);
|
||||
ESP_LOGD(TAG, "Obstruction Cleared");
|
||||
}
|
||||
}
|
||||
|
||||
/************************* DOOR COMMUNICATION *************************/
|
||||
/*
|
||||
* Transmit a message to the door opener over uart1
|
||||
* The TX1 pin is controlling a transistor, so the logic is inverted
|
||||
* A HIGH state on TX1 will pull the 12v line LOW
|
||||
*
|
||||
* The opener requires a specific duration low/high pulse before it will accept
|
||||
* a message
|
||||
*/
|
||||
void RATGDOComponent::transmit(byte* payload, unsigned int length)
|
||||
{
|
||||
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the
|
||||
// door opener responds to the message
|
||||
delayMicroseconds(1305);
|
||||
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
|
||||
|
||||
delayMicroseconds(1260); // "LOW" pulse duration before the message start
|
||||
this->swSerial.write(payload, length);
|
||||
}
|
||||
|
||||
void RATGDOComponent::sync()
|
||||
{
|
||||
if (!this->useRollingCodes_)
|
||||
return;
|
||||
|
||||
getRollingCode("reboot1");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot2");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot3");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot4");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot5");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
getRollingCode("reboot6");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
delay(45);
|
||||
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
}
|
||||
|
||||
void RATGDOComponent::openDoor()
|
||||
{
|
||||
if (this->doorState == "open" || this->doorState == "opening") {
|
||||
ESP_LOGD(TAG, "The door is already %s", doorState);
|
||||
return;
|
||||
}
|
||||
|
||||
this->doorState = "opening"; // It takes a couple of pulses to detect
|
||||
// opening/closing. by setting here, we can avoid
|
||||
// bouncing from rapidly repeated commands
|
||||
|
||||
if (this->useRollingCodes) {
|
||||
getRollingCode("door1");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
delay(40);
|
||||
|
||||
getRollingCode("door2");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
} else {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ESP_LOGD(TAG, "sync_code[%d]", i);
|
||||
|
||||
transmit(SYNC_CODE[i], CODE_LENGTH);
|
||||
delay(45);
|
||||
}
|
||||
ESP_LOGD(TAG, "door_code")
|
||||
transmit(DOOR_CODE, CODE_LENGTH);
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::closeDoor()
|
||||
{
|
||||
if (this->doorState == "closed" || this->doorState == "closing") {
|
||||
ESP_LOGD(TAG, "The door is already %s", this->doorState);
|
||||
return;
|
||||
}
|
||||
|
||||
this->doorState = "closing"; // It takes a couple of pulses to detect
|
||||
// opening/closing. by setting here, we can avoid
|
||||
// bouncing from rapidly repeated commands
|
||||
|
||||
if (this->useRollingCodes_) {
|
||||
getRollingCode("door1");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
delay(40);
|
||||
|
||||
getRollingCode("door2");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
} else {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ESP_LOGD(TAG, "sync_code[%d]", i);
|
||||
|
||||
transmit(SYNC_CODE[i], CODE_LENGTH);
|
||||
delay(45);
|
||||
}
|
||||
ESP_LOGD(TAG, "door_code")
|
||||
transmit(DOOR_CODE, CODE_LENGTH);
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::toggleLight()
|
||||
{
|
||||
if (this->useRollingCodes) {
|
||||
getRollingCode("light");
|
||||
transmit(this->rollingCode, CODE_LENGTH);
|
||||
this->pref_.save(&this->rollingCodeCounter);
|
||||
} else {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ESP_LOGD(TAG, "sync_code[%d]", i);
|
||||
|
||||
transmit(SYNC_CODE[i], CODE_LENGTH);
|
||||
delay(45);
|
||||
}
|
||||
ESP_LOGD(TAG, "light_code")
|
||||
transmit(LIGHT_CODE, CODE_LENGTH);
|
||||
}
|
||||
}
|
||||
|
||||
void RATGDOComponent::getRollingCode(const char* command)
|
||||
{
|
||||
|
||||
uint64_t id = 0x539;
|
||||
uint64_t fixed = 0;
|
||||
uint32_t data = 0;
|
||||
|
||||
if (strcmp(command, "reboot1") == 0) {
|
||||
fixed = 0x400000000;
|
||||
data = 0x0000618b;
|
||||
} else if (strcmp(command, "reboot2") == 0) {
|
||||
fixed = 0;
|
||||
data = 0x01009080;
|
||||
} else if (strcmp(command, "reboot3") == 0) {
|
||||
fixed = 0;
|
||||
data = 0x0000b1a0;
|
||||
} else if (strcmp(command, "reboot4") == 0) {
|
||||
fixed = 0;
|
||||
data = 0x01009080;
|
||||
} else if (strcmp(command, "reboot5") == 0) {
|
||||
fixed = 0x300000000;
|
||||
data = 0x00008092;
|
||||
} else if (strcmp(command, "reboot6") == 0) {
|
||||
fixed = 0x300000000;
|
||||
data = 0x00008092;
|
||||
} else if (strcmp(command, "door1") == 0) {
|
||||
fixed = 0x200000000;
|
||||
data = 0x01018280;
|
||||
} else if (strcmp(command, "door2") == 0) {
|
||||
fixed = 0x200000000;
|
||||
data = 0x01009280;
|
||||
} else if (strcmp(command, "light") == 0) {
|
||||
fixed = 0x200000000;
|
||||
data = 0x00009281;
|
||||
} else {
|
||||
ESP_LOGD(TAG, "ERROR: Invalid command");
|
||||
return;
|
||||
}
|
||||
|
||||
fixed = fixed | id;
|
||||
|
||||
encode_wireline(this->rollingCodeCounter, fixed, data, this->rollingCode);
|
||||
|
||||
printRollingCode();
|
||||
|
||||
if (strcmp(command, "door1") != 0) { // door2 is created with same counter and should always be called after door1
|
||||
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void RATGDOComponent::printRollingCode()
|
||||
{
|
||||
for (int i = 0; i < CODE_LENGTH; i++) {
|
||||
if (this->rollingCode[i] <= 0x0f)
|
||||
ESP_LOGD(TAG, "0");
|
||||
ESP_LOGD(TAG, "%x", this->rollingCode[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace ratgdo
|
||||
} // namespace esphome
|
||||
|
|
|
@ -15,111 +15,103 @@
|
|||
#include "esphome/core/component.h"
|
||||
#include "esphome/core/preferences.h"
|
||||
|
||||
|
||||
#include "SoftwareSerial.h"
|
||||
extern "C" {
|
||||
#include "secplus.h"
|
||||
}
|
||||
|
||||
static const uint8_t D0 = 16;
|
||||
static const uint8_t D1 = 5;
|
||||
static const uint8_t D2 = 4;
|
||||
static const uint8_t D3 = 0;
|
||||
static const uint8_t D4 = 2;
|
||||
static const uint8_t D5 = 14;
|
||||
static const uint8_t D6 = 12;
|
||||
static const uint8_t D7 = 13;
|
||||
static const uint8_t D8 = 15;
|
||||
static const uint8_t D9 = 3;
|
||||
static const uint8_t D10 = 1;
|
||||
|
||||
static const uint8_t D0 = 16;
|
||||
static const uint8_t D1 = 5;
|
||||
static const uint8_t D2 = 4;
|
||||
static const uint8_t D3 = 0;
|
||||
static const uint8_t D4 = 2;
|
||||
static const uint8_t D5 = 14;
|
||||
static const uint8_t D6 = 12;
|
||||
static const uint8_t D7 = 13;
|
||||
static const uint8_t D8 = 15;
|
||||
static const uint8_t D9 = 3;
|
||||
static const uint8_t D10 = 1;
|
||||
|
||||
#define CODE_LENGTH 19 // the length of each command sent to the door.
|
||||
/********************************** PIN DEFINITIONS
|
||||
* *****************************************/
|
||||
#define OUTPUT_GDO \
|
||||
D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini
|
||||
#define TRIGGER_OPEN D5 // dry contact for opening door
|
||||
#define OUTPUT_GDO \
|
||||
D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini
|
||||
#define TRIGGER_OPEN D5 // dry contact for opening door
|
||||
#define TRIGGER_CLOSE D6 // dry contact for closing door
|
||||
#define TRIGGER_LIGHT \
|
||||
D3 // dry contact for triggering light (no discrete light commands, so toggle
|
||||
// only)
|
||||
#define TRIGGER_LIGHT \
|
||||
D3 // dry contact for triggering light (no discrete light commands, so toggle
|
||||
// only)
|
||||
#define STATUS_DOOR D0 // output door status, HIGH for open, LOW for closed
|
||||
#define STATUS_OBST \
|
||||
D8 // output for obstruction status, HIGH for obstructed, LOW for clear
|
||||
#define INPUT_RPM1 \
|
||||
D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door
|
||||
// opener logic board
|
||||
#define INPUT_RPM2 \
|
||||
D2 // RPM2 rotary encoder input OR not used if using reed switch
|
||||
#define STATUS_OBST \
|
||||
D8 // output for obstruction status, HIGH for obstructed, LOW for clear
|
||||
#define INPUT_RPM1 \
|
||||
D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door
|
||||
// opener logic board
|
||||
#define INPUT_RPM2 \
|
||||
D2 // RPM2 rotary encoder input OR not used if using reed switch
|
||||
#define INPUT_OBST D7 // black obstruction sensor terminal
|
||||
|
||||
namespace esphome {
|
||||
namespace ratgdo {
|
||||
|
||||
class RATGDOComponent : public Component {
|
||||
public:
|
||||
void setup() override;
|
||||
void loop() override;
|
||||
/********************************** GLOBAL VARS
|
||||
* *****************************************/
|
||||
unsigned int rollingCodeCounter;
|
||||
SoftwareSerial swSerial;
|
||||
byte rollingCode[CODE_LENGTH];
|
||||
String doorState =
|
||||
"unknown"; // will be
|
||||
// [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed]
|
||||
class RATGDOComponent : public Component {
|
||||
public:
|
||||
void setup() override;
|
||||
void loop() override;
|
||||
/********************************** GLOBAL VARS
|
||||
* *****************************************/
|
||||
unsigned int rollingCodeCounter;
|
||||
SoftwareSerial swSerial;
|
||||
byte rollingCode[CODE_LENGTH];
|
||||
String doorState = "unknown"; // will be
|
||||
// [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed]
|
||||
|
||||
unsigned int obstructionLowCount = 0; // count obstruction low pulses
|
||||
unsigned long lastObstructionHigh =
|
||||
0; // count time between high pulses from the obst ISR
|
||||
unsigned int obstructionLowCount = 0; // count obstruction low pulses
|
||||
unsigned long lastObstructionHigh = 0; // count time between high pulses from the obst ISR
|
||||
|
||||
bool useRollingCodes = true; // use rolling codes or not
|
||||
bool doorIsObstructed = false;
|
||||
bool dryContactDoorOpen = false;
|
||||
bool dryContactDoorClose = false;
|
||||
bool dryContactToggleLight = false;
|
||||
int doorPositionCounter = 0; // calculate the door's movement and position
|
||||
bool rpm1Pulsed =
|
||||
false; // did rpm1 get a pulse or not - eliminates an issue when the sensor
|
||||
// is parked on a high pulse which fires rpm2 isr
|
||||
bool useRollingCodes = true; // use rolling codes or not
|
||||
bool doorIsObstructed = false;
|
||||
bool dryContactDoorOpen = false;
|
||||
bool dryContactDoorClose = false;
|
||||
bool dryContactToggleLight = false;
|
||||
int doorPositionCounter = 0; // calculate the door's movement and position
|
||||
bool rpm1Pulsed = false; // did rpm1 get a pulse or not - eliminates an issue when the
|
||||
// sensor is parked on a high pulse which fires rpm2 isr
|
||||
|
||||
/********************************** FUNCTION DECLARATION
|
||||
* *****************************************/
|
||||
void set_rolling_codes(bool useRollingCodes);
|
||||
void transmit(byte *payload, unsigned int length);
|
||||
void sync();
|
||||
void openDoor();
|
||||
void closeDoor();
|
||||
void toggleLight();
|
||||
/********************************** FUNCTION DECLARATION
|
||||
* *****************************************/
|
||||
void set_rolling_codes(bool useRollingCodes);
|
||||
void transmit(byte* payload, unsigned int length);
|
||||
void sync();
|
||||
void openDoor();
|
||||
void closeDoor();
|
||||
void toggleLight();
|
||||
|
||||
void obstructionLoop();
|
||||
void obstructionDetected();
|
||||
void obstructionCleared();
|
||||
void obstructionLoop();
|
||||
void obstructionDetected();
|
||||
void obstructionCleared();
|
||||
|
||||
void sendDoorStatus();
|
||||
void sendDoorStatus();
|
||||
|
||||
void doorStateLoop();
|
||||
void dryContactLoop();
|
||||
void doorStateLoop();
|
||||
void dryContactLoop();
|
||||
|
||||
/********************************** INTERRUPT SERVICE ROUTINES
|
||||
* ***********************************/
|
||||
void IRAM_ATTR isrDebounce(const char *type);
|
||||
void IRAM_ATTR isrDoorOpen();
|
||||
void IRAM_ATTR isrDoorClose();
|
||||
void IRAM_ATTR isrLight();
|
||||
void IRAM_ATTR isrObstruction();
|
||||
void IRAM_ATTR isrRPM1();
|
||||
void IRAM_ATTR isrRPM2();
|
||||
/********************************** INTERRUPT SERVICE ROUTINES
|
||||
* ***********************************/
|
||||
void IRAM_ATTR isrDebounce(const char* type);
|
||||
void IRAM_ATTR isrDoorOpen();
|
||||
void IRAM_ATTR isrDoorClose();
|
||||
void IRAM_ATTR isrLight();
|
||||
void IRAM_ATTR isrObstruction();
|
||||
void IRAM_ATTR isrRPM1();
|
||||
void IRAM_ATTR isrRPM2();
|
||||
|
||||
protected:
|
||||
ESPPreferenceObject pref_;
|
||||
bool useRollingCodes_;
|
||||
|
||||
|
||||
protected:
|
||||
ESPPreferenceObject pref_;
|
||||
bool useRollingCodes_;
|
||||
|
||||
|
||||
}; // RATGDOComponent
|
||||
}; // RATGDOComponent
|
||||
|
||||
} // namespace ratgdo
|
||||
} // namespace esphome
|
Loading…
Reference in New Issue