esphome-ratgdo/components/ratgdo/ratgdo.cpp

553 lines
19 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "esphome/core/log.h"
#include "esphome/components/uart/uart.h"
#include "esphome/core/component.h"
namespace esphome {
namespace ratgdo {
static const char* const TAG = "ratgdo";
static const int STARTUP_DELAY = 2000; // delay before enabling interrupts
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
* ***************************/
void IRAM_ATTR HOT RATGDOStore::isrDoorOpen(RATGDOStore* arg)
{
static unsigned long lastOpenDoorTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < STARTUP_DELAY)
return;
if (!arg->trigger_open.digital_read()) {
// save the time of the falling edge
lastOpenDoorTime = currentMillis;
} else if (currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactDoorOpen = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrDoorClose(RATGDOStore* arg)
{
static unsigned long lastCloseDoorTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < STARTUP_DELAY)
return;
if (!arg->trigger_close.digital_read()) {
// save the time of the falling edge
lastCloseDoorTime = currentMillis;
} else if (currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactDoorClose = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrLight(RATGDOStore* arg)
{
static unsigned long lastToggleLightTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < STARTUP_DELAY)
return;
if (!arg->trigger_light.digital_read()) {
// save the time of the falling edge
lastToggleLightTime = currentMillis;
} else if (currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactToggleLight = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore* arg)
{
if (arg->input_obst.digital_read()) {
ESP_LOGD(TAG, "isrObstruction HIGH");
arg->lastObstructionHigh = millis();
} else {
ESP_LOGD(TAG, "isrObstruction LOW");
arg->obstructionLowCount++;
}
}
class RATGDOComponent : public uart::UARTDevice, public Component {
public:
void setup() override
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->output_gdo_pin_->setup();
this->input_gdo_pin_->setup();
this->input_obst_pin_->setup();
this->trigger_open_pin_->setup();
this->trigger_close_pin_->setup();
this->trigger_light_pin_->setup();
this->status_door_pin_->setup();
this->status_obst_pin_->setup();
this->store_.input_obst = this->input_obst_pin_->to_isr();
this->store_.trigger_open = this->trigger_open_pin_->to_isr();
this->store_.trigger_close = this->trigger_close_pin_->to_isr();
this->store_.trigger_light = this->trigger_light_pin_->to_isr();
this->trigger_open_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_close_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_light_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->status_door_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->status_obst_pin_->pin_mode(gpio::FLAG_OUTPUT);
// this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
// this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->swSerial.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true);
this->trigger_open_pin_->attach_interrupt(RATGDOStore::isrDoorOpen, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_close_pin_->attach_interrupt(RATGDOStore::isrDoorClose, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_light_pin_->attach_interrupt(RATGDOStore::isrLight, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
}
void loop() override
{
ESP_LOGD(TAG, "loop rollingCodeCounter: %d", this->rollingCodeCounter);
obstructionLoop();
gdoStateLoop();
dryContactLoop();
statusUpdateLoop();
// ESP_LOGD(TAG, "Door State: %s", this->doorState.c_str());
}
void readRollingCode(uint8_t& door, uint8_t& light, uint8_t& lock, uint8_t& motion, uint8_t& obstruction)
{
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
uint16_t cmd = 0;
uint8_t nibble = 0;
uint8_t byte1 = 0;
uint8_t byte2 = 0;
decode_wireline(this->rxRollingCode, &rolling, &fixed, &data);
cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
nibble = (data >> 8) & 0xf;
byte1 = (data >> 16) & 0xff;
byte2 = (data >> 24) & 0xff;
if (cmd == 0x81) {
door = nibble;
light = (byte2 >> 1) & 1;
lock = byte2 & 1;
motion = 0; // when the status message is read, reset motion state to 0|clear
// obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction
} else if (cmd == 0x281) {
light ^= 1; // toggle bit
} else if (cmd == 0x84) {
} else if (cmd == 0x285) {
motion = 1; // toggle bit
}
}
void getRollingCode(const char* command)
{
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
if (strcmp(command, "reboot1") == 0) {
fixed = 0x400000000;
data = 0x0000618b;
} else if (strcmp(command, "reboot2") == 0) {
fixed = 0;
data = 0x01009080;
} else if (strcmp(command, "reboot3") == 0) {
fixed = 0;
data = 0x0000b1a0;
} else if (strcmp(command, "reboot4") == 0) {
fixed = 0;
data = 0x01009080;
} else if (strcmp(command, "reboot5") == 0) {
fixed = 0x300000000;
data = 0x00008092;
} else if (strcmp(command, "reboot6") == 0) {
fixed = 0x300000000;
data = 0x00008092;
} else if (strcmp(command, "door1") == 0) {
fixed = 0x200000000;
data = 0x01018280;
} else if (strcmp(command, "door2") == 0) {
fixed = 0x200000000;
data = 0x01009280;
} else if (strcmp(command, "light") == 0) {
fixed = 0x200000000;
data = 0x00009281;
} else if (strcmp(command, "lock") == 0) {
fixed = 0x0100000000;
data = 0x0000728c;
} else {
ESP_LOGD(TAG, "ERROR: Invalid command");
return;
}
fixed = fixed | id;
encode_wireline(this->rollingCodeCounter, fixed, data, this->txRollingCode);
printRollingCode();
if (strcmp(command, "door1") != 0) { // door2 is created with same counter and should always be called after door1
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
void printRollingCode()
{
for (int i = 0; i < CODE_LENGTH; i++) {
if (this->txRollingCode[i] <= 0x0f)
ESP_LOGD(TAG, "0");
ESP_LOGD(TAG, "%x", this->txRollingCode[i]);
}
}
// handle changes to the dry contact state
void dryContactLoop()
{
if (this->store_.dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
this->store_.dryContactDoorOpen = false;
openDoor();
}
if (this->store_.dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
this->store_.dryContactDoorClose = false;
closeDoor();
}
if (this->store_.dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
this->store_.dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line
if (this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8) {
// obstructionCleared();
this->store_.obstructionState = 1;
// if there have been no pulses the line is steady high or low
} else if (this->store_.obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if (this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70) {
this->store_.obstructionState = 0;
// obstructionDetected();
} else {
// asleep
}
}
lastMillis = currentMillis;
this->store_.obstructionLowCount = 0;
}
}
void gdoStateLoop()
{
if (!this->swSerial.available()) {
// ESP_LOGD(TAG, "No data available input:%d output:%d", this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin());
return;
}
uint8_t serData = this->swSerial.read();
static uint32_t msgStart;
static bool reading = false;
static uint16_t byteCount = 0;
if (!reading) {
// shift serial byte onto msg start
msgStart <<= 8;
msgStart |= serData;
// truncate to 3 bytes
msgStart &= 0x00FFFFFF;
// if we are at the start of a message, capture the next 16 bytes
if (msgStart == 0x550100) {
byteCount = 3;
rxRollingCode[0] = 0x55;
rxRollingCode[1] = 0x01;
rxRollingCode[2] = 0x00;
reading = true;
return;
}
}
if (reading) {
this->rxRollingCode[byteCount] = serData;
byteCount++;
if (byteCount == 19) {
reading = false;
msgStart = 0;
byteCount = 0;
readRollingCode(this->store_.doorState, this->store_.lightState, this->store_.lockState, this->store_.motionState, this->store_.obstructionState);
}
}
}
void statusUpdateLoop()
{
// initialize to unknown
static uint8_t previousDoorState = 0;
static uint8_t previousLightState = 2;
static uint8_t previousLockState = 2;
static uint8_t previousObstructionState = 2;
if (this->store_.doorState != previousDoorState)
sendDoorStatus();
if (this->store_.lightState != previousLightState)
sendLightStatus();
if (this->store_.lockState != previousLockState)
sendLockStatus();
if (this->store_.obstructionState != previousObstructionState)
sendObstructionStatus();
if (this->store_.motionState == 1) {
sendMotionStatus();
this->store_.motionState = 0;
}
previousDoorState = this->store_.doorState;
previousLightState = this->store_.lightState;
previousLockState = this->store_.lockState;
previousObstructionState = this->store_.obstructionState;
}
void sendDoorStatus()
{
ESP_LOGD(TAG, "Door state %d", this->store_.doorState);
this->status_door_pin_->digital_write(this->store_.doorState == 1);
}
void sendLightStatus()
{
ESP_LOGD(TAG, "Light state %d", this->store_.lightState);
}
void sendLockStatus()
{
ESP_LOGD(TAG, "Lock state %d", this->store_.lockState);
}
void sendMotionStatus()
{
ESP_LOGD(TAG, "Motion state %d", this->store_.motionState);
this->store_.motionState = 0; // reset motion state
}
void sendObstructionStatus()
{
ESP_LOGD(TAG, "Obstruction state %d", this->store_.obstructionState);
this->status_obst_pin_->digital_write(this->store_.obstructionState == 0);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void transmit(const unsigned char* payload)
{
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(payload, CODE_LENGTH);
}
void sync()
{
getRollingCode("reboot1");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot2");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot3");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot4");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot5");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot6");
transmit(this->txRollingCode);
delay(65);
this->pref_.save(&this->rollingCodeCounter);
}
void openDoor()
{
if (this->doorStates[this->store_.doorState] == "open" || doorStates[this->store_.doorState] == "opening") {
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
}
toggleDoor();
}
void closeDoor()
{
if (this->doorStates[this->store_.doorState] == "closed" || doorStates[this->store_.doorState] == "closing") {
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
}
toggleDoor();
}
void stopDoor()
{
if (this->doorStates[this->store_.doorState] == "opening" || doorStates[this->store_.doorState] == "closing") {
toggleDoor();
} else {
Serial.print("The door is not moving.");
}
}
void toggleDoor()
{
getRollingCode("door1");
transmit(this->txRollingCode);
delay(40);
getRollingCode("door2");
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
void lightOn()
{
if (this->lightStates[this->store_.lightState] == "on") {
ESP_LOGD(TAG, "already on");
} else {
toggleLight();
}
}
void lightOff()
{
if (this->lightStates[this->store_.lightState] == "off") {
ESP_LOGD(TAG, "already off");
} else {
toggleLight();
}
}
void toggleLight()
{
sendCommand("light");
}
// Lock functions
void lock()
{
if (this->lockStates[this->store_.lockState] == "locked") {
ESP_LOGD(TAG, "already locked");
} else {
toggleLock();
}
}
void unlock()
{
if (this->lockStates[this->store_.lockState] == "unlocked") {
ESP_LOGD(TAG, "already unlocked");
} else {
toggleLock();
}
}
void toggleLock()
{
sendCommand("lock");
}
void sendCommand(const char* command)
{
getRollingCode(command);
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
}
} // namespace ratgdo
} // namespace esphome