esphome-ratgdo/components/ratgdo/ratgdo.cpp

710 lines
25 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "ratgdo_state.h"
#include "common.h"
#include "secplus1.h"
#include "secplus2.h"
#include "dry_contact.h"
#include "esphome/core/log.h"
#include "esphome/core/gpio.h"
#include "esphome/core/application.h"
namespace esphome {
namespace ratgdo {
using namespace protocol;
static const char* const TAG = "ratgdo";
static const int SYNC_DELAY = 1000;
void RATGDOComponent::setup()
{
this->output_gdo_pin_->setup();
this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->input_gdo_pin_->setup();
this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
if (this->input_obst_pin_ == nullptr) {
// Our base.yaml is always going to set this so we check for 0
// as well to avoid a breaking change.
this->obstruction_from_status_ = true;
} else {
this->input_obst_pin_->setup();
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isr_obstruction, &this->isr_store_, gpio::INTERRUPT_FALLING_EDGE);
}
this->protocol_->setup(this, &App.scheduler, this->input_gdo_pin_, this->output_gdo_pin_);
// many things happening at startup, use some delay for sync
set_timeout(SYNC_DELAY, [=] { this->sync(); });
}
// initializing protocol, this gets called before setup() because
// its children components might require that
void RATGDOComponent::init_protocol()
{
#ifdef PROTOCOL_SECPLUSV2
this->protocol_ = new secplus2::Secplus2();
#endif
#ifdef PROTOCOL_SECPLUSV1
this->protocol_ = new secplus1::Secplus1();
#endif
#ifdef PROTOCOL_DRYCONTACT
this->protocol_ = new dry_contact::DryContact();
#endif
}
void RATGDOComponent::loop()
{
if (!this->obstruction_from_status_) {
this->obstruction_loop();
}
this->protocol_->loop();
}
void RATGDOComponent::dump_config()
{
ESP_LOGCONFIG(TAG, "Setting up RATGDO...");
LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_);
LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_);
if (this->obstruction_from_status_) {
ESP_LOGCONFIG(TAG, " Input Obstruction Pin: not used, will detect from GDO status");
} else {
LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_);
}
this->protocol_->dump_config();
}
void RATGDOComponent::received(const DoorState door_state)
{
ESP_LOGD(TAG, "Door state=%s", DoorState_to_string(door_state));
auto prev_door_state = *this->door_state;
if (prev_door_state == door_state) {
return;
}
// opening duration calibration
if (*this->opening_duration == 0) {
if (door_state == DoorState::OPENING && prev_door_state == DoorState::CLOSED) {
this->start_opening = millis();
}
if (door_state == DoorState::OPEN && prev_door_state == DoorState::OPENING && this->start_opening > 0) {
auto duration = (millis() - this->start_opening) / 1000;
this->set_opening_duration(round(duration * 10) / 10);
}
if (door_state == DoorState::STOPPED) {
this->start_opening = -1;
}
}
// closing duration calibration
if (*this->closing_duration == 0) {
if (door_state == DoorState::CLOSING && prev_door_state == DoorState::OPEN) {
this->start_closing = millis();
}
if (door_state == DoorState::CLOSED && prev_door_state == DoorState::CLOSING && this->start_closing > 0) {
auto duration = (millis() - this->start_closing) / 1000;
this->set_closing_duration(round(duration * 10) / 10);
}
if (door_state == DoorState::STOPPED) {
this->start_closing = -1;
}
}
if (door_state == DoorState::OPENING) {
// door started opening
if (prev_door_state == DoorState::CLOSING) {
this->door_position_update();
this->cancel_position_sync_callbacks();
this->door_move_delta = DOOR_DELTA_UNKNOWN;
}
this->door_start_moving = millis();
this->door_start_position = *this->door_position;
if (this->door_move_delta == DOOR_DELTA_UNKNOWN) {
this->door_move_delta = 1.0 - this->door_start_position;
}
if (*this->opening_duration != 0) {
this->schedule_door_position_sync();
}
} else if (door_state == DoorState::CLOSING) {
// door started closing
if (prev_door_state == DoorState::OPENING) {
this->door_position_update();
this->cancel_position_sync_callbacks();
this->door_move_delta = DOOR_DELTA_UNKNOWN;
}
this->door_start_moving = millis();
this->door_start_position = *this->door_position;
if (this->door_move_delta == DOOR_DELTA_UNKNOWN) {
this->door_move_delta = 0.0 - this->door_start_position;
}
if (*this->closing_duration != 0) {
this->schedule_door_position_sync();
}
} else if (door_state == DoorState::STOPPED) {
this->door_position_update();
if (*this->door_position == DOOR_POSITION_UNKNOWN) {
this->door_position = 0.5; // best guess
}
this->cancel_position_sync_callbacks();
cancel_timeout("door_query_state");
} else if (door_state == DoorState::OPEN) {
this->door_position = 1.0;
this->cancel_position_sync_callbacks();
} else if (door_state == DoorState::CLOSED) {
this->door_position = 0.0;
this->cancel_position_sync_callbacks();
}
if (door_state == DoorState::OPEN || door_state == DoorState::CLOSED || door_state == DoorState::STOPPED) {
this->motor_state = MotorState::OFF;
}
if (door_state == DoorState::CLOSED && door_state != prev_door_state) {
this->query_openings();
}
this->door_state = door_state;
this->on_door_state_.trigger(door_state);
}
void RATGDOComponent::received(const LearnState learn_state)
{
ESP_LOGD(TAG, "Learn state=%s", LearnState_to_string(learn_state));
if (*this->learn_state == learn_state) {
return;
}
if (learn_state == LearnState::INACTIVE) {
this->query_paired_devices();
}
this->learn_state = learn_state;
}
void RATGDOComponent::received(const LightState light_state)
{
ESP_LOGD(TAG, "Light state=%s", LightState_to_string(light_state));
this->light_state = light_state;
}
void RATGDOComponent::received(const LockState lock_state)
{
ESP_LOGD(TAG, "Lock state=%s", LockState_to_string(lock_state));
this->lock_state = lock_state;
}
void RATGDOComponent::received(const ObstructionState obstruction_state)
{
if (this->obstruction_from_status_) {
ESP_LOGD(TAG, "Obstruction: state=%s", ObstructionState_to_string(*this->obstruction_state));
this->obstruction_state = obstruction_state;
// This isn't very fast to update, but its still better
// than nothing in the case the obstruction sensor is not
// wired up.
}
}
void RATGDOComponent::received(const MotorState motor_state)
{
ESP_LOGD(TAG, "Motor: state=%s", MotorState_to_string(*this->motor_state));
this->motor_state = motor_state;
}
void RATGDOComponent::received(const ButtonState button_state)
{
ESP_LOGD(TAG, "Button state=%s", ButtonState_to_string(*this->button_state));
this->button_state = button_state;
}
void RATGDOComponent::received(const MotionState motion_state)
{
ESP_LOGD(TAG, "Motion: %s", MotionState_to_string(*this->motion_state));
this->motion_state = motion_state;
if (motion_state == MotionState::DETECTED) {
this->set_timeout("clear_motion", 3000, [=] {
this->motion_state = MotionState::CLEAR;
});
if (*this->light_state == LightState::OFF) {
this->query_status();
}
}
}
void RATGDOComponent::received(const LightAction light_action)
{
ESP_LOGD(TAG, "Light cmd=%s state=%s",
LightAction_to_string(light_action),
LightState_to_string(*this->light_state)
);
if (light_action == LightAction::OFF) {
this->light_state = LightState::OFF;
} else if (light_action == LightAction::ON) {
this->light_state = LightState::ON;
} else if (light_action == LightAction::TOGGLE) {
this->light_state = light_state_toggle(*this->light_state);
}
}
void RATGDOComponent::received(const Openings openings)
{
if (openings.flag == 0 || *this->openings != 0) {
this->openings = openings.count;
ESP_LOGD(TAG, "Openings: %d", *this->openings);
} else {
ESP_LOGD(TAG, "Ignoring openings, not from our request");
}
}
void RATGDOComponent::received(const PairedDeviceCount pdc)
{
ESP_LOGD(TAG, "Paired device count, kind=%s count=%d", PairedDevice_to_string(pdc.kind), pdc.count);
if (pdc.kind == PairedDevice::ALL) {
this->paired_total = pdc.count;
} else if (pdc.kind == PairedDevice::REMOTE) {
this->paired_remotes = pdc.count;
} else if (pdc.kind == PairedDevice::KEYPAD) {
this->paired_keypads = pdc.count;
} else if (pdc.kind == PairedDevice::WALL_CONTROL) {
this->paired_wall_controls = pdc.count;
} else if (pdc.kind == PairedDevice::ACCESSORY) {
this->paired_accessories = pdc.count;
}
}
void RATGDOComponent::received(const TimeToClose ttc)
{
ESP_LOGD(TAG, "Time to close (TTC): %ds", ttc.seconds);
}
void RATGDOComponent::received(const BatteryState battery_state)
{
ESP_LOGD(TAG, "Battery state=%s", BatteryState_to_string(battery_state));
}
void RATGDOComponent::schedule_door_position_sync(float update_period)
{
ESP_LOG1(TAG, "Schedule position sync: delta %f, start position: %f, start moving: %d",
this->door_move_delta, this->door_start_position, this->door_start_moving);
auto duration = this->door_move_delta > 0 ? *this->opening_duration : *this->closing_duration;
if (duration == 0) {
return;
}
auto count = int(1000 * duration / update_period);
set_retry("position_sync_while_moving", update_period, count, [=](uint8_t r) {
this->door_position_update();
return RetryResult::RETRY;
});
}
void RATGDOComponent::door_position_update()
{
if (this->door_start_moving == 0 || this->door_start_position == DOOR_POSITION_UNKNOWN || this->door_move_delta == DOOR_DELTA_UNKNOWN) {
return;
}
auto now = millis();
auto duration = this->door_move_delta > 0 ? *this->opening_duration : -*this->closing_duration;
if (duration == 0) {
return;
}
auto position = this->door_start_position + (now - this->door_start_moving) / (1000 * duration);
ESP_LOG2(TAG, "[%d] Position update: %f", now, position);
this->door_position = clamp(position, 0.0f, 1.0f);
}
void RATGDOComponent::set_opening_duration(float duration)
{
ESP_LOGD(TAG, "Set opening duration: %.1fs", duration);
this->opening_duration = duration;
}
void RATGDOComponent::set_closing_duration(float duration)
{
ESP_LOGD(TAG, "Set closing duration: %.1fs", duration);
this->closing_duration = duration;
}
Result RATGDOComponent::call_protocol(Args args)
{
return this->protocol_->call(args);
}
/*************************** OBSTRUCTION DETECTION ***************************/
void RATGDOComponent::obstruction_loop()
{
long current_millis = millis();
static unsigned long last_millis = 0;
static unsigned long last_asleep = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
const long CHECK_PERIOD = 50;
const long PULSES_LOWER_LIMIT = 3;
if (current_millis - last_millis > CHECK_PERIOD) {
// ESP_LOGD(TAG, "%ld: Obstruction count: %d, expected: %d, since asleep: %ld",
// current_millis, this->isr_store_.obstruction_low_count, PULSES_EXPECTED,
// current_millis - last_asleep
// );
// check to see if we got more then PULSES_LOWER_LIMIT pulses
if (this->isr_store_.obstruction_low_count > PULSES_LOWER_LIMIT) {
this->obstruction_state = ObstructionState::CLEAR;
} else if (this->isr_store_.obstruction_low_count == 0) {
// if there have been no pulses the line is steady high or low
if (!this->input_obst_pin_->digital_read()) {
// asleep
last_asleep = current_millis;
} else {
// if the line is high and was last asleep more than 700ms ago, then there is an obstruction present
if (current_millis - last_asleep > 700) {
this->obstruction_state = ObstructionState::OBSTRUCTED;
}
}
}
last_millis = current_millis;
this->isr_store_.obstruction_low_count = 0;
}
}
void RATGDOComponent::query_status()
{
this->protocol_->call(QueryStatus{});
}
void RATGDOComponent::query_openings()
{
this->protocol_->call(QueryOpenings{});
}
void RATGDOComponent::query_paired_devices()
{
this->protocol_->call(QueryPairedDevicesAll{});
}
void RATGDOComponent::query_paired_devices(PairedDevice kind)
{
this->protocol_->call(QueryPairedDevices{kind});
}
void RATGDOComponent::clear_paired_devices(PairedDevice kind)
{
this->protocol_->call(ClearPairedDevices{kind});
}
void RATGDOComponent::sync()
{
this->protocol_->sync();
}
void RATGDOComponent::door_open()
{
if (*this->door_state == DoorState::OPENING) {
return; // gets ignored by opener
}
this->door_action(DoorAction::OPEN);
// query state in case we don't get a status message
set_timeout("door_query_state", (*this->opening_duration + 2)*1000, [=]() {
if (*this->door_state != DoorState::OPEN && *this->door_state != DoorState::STOPPED) {
this->query_status();
}
});
}
void RATGDOComponent::door_close()
{
if (*this->door_state == DoorState::CLOSING) {
return; // gets ignored by opener
}
if (*this->door_state == DoorState::OPENING) {
// have to stop door first, otherwise close command is ignored
this->door_action(DoorAction::STOP);
this->on_door_state_([=](DoorState s) {
if (s == DoorState::STOPPED) {
this->door_action(DoorAction::CLOSE);
} else {
ESP_LOGW(TAG, "Door did not stop, ignoring close command");
}
});
return;
}
this->door_action(DoorAction::CLOSE);
// query state in case we don't get a status message
set_timeout("door_query_state", (*this->closing_duration + 2)*1000, [=]() {
if (*this->door_state != DoorState::CLOSED && *this->door_state != DoorState::STOPPED) {
this->query_status();
}
});
}
void RATGDOComponent::door_stop()
{
if (*this->door_state != DoorState::OPENING && *this->door_state != DoorState::CLOSING) {
ESP_LOGW(TAG, "The door is not moving.");
return;
}
this->door_action(DoorAction::STOP);
}
void RATGDOComponent::door_toggle()
{
this->door_action(DoorAction::TOGGLE);
}
void RATGDOComponent::door_action(DoorAction action)
{
this->protocol_->door_action(action);
}
void RATGDOComponent::ensure_door_action(DoorAction action, uint32_t delay)
{
if (action == DoorAction::TOGGLE) {
ESP_LOGW(TAG, "It's not recommended to use ensure_door_action with non-idempotent commands such as DOOR_TOGGLE");
}
auto prev_door_state = *this->door_state;
this->on_door_state_([=](DoorState s) {
if ((action == DoorAction::STOP) && (s != DoorState::STOPPED) && !(prev_door_state == DoorState::OPENING && s == DoorState::OPEN) && !(prev_door_state == DoorState::CLOSING && s == DoorState::CLOSED)) {
return;
}
if (action == DoorAction::OPEN && !(s == DoorState::OPENING || s == DoorState::OPEN)) {
return;
}
if (action == DoorAction::CLOSE && !(s == DoorState::CLOSED || s == DoorState::CLOSING)) {
return;
}
ESP_LOG1(TAG, "Received door status, cancel door command retry");
cancel_timeout("door_command_retry");
});
this->door_action(action);
ESP_LOG1(TAG, "Ensure door command, setup door command retry");
set_timeout("door_command_retry", delay, [=]() {
this->ensure_door_action(action);
});
}
void RATGDOComponent::door_move_to_position(float position)
{
if (*this->door_state == DoorState::OPENING || *this->door_state == DoorState::CLOSING) {
this->door_action(DoorAction::STOP);
this->on_door_state_([=](DoorState s) {
if (s == DoorState::STOPPED) {
this->door_move_to_position(position);
}
});
return;
}
auto delta = position - *this->door_position;
if (delta == 0) {
ESP_LOGD(TAG, "Door is already at position %.2f", position);
return;
}
auto duration = delta > 0 ? *this->opening_duration : -*this->closing_duration;
if (duration == 0) {
ESP_LOGW(TAG, "I don't know duration, ignoring move to position");
return;
}
auto operation_time = 1000 * duration * delta;
this->door_move_delta = delta;
ESP_LOGD(TAG, "Moving to position %.2f in %.1fs", position, operation_time / 1000.0);
this->door_action(delta > 0 ? DoorAction::OPEN : DoorAction::CLOSE);
set_timeout("move_to_position", operation_time, [=] {
if (this->protocol_->traits().has_door_stop()) {
this->ensure_door_action(DoorAction::STOP);
} else {
this->door_action(DoorAction::STOP);
}
});
}
void RATGDOComponent::cancel_position_sync_callbacks()
{
if (this->door_start_moving != 0) {
ESP_LOGD(TAG, "Cancelling position callbacks");
cancel_timeout("move_to_position");
cancel_retry("position_sync_while_moving");
this->door_start_moving = 0;
this->door_start_position = DOOR_POSITION_UNKNOWN;
this->door_move_delta = DOOR_DELTA_UNKNOWN;
}
}
void RATGDOComponent::light_on()
{
this->light_state = LightState::ON;
this->protocol_->light_action(LightAction::ON);
}
void RATGDOComponent::light_off()
{
this->light_state = LightState::OFF;
this->protocol_->light_action(LightAction::OFF);
}
void RATGDOComponent::light_toggle()
{
this->light_state = light_state_toggle(*this->light_state);
this->protocol_->light_action(LightAction::TOGGLE);
}
LightState RATGDOComponent::get_light_state() const
{
return *this->light_state;
}
// Lock functions
void RATGDOComponent::lock()
{
this->lock_state = LockState::LOCKED;
this->protocol_->lock_action(LockAction::LOCK);
}
void RATGDOComponent::unlock()
{
this->lock_state = LockState::UNLOCKED;
this->protocol_->lock_action(LockAction::UNLOCK);
}
void RATGDOComponent::lock_toggle()
{
this->lock_state = lock_state_toggle(*this->lock_state);
this->protocol_->lock_action(LockAction::TOGGLE);
}
// Learn functions
void RATGDOComponent::activate_learn()
{
this->protocol_->call(ActivateLearn{});
}
void RATGDOComponent::inactivate_learn()
{
this->protocol_->call(InactivateLearn{});
}
void RATGDOComponent::subscribe_rolling_code_counter(std::function<void(uint32_t)>&& f)
{
// change update to children is defered until after component loop
// if multiple changes occur during component loop, only the last one is notified
auto counter = this->protocol_->call(GetRollingCodeCounter{});
if (counter.tag==Result::Tag::rolling_code_counter) {
counter.value.rolling_code_counter.value->subscribe([=](uint32_t state) { defer("rolling_code_counter", [=] { f(state); }); });
}
}
void RATGDOComponent::subscribe_opening_duration(std::function<void(float)>&& f)
{
this->opening_duration.subscribe([=](float state) { defer("opening_duration", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_closing_duration(std::function<void(float)>&& f)
{
this->closing_duration.subscribe([=](float state) { defer("closing_duration", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_openings(std::function<void(uint16_t)>&& f)
{
this->openings.subscribe([=](uint16_t state) { defer("openings", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_paired_devices_total(std::function<void(uint16_t)>&& f)
{
this->paired_total.subscribe([=](uint16_t state) { defer("paired_total", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_paired_remotes(std::function<void(uint16_t)>&& f)
{
this->paired_remotes.subscribe([=](uint16_t state) { defer("paired_remotes", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_paired_keypads(std::function<void(uint16_t)>&& f)
{
this->paired_keypads.subscribe([=](uint16_t state) { defer("paired_keypads", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_paired_wall_controls(std::function<void(uint16_t)>&& f)
{
this->paired_wall_controls.subscribe([=](uint16_t state) { defer("paired_wall_controls", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_paired_accessories(std::function<void(uint16_t)>&& f)
{
this->paired_accessories.subscribe([=](uint16_t state) { defer("paired_accessories", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_door_state(std::function<void(DoorState, float)>&& f)
{
this->door_state.subscribe([=](DoorState state) {
defer("door_state", [=] { f(state, *this->door_position); });
});
this->door_position.subscribe([=](float position) {
defer("door_state", [=] { f(*this->door_state, position); });
});
}
void RATGDOComponent::subscribe_light_state(std::function<void(LightState)>&& f)
{
this->light_state.subscribe([=](LightState state) { defer("light_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_lock_state(std::function<void(LockState)>&& f)
{
this->lock_state.subscribe([=](LockState state) { defer("lock_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_obstruction_state(std::function<void(ObstructionState)>&& f)
{
this->obstruction_state.subscribe([=](ObstructionState state) { defer("obstruction_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_motor_state(std::function<void(MotorState)>&& f)
{
this->motor_state.subscribe([=](MotorState state) { defer("motor_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_button_state(std::function<void(ButtonState)>&& f)
{
this->button_state.subscribe([=](ButtonState state) { defer("button_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_motion_state(std::function<void(MotionState)>&& f)
{
this->motion_state.subscribe([=](MotionState state) { defer("motion_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_sync_failed(std::function<void(bool)>&& f)
{
this->sync_failed.subscribe(std::move(f));
}
void RATGDOComponent::subscribe_learn_state(std::function<void(LearnState)>&& f)
{
this->learn_state.subscribe([=](LearnState state) { defer("learn_state", [=] { f(state); }); });
}
} // namespace ratgdo
} // namespace esphome