/************************************ * Rage * Against * The * Garage * Door * Opener * * Copyright (C) 2022 Paul Wieland * * GNU GENERAL PUBLIC LICENSE ************************************/ #include "ratgdo.h" #include "ratgdo_child.h" #include "ratgdo_state.h" #include "esphome/core/log.h" namespace esphome { namespace ratgdo { static const char* const TAG = "ratgdo"; static const int STARTUP_DELAY = 2000; // delay before enabling interrupts static const uint64_t REMOTE_ID = 0x539; void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore* arg) { if (arg->input_obst.digital_read()) { arg->lastObstructionHigh = millis(); } else { arg->obstructionLowCount++; } } void RATGDOComponent::setup() { this->pref_ = global_preferences->make_preference(734874333U); if (!this->pref_.load(&this->rollingCodeCounter)) { this->rollingCodeCounter = 0; } this->output_gdo_pin_->setup(); this->input_gdo_pin_->setup(); this->input_obst_pin_->setup(); this->store_.input_obst = this->input_obst_pin_->to_isr(); this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT); this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT); this->check_uart_settings(9600, 1, esphome::uart::UART_CONFIG_PARITY_NONE, 8); this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE); ESP_LOGD(TAG, "Syncing rolling code counter after reboot..."); sync(); // reboot/sync to the opener on startup } void RATGDOComponent::loop() { obstructionLoop(); gdoStateLoop(); statusUpdateLoop(); } void RATGDOComponent::dump_config() { ESP_LOGCONFIG(TAG, "Setting up RATGDO..."); LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_); LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_); LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_); ESP_LOGCONFIG(TAG, " Rolling Code Counter: %d", this->rollingCodeCounter); } void RATGDOComponent::readRollingCode(bool& isStatus, uint8_t& door, uint8_t& light, uint8_t& lock, uint8_t& motion, uint8_t& obstruction, uint8_t& motor, uint16_t& openings, uint8_t& button) { uint32_t rolling = 0; uint64_t fixed = 0; uint32_t data = 0; uint16_t cmd = 0; uint8_t nibble = 0; uint8_t byte1 = 0; uint8_t byte2 = 0; decode_wireline(this->rxRollingCode, &rolling, &fixed, &data); cmd = ((fixed >> 24) & 0xf00) | (data & 0xff); nibble = (data >> 8) & 0xf; byte1 = (data >> 16) & 0xff; byte2 = (data >> 24) & 0xff; if (cmd == 0x81) { door = nibble; light = (byte2 >> 1) & 1; lock = byte2 & 1; motion = 0; // when the status message is read, reset motion state to 0|clear motor = 0; // when the status message is read, reset motor state to 0|off // obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction ESP_LOGD(TAG, "Door: %d Light: %d Lock: %d Motion: %d Obstruction: %d", door, light, lock, motion, obstruction); isStatus = true; } else if (cmd == 0x281) { light ^= 1; // toggle bit ESP_LOGD(TAG, "Light: %d (toggle)", light); } else if (cmd == 0x84) { ESP_LOGD(TAG, "Unknown 0x84"); } else if (cmd == 0x284) { motor = 1; } else if (cmd == 0x280) { button = byte1 == 1 ? ButtonState::BUTTON_STATE_PRESSED : ButtonState::BUTTON_STATE_RELEASED; ESP_LOGD(TAG, "Pressed: %s", byte1 == 1 ? "pressed" : "released"); } else if (cmd == 0x48c) { openings = (byte1 << 8) | byte2; ESP_LOGD(TAG, "Openings: %d", (byte1 << 8) | byte2); } else if (cmd == 0x285) { motion = 1; // toggle bit ESP_LOGD(TAG, "Motion: %d (toggle)", motion); } else { ESP_LOGD(TAG, "Unknown command: %04x", cmd); } } void RATGDOComponent::getRollingCode(cmd command) { uint64_t fixed = command.fixed | REMOTE_ID; encode_wireline(this->rollingCodeCounter, fixed, command.data, this->txRollingCode); printRollingCode(); if (command != Command.DOOR1) { // door2 is created with same counter and should always be called after door1 incrementRollingCodeCounter(); } } void RATGDOComponent::setRollingCodeCounter(uint32_t counter) { ESP_LOGD(TAG, "Set rolling code counter to %d", counter); this->rollingCodeCounter = counter; this->pref_.save(&this->rollingCodeCounter); sendRollingCodeChanged(); } void RATGDOComponent::incrementRollingCodeCounter() { ESP_LOGD(TAG, "Incrementing rolling code counter"); this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff; sendRollingCodeChanged(); } void RATGDOComponent::sendRollingCodeChanged() { for (auto* child : this->children_) { child->on_rolling_code_change(this->rollingCodeCounter); } } void RATGDOComponent::printRollingCode() { ESP_LOGD(TAG, "Counter: %d Send code: [%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X]", this->rollingCodeCounter, this->txRollingCode[0], this->txRollingCode[1], this->txRollingCode[2], this->txRollingCode[3], this->txRollingCode[4], this->txRollingCode[5], this->txRollingCode[6], this->txRollingCode[7], this->txRollingCode[8], this->txRollingCode[9], this->txRollingCode[10], this->txRollingCode[11], this->txRollingCode[12], this->txRollingCode[13], this->txRollingCode[14], this->txRollingCode[15], this->txRollingCode[16], this->txRollingCode[17], this->txRollingCode[18]); } /*************************** OBSTRUCTION DETECTION ***************************/ void RATGDOComponent::obstructionLoop() { long currentMillis = millis(); static unsigned long lastMillis = 0; // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW) // the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep // and is high without pulses when waking up // If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else // Every 50ms if (currentMillis - lastMillis > 50) { // check to see if we got between 3 and 8 low pulses on the line if (this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8) { // obstructionCleared(); this->obstructionState = ObstructionState::OBSTRUCTION_STATE_CLEAR; // if there have been no pulses the line is steady high or low } else if (this->store_.obstructionLowCount == 0) { // if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present if (this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70) { this->obstructionState = ObstructionState::OBSTRUCTION_STATE_OBSTRUCTED; // obstructionDetected(); } else { // asleep } } lastMillis = currentMillis; this->store_.obstructionLowCount = 0; } } void RATGDOComponent::gdoStateLoop() { static uint32_t msgStart; static bool reading = false; static uint16_t byteCount = 0; static bool isStatus = false; while (this->available()) { // ESP_LOGD(TAG, "No data available input:%d output:%d", this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin()); uint8_t serData; if (!this->read_byte(&serData)) { ESP_LOGD(TAG, "Failed to read byte"); return; } if (!reading) { // shift serial byte onto msg start msgStart <<= 8; msgStart |= serData; // truncate to 3 bytes msgStart &= 0x00FFFFFF; // if we are at the start of a message, capture the next 16 bytes if (msgStart == 0x550100) { byteCount = 3; rxRollingCode[0] = 0x55; rxRollingCode[1] = 0x01; rxRollingCode[2] = 0x00; reading = true; return; } } if (reading) { this->rxRollingCode[byteCount] = serData; byteCount++; if (byteCount == CODE_LENGTH) { reading = false; msgStart = 0; byteCount = 0; isStatus = false; readRollingCode( isStatus, this->doorState, this->lightState, this->lockState, this->motionState, this->obstructionState, this->motorState, this->openings, this->buttonState); if (isStatus && this->forceUpdate_) { this->forceUpdate_ = false; this->previousDoorState = DoorState::DOOR_STATE_UNKNOWN; this->previousLightState = LightState::LIGHT_STATE_UNKNOWN; this->previousLockState = LockState::LOCK_STATE_UNKNOWN; } } } } } void RATGDOComponent::statusUpdateLoop() { if (this->doorState != this->previousDoorState) sendDoorStatus(); this->previousDoorState = this->doorState; if (this->lightState != this->previousLightState) sendLightStatus(); this->previousLightState = this->lightState; if (this->lockState != this->previousLockState) sendLockStatus(); this->previousLockState = this->lockState; if (this->obstructionState != this->previousObstructionState) sendObstructionStatus(); this->previousObstructionState = this->obstructionState; if (this->motorState != this->previousMotorState) { sendMotorStatus(); this->previousMotorState = this->motorState; } if (this->motionState == MotionState::MOTION_STATE_DETECTED) { sendMotionStatus(); this->motionState = MotionState::MOTION_STATE_CLEAR; } if (this->buttonState != this->previousButtonState) { sendButtonStatus(); this->previousButtonState = this->buttonState; } if (this->openings != this->previousOpenings) { sendOpenings(); this->previousOpenings = this->openings; } } void RATGDOComponent::query() { this->forceUpdate_ = true; sendCommandAndSaveCounter(Command.REBOOT2); } void RATGDOComponent::sendOpenings() { ESP_LOGD(TAG, "Openings: %d", this->openings); for (auto* child : this->children_) { child->on_openings_change(this->openings); } } void RATGDOComponent::sendDoorStatus() { DoorState val = static_cast(this->doorState); ESP_LOGD(TAG, "Door state: %s", door_state_to_string(val)); for (auto* child : this->children_) { child->on_door_state(val); } } void RATGDOComponent::sendLightStatus() { LightState val = static_cast(this->lightState); ESP_LOGD(TAG, "Light state %s (%d)", light_state_to_string(val), this->lightState); for (auto* child : this->children_) { child->on_light_state(val); } } void RATGDOComponent::sendLockStatus() { LockState val = static_cast(this->lockState); ESP_LOGD(TAG, "Lock state %s", lock_state_to_string(val)); for (auto* child : this->children_) { child->on_lock_state(val); } } void RATGDOComponent::sendMotionStatus() { MotionState val = static_cast(this->motionState); ESP_LOGD(TAG, "Motion state %s", motion_state_to_string(val)); for (auto* child : this->children_) { child->on_motion_state(val); } } void RATGDOComponent::sendButtonStatus() { ButtonState val = static_cast(this->buttonState); ESP_LOGD(TAG, "Button state %s", button_state_to_string(val)); for (auto* child : this->children_) { child->on_button_state(val); } } void RATGDOComponent::sendMotorStatus() { MotorState val = static_cast(this->motorState); ESP_LOGD(TAG, "Motor state %s", motor_state_to_string(val)); for (auto* child : this->children_) { child->on_motor_state(val); } } void RATGDOComponent::sendObstructionStatus() { ObstructionState val = static_cast(this->obstructionState); ESP_LOGD(TAG, "Obstruction state %s", obstruction_state_to_string(val)); for (auto* child : this->children_) { child->on_obstruction_state(val); } } /************************* DOOR COMMUNICATION *************************/ /* * Transmit a message to the door opener over uart1 * The TX1 pin is controlling a transistor, so the logic is inverted * A HIGH state on TX1 will pull the 12v line LOW * * The opener requires a specific duration low/high pulse before it will accept * a message */ void RATGDOComponent::transmit(cmd command) { getRollingCode(command); this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the // door opener responds to the message delayMicroseconds(1305); this->output_gdo_pin_->digital_write(false); // bring the line low delayMicroseconds(1260); // "LOW" pulse duration before the message start this->write_array(this->txRollingCode, CODE_LENGTH); } void RATGDOComponent::sync() { transmit(Command.REBOOT1); delay(65); transmit(Command.REBOOT2); delay(65); transmit(Command.REBOOT3); delay(65); transmit(Command.REBOOT4); delay(65); transmit(Command.REBOOT5); delay(65); sendCommandAndSaveCounter(Command.REBOOT6); delay(65); } void RATGDOComponent::openDoor() { if (this->doorState == DoorState::DOOR_STATE_OPEN || this->doorState == DoorState::DOOR_STATE_OPENING) { ESP_LOGD(TAG, "The door is already %s", door_state_to_string(static_cast(this->doorState))); return; } toggleDoor(); } void RATGDOComponent::closeDoor() { if (this->doorState == DoorState::DOOR_STATE_CLOSED || this->doorState == DoorState::DOOR_STATE_CLOSING) { ESP_LOGD(TAG, "The door is already %s", door_state_to_string(static_cast(this->doorState))); return; } toggleDoor(); } void RATGDOComponent::stopDoor() { if (this->doorState != DoorState::DOOR_STATE_OPENING && this->doorState != DoorState::DOOR_STATE_CLOSING) { ESP_LOGD(TAG, "The door is not moving."); return; } toggleDoor(); } void RATGDOComponent::toggleDoor() { transmit(Command.DOOR1); delay(40); sendCommandAndSaveCounter(Command.DOOR2); } bool RATGDOComponent::isLightOn() { return this->lightState == LightState::LIGHT_STATE_ON; } void RATGDOComponent::lightOn() { if (this->lightState == LightState::LIGHT_STATE_ON) { ESP_LOGD(TAG, "The light is already on"); return; } toggleLight(); // We don't always get the state back so be optimistic this->previousLightState = this->lightState; this->lightState = LightState::LIGHT_STATE_ON; } void RATGDOComponent::lightOff() { if (this->lightState == LightState::LIGHT_STATE_OFF) { ESP_LOGD(TAG, "The light is already off"); return; } toggleLight(); // We don't always get the state back so be optimistic this->previousLightState = this->lightState; this->lightState = LightState::LIGHT_STATE_OFF; } void RATGDOComponent::toggleLight() { sendCommandAndSaveCounter(Command.LIGHT); } // Lock functions void RATGDOComponent::lock() { if (this->lockState == LockState::LOCK_STATE_LOCKED) { ESP_LOGD(TAG, "already locked"); return; } toggleLock(); } void RATGDOComponent::unlock() { if (this->lockState == LockState::LOCK_STATE_UNLOCKED) { ESP_LOGD(TAG, "already unlocked"); return; } toggleLock(); } void RATGDOComponent::toggleLock() { sendCommandAndSaveCounter(Command.LOCK); } void RATGDOComponent::sendCommandAndSaveCounter(cmd command) { transmit(command); this->pref_.save(&this->rollingCodeCounter); global_preferences->sync(); } void RATGDOComponent::register_child(RATGDOClient* obj) { this->children_.push_back(obj); obj->set_parent(this); } LightState RATGDOComponent::getLightState() { return static_cast(this->lightState); } } // namespace ratgdo } // namespace esphome