esphome-ratgdo/components/ratgdo/ratgdo.cpp

497 lines
18 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "ratgdo_child.h"
#include "ratgdo_state.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char* const TAG = "ratgdo";
static const int STARTUP_DELAY = 2000; // delay before enabling interrupts
static const uint64_t REMOTE_ID = 0x539;
static const uint16_t STATUS_CMD = 0x81;
static const uint8_t MAX_CODES_WITHOUT_FLASH_WRITE = 3;
void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore* arg)
{
if (arg->input_obst.digital_read()) {
arg->lastObstructionHigh = millis();
} else {
arg->obstructionLowCount++;
}
}
void RATGDOComponent::setup()
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->output_gdo_pin_->setup();
this->input_gdo_pin_->setup();
this->input_obst_pin_->setup();
this->store_.input_obst = this->input_obst_pin_->to_isr();
this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->swSerial.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
ESP_LOGV(TAG, "Syncing rolling code counter after reboot...");
sync(); // reboot/sync to the opener on startup
}
void RATGDOComponent::loop()
{
obstructionLoop();
gdoStateLoop();
statusUpdateLoop();
}
void RATGDOComponent::dump_config()
{
ESP_LOGCONFIG(TAG, "Setting up RATGDO...");
LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_);
LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_);
LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_);
ESP_LOGCONFIG(TAG, " Rolling Code Counter: %d", this->rollingCodeCounter);
}
uint16_t RATGDOComponent::readRollingCode()
{
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
uint16_t cmd = 0;
uint8_t nibble = 0;
uint8_t byte1 = 0;
uint8_t byte2 = 0;
decode_wireline(this->rxRollingCode, &rolling, &fixed, &data);
cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
nibble = (data >> 8) & 0xf;
byte1 = (data >> 16) & 0xff;
byte2 = (data >> 24) & 0xff;
if (cmd == STATUS_CMD) {
this->doorState = nibble;
this->lightState = (byte2 >> 1) & 1;
this->lockState = byte2 & 1;
this->motionState = MotionState::MOTION_STATE_CLEAR; // when the status message is read, reset motion state to 0|clear
this->motorState = MotorState::MOTOR_STATE_OFF; // when the status message is read, reset motor state to 0|off
// obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction
ESP_LOGV(TAG, "Door: %d Light: %d Lock: %d", this->doorState, this->lightState, this->lockState);
} else if (cmd == 0x281) {
if (this->lightState == LightState::LIGHT_STATE_ON) {
this->lightState = LightState::LIGHT_STATE_OFF;
} else {
this->lightState = LightState::LIGHT_STATE_ON;
}
ESP_LOGV(TAG, "Light: %d (toggle)", this->lightState);
} else if (cmd == 0x284) {
this->motorState = MotorState::MOTOR_STATE_ON;
} else if (cmd == 0x280) {
this->buttonState = byte1 == 1 ? ButtonState::BUTTON_STATE_PRESSED : ButtonState::BUTTON_STATE_RELEASED;
ESP_LOGV(TAG, "Pressed: %d", this->buttonState);
} else if (cmd == 0x48c) {
this->openings = (byte1 << 8) | byte2;
ESP_LOGV(TAG, "Openings: %d", this->openings);
} else if (cmd == 0x285) {
this->motionState = MotionState::MOTION_STATE_DETECTED; // toggle bit
ESP_LOGV(TAG, "Motion: %d (toggle)", this->motionState);
} else {
// 0x84 -- is it used?
ESP_LOGV(TAG, "Unknown command: cmd=%04x nibble=%02d byte1=%02d byte2=%02d", cmd, nibble, byte1, byte2);
}
return cmd;
}
void RATGDOComponent::getRollingCode(cmd command)
{
uint64_t fixed = command.fixed | REMOTE_ID;
encode_wireline(this->rollingCodeCounter, fixed, command.data, this->txRollingCode);
printRollingCode();
if (command != Command.DOOR1) { // door2 is created with same counter and should always be called after door1
incrementRollingCodeCounter();
}
}
void RATGDOComponent::setRollingCodeCounter(uint32_t counter)
{
ESP_LOGV(TAG, "Set rolling code counter to %d", counter);
this->rollingCodeCounter = counter;
this->pref_.save(&this->rollingCodeCounter);
sendRollingCodeChanged();
}
void RATGDOComponent::incrementRollingCodeCounter()
{
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
sendRollingCodeChanged();
}
void RATGDOComponent::sendRollingCodeChanged()
{
if (!this->rollingCodeUpdatesEnabled_) {
return;
}
for (auto* child : this->children_) {
child->on_rolling_code_change(this->rollingCodeCounter);
}
}
void RATGDOComponent::printRollingCode()
{
ESP_LOGV(TAG, "Counter: %d Send code: [%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X]",
this->rollingCodeCounter,
this->txRollingCode[0],
this->txRollingCode[1],
this->txRollingCode[2],
this->txRollingCode[3],
this->txRollingCode[4],
this->txRollingCode[5],
this->txRollingCode[6],
this->txRollingCode[7],
this->txRollingCode[8],
this->txRollingCode[9],
this->txRollingCode[10],
this->txRollingCode[11],
this->txRollingCode[12],
this->txRollingCode[13],
this->txRollingCode[14],
this->txRollingCode[15],
this->txRollingCode[16],
this->txRollingCode[17],
this->txRollingCode[18]);
}
/*************************** OBSTRUCTION DETECTION ***************************/
void RATGDOComponent::obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line
if (this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8) {
// obstructionCleared();
this->obstructionState = ObstructionState::OBSTRUCTION_STATE_CLEAR;
// if there have been no pulses the line is steady high or low
} else if (this->store_.obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if (this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70) {
this->obstructionState = ObstructionState::OBSTRUCTION_STATE_OBSTRUCTED;
// obstructionDetected();
} else {
// asleep
}
}
lastMillis = currentMillis;
this->store_.obstructionLowCount = 0;
}
}
void RATGDOComponent::gdoStateLoop()
{
static bool reading_msg = false;
static uint32_t msg_start = 0;
static uint16_t byte_count = 0;
if (!reading_msg) {
while (this->swSerial.available()) {
uint8_t ser_byte = this->swSerial.read();
if (ser_byte != 0x55 && ser_byte != 0x01 && ser_byte != 0x00) {
byte_count = 0;
continue;
}
msg_start = ((msg_start << 8) | ser_byte) & 0xffffff;
byte_count++;
// if we are at the start of a message, capture the next 16 bytes
if (msg_start == 0x550100) {
this->rxRollingCode[0] = 0x55;
this->rxRollingCode[1] = 0x01;
this->rxRollingCode[2] = 0x00;
reading_msg = true;
break;
}
}
}
if (reading_msg) {
while (this->swSerial.available()) {
uint8_t ser_byte = this->swSerial.read();
this->rxRollingCode[byte_count] = ser_byte;
byte_count++;
if (byte_count == CODE_LENGTH) {
reading_msg = false;
byte_count = 0;
if (readRollingCode() == STATUS_CMD && this->forceUpdate_) {
this->forceUpdate_ = false;
this->previousDoorState = DoorState::DOOR_STATE_UNKNOWN;
this->previousLightState = LightState::LIGHT_STATE_UNKNOWN;
this->previousLockState = LockState::LOCK_STATE_UNKNOWN;
}
return;
}
}
}
}
void RATGDOComponent::statusUpdateLoop()
{
if (this->doorState != this->previousDoorState) {
DoorState val = static_cast<DoorState>(this->doorState);
ESP_LOGV(TAG, "Door state: %s", door_state_to_string(val));
for (auto* child : this->children_) {
child->on_door_state(val);
}
this->previousDoorState = this->doorState;
}
if (this->lightState != this->previousLightState) {
LightState val = static_cast<LightState>(this->lightState);
ESP_LOGV(TAG, "Light state %s (%d)", light_state_to_string(val), this->lightState);
for (auto* child : this->children_) {
child->on_light_state(val);
}
this->previousLightState = this->lightState;
}
if (this->lockState != this->previousLockState) {
LockState val = static_cast<LockState>(this->lockState);
ESP_LOGV(TAG, "Lock state %s", lock_state_to_string(val));
for (auto* child : this->children_) {
child->on_lock_state(val);
}
this->previousLockState = this->lockState;
}
if (this->obstructionState != this->previousObstructionState) {
ObstructionState val = static_cast<ObstructionState>(this->obstructionState);
ESP_LOGV(TAG, "Obstruction state %s", obstruction_state_to_string(val));
for (auto* child : this->children_) {
child->on_obstruction_state(val);
}
this->previousObstructionState = this->obstructionState;
}
if (this->motorState != this->previousMotorState) {
MotorState val = static_cast<MotorState>(this->motorState);
ESP_LOGV(TAG, "Motor state %s", motor_state_to_string(val));
for (auto* child : this->children_) {
child->on_motor_state(val);
}
this->previousMotorState = this->motorState;
}
if (this->motionState != this->previousMotionState) {
MotionState val = static_cast<MotionState>(this->motionState);
ESP_LOGV(TAG, "Motion state %s", motion_state_to_string(val));
for (auto* child : this->children_) {
child->on_motion_state(val);
}
this->previousMotionState = this->motionState;
}
if (this->buttonState != this->previousButtonState) {
ButtonState val = static_cast<ButtonState>(this->buttonState);
ESP_LOGV(TAG, "Button state %s", button_state_to_string(val));
for (auto* child : this->children_) {
child->on_button_state(val);
}
this->previousButtonState = this->buttonState;
}
if (this->openings != this->previousOpenings) {
ESP_LOGV(TAG, "Openings: %d", this->openings);
for (auto* child : this->children_) {
child->on_openings_change(this->openings);
}
this->previousOpenings = this->openings;
}
}
void RATGDOComponent::query()
{
this->forceUpdate_ = true;
sendCommandAndSaveCounter(Command.REBOOT2);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::transmit(cmd command)
{
getRollingCode(command);
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(this->txRollingCode, CODE_LENGTH);
}
void RATGDOComponent::sync()
{
this->rollingCodeUpdatesEnabled_ = false;
for (int i = 0; i <= MAX_CODES_WITHOUT_FLASH_WRITE; i++) {
transmit(Command.REBOOT1); // get openings
delay(65);
}
transmit(Command.REBOOT2); // get state
delay(65);
transmit(Command.REBOOT3);
delay(65);
transmit(Command.REBOOT4);
delay(65);
transmit(Command.REBOOT5);
delay(65);
this->rollingCodeUpdatesEnabled_ = true;
sendCommandAndSaveCounter(Command.REBOOT6);
delay(65);
}
void RATGDOComponent::openDoor()
{
if (this->doorState == DoorState::DOOR_STATE_OPEN || this->doorState == DoorState::DOOR_STATE_OPENING) {
ESP_LOGV(TAG, "The door is already %s", door_state_to_string(static_cast<DoorState>(this->doorState)));
return;
}
toggleDoor();
}
void RATGDOComponent::closeDoor()
{
if (this->doorState == DoorState::DOOR_STATE_CLOSED || this->doorState == DoorState::DOOR_STATE_CLOSING) {
ESP_LOGV(TAG, "The door is already %s", door_state_to_string(static_cast<DoorState>(this->doorState)));
return;
}
toggleDoor();
}
void RATGDOComponent::stopDoor()
{
if (this->doorState != DoorState::DOOR_STATE_OPENING && this->doorState != DoorState::DOOR_STATE_CLOSING) {
ESP_LOGV(TAG, "The door is not moving.");
return;
}
toggleDoor();
}
void RATGDOComponent::toggleDoor()
{
transmit(Command.DOOR1);
delay(40);
sendCommandAndSaveCounter(Command.DOOR2);
}
bool RATGDOComponent::isLightOn()
{
return this->lightState == LightState::LIGHT_STATE_ON;
}
void RATGDOComponent::lightOn()
{
if (this->lightState == LightState::LIGHT_STATE_ON) {
ESP_LOGV(TAG, "The light is already on");
return;
}
toggleLight();
}
void RATGDOComponent::lightOff()
{
if (this->lightState == LightState::LIGHT_STATE_OFF) {
ESP_LOGV(TAG, "The light is already off");
return;
}
toggleLight();
}
void RATGDOComponent::toggleLight()
{
sendCommandAndSaveCounter(Command.LIGHT);
}
// Lock functions
void RATGDOComponent::lock()
{
if (this->lockState == LockState::LOCK_STATE_LOCKED) {
ESP_LOGV(TAG, "already locked");
return;
}
toggleLock();
}
void RATGDOComponent::unlock()
{
if (this->lockState == LockState::LOCK_STATE_UNLOCKED) {
ESP_LOGV(TAG, "already unlocked");
return;
}
toggleLock();
}
void RATGDOComponent::toggleLock()
{
sendCommandAndSaveCounter(Command.LOCK);
}
void RATGDOComponent::sendCommandAndSaveCounter(cmd command)
{
transmit(command);
this->pref_.save(&this->rollingCodeCounter);
if (!this->lastSyncedRollingCodeCounter || this->rollingCodeCounter - this->lastSyncedRollingCodeCounter >= MAX_CODES_WITHOUT_FLASH_WRITE) {
this->lastSyncedRollingCodeCounter = this->rollingCodeCounter;
global_preferences->sync();
}
}
void RATGDOComponent::register_child(RATGDOClient* obj)
{
this->children_.push_back(obj);
obj->set_parent(this);
}
LightState RATGDOComponent::getLightState()
{
return static_cast<LightState>(this->lightState);
}
} // namespace ratgdo
} // namespace esphome