/************************************ * Rage * Against * The * Garage * Door * Opener * * Copyright (C) 2022 Paul Wieland * * GNU GENERAL PUBLIC LICENSE ************************************/ #include "ratgdo.h" #include "common.h" #include "esphome/core/log.h" namespace esphome { namespace ratgdo { static const char *const TAG = "ratgdo"; void RATGDOComponent::setup() { swSerial.begin(9600, SWSERIAL_8N2, -1, OUTPUT_GDO, true); pinMode(TRIGGER_OPEN, INPUT_PULLUP); pinMode(TRIGGER_CLOSE, INPUT_PULLUP); pinMode(TRIGGER_LIGHT, INPUT_PULLUP); pinMode(STATUS_DOOR, OUTPUT); pinMode(STATUS_OBST, OUTPUT); pinMode(INPUT_RPM1, INPUT_PULLUP); // set to pullup to add support for reed switches pinMode(INPUT_RPM2, INPUT_PULLUP); // make sure pin doesn't float when using reed switch // and fire interrupt by mistake pinMode(INPUT_OBST, INPUT); attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE); attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE); attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE); attachInterrupt(INPUT_OBST, isrObstruction, CHANGE); attachInterrupt(INPUT_RPM1, isrRPM1, RISING); attachInterrupt(INPUT_RPM2, isrRPM2, RISING); LittleFS.begin(); readCounterFromFlash(); if (useRollingCodes) { // if(rollingCodeCounter == 0) rollingCodeCounter = 1; ESP_LOGD(TAG, "Syncing rolling code counter after reboot..."); sync(); // if rolling codes are being used (rolling code counter > 0), send // reboot/sync to the opener on startup } else { ESP_LOGD(TAG, "Rolling codes are disabled."); } } void RATGDOComponent::loop() { obstructionLoop(); doorStateLoop(); dryContactLoop(); } } // namespace ratgdo } // namespace esphome /*************************** DETECTING THE DOOR STATE * ***************************/ void doorStateLoop() { static bool rotaryEncoderDetected = false; static int lastDoorPositionCounter = 0; static int lastDirectionChangeCounter = 0; static int lastCounterMillis = 0; // Handle reed switch // This may need to be debounced, but so far in testing I haven't detected any // bounces if (!rotaryEncoderDetected) { if (digitalRead(INPUT_RPM1) == LOW) { if (doorState != "reed_closed") { ESP_LOGD(TAG, "Reed switch closed"); doorState = "reed_closed"; digitalWrite(STATUS_DOOR, HIGH); } } else if (doorState != "reed_open") { ESP_LOGD(TAG, "Reed switch open"); doorState = "reed_open"; digitalWrite(STATUS_DOOR, LOW); } } // end reed switch handling // If the previous and the current state of the RPM2 Signal are different, // that means there is a rotary encoder detected and the door is moving if (doorPositionCounter != lastDoorPositionCounter) { rotaryEncoderDetected = true; // this disables the reed switch handler lastCounterMillis = millis(); ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter); } // Wait 5 pulses before updating to door opening status if (doorPositionCounter - lastDirectionChangeCounter > 5) { if (doorState != "opening") { ESP_LOGD(TAG, "Door Opening..."); } lastDirectionChangeCounter = doorPositionCounter; doorState = "opening"; } if (lastDirectionChangeCounter - doorPositionCounter > 5) { if (doorState != "closing") { ESP_LOGD(TAG, "Door Closing..."); } lastDirectionChangeCounter = doorPositionCounter; doorState = "closing"; } // 250 millis after the last rotary encoder pulse, the door is stopped if (millis() - lastCounterMillis > 250) { // if the door was closing, and is now stopped, then the door is closed if (doorState == "closing") { doorState = "closed"; ESP_LOGD(TAG, "Closed"); digitalWrite(STATUS_DOOR, LOW); } // if the door was opening, and is now stopped, then the door is open if (doorState == "opening") { doorState = "open"; ESP_LOGD(TAG, "Open"); digitalWrite(STATUS_DOOR, HIGH); } } lastDoorPositionCounter = doorPositionCounter; } /*************************** DRY CONTACT CONTROL OF LIGHT & DOOR * ***************************/ void IRAM_ATTR isrDebounce(const char *type) { static unsigned long lastOpenDoorTime = 0; static unsigned long lastCloseDoorTime = 0; static unsigned long lastToggleLightTime = 0; unsigned long currentMillis = millis(); // Prevent ISR during the first 2 seconds after reboot if (currentMillis < 2000) return; if (strcmp(type, "openDoor") == 0) { if (digitalRead(TRIGGER_OPEN) == LOW) { // save the time of the falling edge lastOpenDoorTime = currentMillis; } else if (currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge dryContactDoorOpen = true; } } if (strcmp(type, "closeDoor") == 0) { if (digitalRead(TRIGGER_CLOSE) == LOW) { // save the time of the falling edge lastCloseDoorTime = currentMillis; } else if (currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge dryContactDoorClose = true; } } if (strcmp(type, "toggleLight") == 0) { if (digitalRead(TRIGGER_LIGHT) == LOW) { // save the time of the falling edge lastToggleLightTime = currentMillis; } else if (currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge dryContactToggleLight = true; } } } void IRAM_ATTR isrDoorOpen() { isrDebounce("openDoor"); } void IRAM_ATTR isrDoorClose() { isrDebounce("closeDoor"); } void IRAM_ATTR isrLight() { isrDebounce("toggleLight"); } // Fire on RISING edge of RPM1 void IRAM_ATTR isrRPM1() { rpm1Pulsed = true; } // Fire on RISING edge of RPM2 // When RPM1 HIGH on RPM2 rising edge, door closing: // RPM1: __|--|___ // RPM2: ___|--|__ // When RPM1 LOW on RPM2 rising edge, door opening: // RPM1: ___|--|__ // RPM2: __|--|___ void IRAM_ATTR isrRPM2() { // The encoder updates faster than the ESP wants to process, so by sampling // every 5ms we get a more reliable curve The counter is behind the actual // pulse counter, but it doesn't matter since we only need a reliable linear // counter to determine the door direction static unsigned long lastPulse = 0; unsigned long currentMillis = millis(); if (currentMillis - lastPulse < 5) { return; } // In rare situations, the rotary encoder can be parked so that RPM2 // continuously fires this ISR. This causes the door counter to change value // even though the door isn't moving To solve this, check to see if RPM1 // pulsed. If not, do nothing. If yes, reset the pulsed flag if (rpm1Pulsed) { rpm1Pulsed = false; } else { return; } lastPulse = millis(); // If the RPM1 state is different from the RPM2 state, then the door is // opening if (digitalRead(INPUT_RPM1)) { doorPositionCounter--; } else { doorPositionCounter++; } } // handle changes to the dry contact state void dryContactLoop() { if (dryContactDoorOpen) { ESP_LOGD(TAG, "Dry Contact: open the door"); dryContactDoorOpen = false; openDoor(); } if (dryContactDoorClose) { ESP_LOGD(TAG, "Dry Contact: close the door"); dryContactDoorClose = false; closeDoor(); } if (dryContactToggleLight) { ESP_LOGD(TAG, "Dry Contact: toggle the light"); dryContactToggleLight = false; toggleLight(); } } /*************************** OBSTRUCTION DETECTION ***************************/ void IRAM_ATTR isrObstruction() { if (digitalRead(INPUT_OBST)) { lastObstructionHigh = millis(); } else { obstructionLowCount++; } } void obstructionLoop() { long currentMillis = millis(); static unsigned long lastMillis = 0; // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), // obstructed (HIGH), asleep (LOW) the transitions between awake and asleep // are tricky because the voltage drops slowly when falling asleep and is high // without pulses when waking up // If at least 3 low pulses are counted within 50ms, the door is awake, not // obstructed and we don't have to check anything else // Every 50ms if (currentMillis - lastMillis > 50) { // check to see if we got between 3 and 8 low pulses on the line if (obstructionLowCount >= 3 && obstructionLowCount <= 8) { obstructionCleared(); // if there have been no pulses the line is steady high or low } else if (obstructionLowCount == 0) { // if the line is high and the last high pulse was more than 70ms ago, // then there is an obstruction present if (digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70) { obstructionDetected(); } else { // asleep } } lastMillis = currentMillis; obstructionLowCount = 0; } } void obstructionDetected() { static unsigned long lastInterruptTime = 0; unsigned long interruptTime = millis(); // Anything less than 100ms is a bounce and is ignored if (interruptTime - lastInterruptTime > 250) { doorIsObstructed = true; digitalWrite(STATUS_OBST, HIGH); ESP_LOGD(TAG, "Obstruction Detected"); } lastInterruptTime = interruptTime; } void obstructionCleared() { if (doorIsObstructed) { doorIsObstructed = false; digitalWrite(STATUS_OBST, LOW); ESP_LOGD(TAG, "Obstruction Cleared"); } } void sendDoorStatus() { ESP_LOGD(TAG, "Door state %s", doorState); } void sendCurrentCounter() { String msg = String(rollingCodeCounter); ESP_LOGD(TAG, "Current counter %d", rollingCodeCounter); } /********************************** MANAGE HARDWARE BUTTON * *****************************************/ void manageHardwareButton() {} /************************* DOOR COMMUNICATION *************************/ /* * Transmit a message to the door opener over uart1 * The TX1 pin is controlling a transistor, so the logic is inverted * A HIGH state on TX1 will pull the 12v line LOW * * The opener requires a specific duration low/high pulse before it will accept * a message */ void transmit(byte *payload, unsigned int length) { digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the // door opener responds to the message delayMicroseconds(1305); digitalWrite(OUTPUT_GDO, LOW); // bring the line low delayMicroseconds(1260); // "LOW" pulse duration before the message start swSerial.write(payload, length); } void sync() { if (!useRollingCodes) return; getRollingCode("reboot1"); transmit(rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot2"); transmit(rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot3"); transmit(rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot4"); transmit(rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot5"); transmit(rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot6"); transmit(rollingCode, CODE_LENGTH); delay(45); writeCounterToFlash(); } void openDoor() { if (doorState == "open" || doorState == "opening") { ESP_LOGD(TAG, "The door is already %s", doorState); return; } doorState = "opening"; // It takes a couple of pulses to detect // opening/closing. by setting here, we can avoid // bouncing from rapidly repeated commands if (useRollingCodes) { getRollingCode("door1"); transmit(rollingCode, CODE_LENGTH); delay(40); getRollingCode("door2"); transmit(rollingCode, CODE_LENGTH); writeCounterToFlash(); } else { for (int i = 0; i < 4; i++) { ESP_LOGD(TAG, "sync_code[%d]", i); transmit(SYNC_CODE[i], CODE_LENGTH); delay(45); } ESP_LOGD(TAG, "door_code") transmit(DOOR_CODE, CODE_LENGTH); } } void closeDoor() { if (doorState == "closed" || doorState == "closing") { ESP_LOGD(TAG, "The door is already %s", doorState); return; } doorState = "closing"; // It takes a couple of pulses to detect // opening/closing. by setting here, we can avoid // bouncing from rapidly repeated commands if (useRollingCodes) { getRollingCode("door1"); transmit(rollingCode, CODE_LENGTH); delay(40); getRollingCode("door2"); transmit(rollingCode, CODE_LENGTH); writeCounterToFlash(); } else { for (int i = 0; i < 4; i++) { ESP_LOGD(TAG, "sync_code[%d]", i); transmit(SYNC_CODE[i], CODE_LENGTH); delay(45); } ESP_LOGD(TAG, "door_code") transmit(DOOR_CODE, CODE_LENGTH); } } void toggleLight() { if (useRollingCodes) { getRollingCode("light"); transmit(rollingCode, CODE_LENGTH); writeCounterToFlash(); } else { for (int i = 0; i < 4; i++) { ESP_LOGD(TAG, "sync_code[%d]", i); transmit(SYNC_CODE[i], CODE_LENGTH); delay(45); } ESP_LOGD(TAG, "light_code") transmit(LIGHT_CODE, CODE_LENGTH); } }