esphome-ratgdo/components/ratgdo/ratgdo.cpp

507 lines
17 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "ratgdo_child.h"
#include "ratgdo_state.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char* const TAG = "ratgdo";
static const int STARTUP_DELAY = 2000; // delay before enabling interrupts
static const uint64_t REMOTE_ID = 0x539;
void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore* arg)
{
if (arg->input_obst.digital_read()) {
arg->lastObstructionHigh = millis();
} else {
arg->obstructionLowCount++;
}
}
void RATGDOComponent::setup()
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->output_gdo_pin_->setup();
this->input_gdo_pin_->setup();
this->input_obst_pin_->setup();
this->store_.input_obst = this->input_obst_pin_->to_isr();
this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->check_uart_settings(9600, 1, esphome::uart::UART_CONFIG_PARITY_NONE, 8);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // reboot/sync to the opener on startup
}
void RATGDOComponent::loop()
{
obstructionLoop();
gdoStateLoop();
statusUpdateLoop();
}
void RATGDOComponent::dump_config()
{
ESP_LOGCONFIG(TAG, "Setting up RATGDO...");
LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_);
LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_);
LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_);
ESP_LOGCONFIG(TAG, " Rolling Code Counter: %d", this->rollingCodeCounter);
}
void RATGDOComponent::readRollingCode(bool& isStatus, uint8_t& door, uint8_t& light, uint8_t& lock, uint8_t& motion, uint8_t& obstruction, uint8_t& motor)
{
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
uint16_t cmd = 0;
uint8_t nibble = 0;
uint8_t byte1 = 0;
uint8_t byte2 = 0;
decode_wireline(this->rxRollingCode, &rolling, &fixed, &data);
cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
nibble = (data >> 8) & 0xf;
byte1 = (data >> 16) & 0xff;
byte2 = (data >> 24) & 0xff;
if (cmd == 0x81) {
door = nibble;
light = (byte2 >> 1) & 1;
lock = byte2 & 1;
motion = 0; // when the status message is read, reset motion state to 0|clear
motor = 0; // when the status message is read, reset motor state to 0|off
// obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction
ESP_LOGD(TAG, "Door: %d Light: %d Lock: %d Motion: %d Obstruction: %d", door, light, lock, motion, obstruction);
isStatus = true;
} else if (cmd == 0x281) {
light ^= 1; // toggle bit
ESP_LOGD(TAG, "Light: %d (toggle)", light);
} else if (cmd == 0x84) {
ESP_LOGD(TAG, "Unknown 0x84");
} else if (cmd == 0x284) {
motor = 1;
} else if (cmd == 0x280) {
ESP_LOGD(TAG, "Pressed: %s", byte1 == 1 ? "pressed" : "released");
} else if (cmd == 0x48c) {
ESP_LOGD(TAG, "Openings: %d", (byte1 << 8) | byte2);
} else if (cmd == 0x285) {
motion = 1; // toggle bit
ESP_LOGD(TAG, "Motion: %d (toggle)", motion);
} else {
ESP_LOGD(TAG, "Unknown command: %04x", cmd);
}
}
void RATGDOComponent::getRollingCode(cmd command)
{
uint64_t fixed = command.fixed | REMOTE_ID;
encode_wireline(this->rollingCodeCounter, fixed, command.data, this->txRollingCode);
printRollingCode();
if (command != Command.DOOR1) { // door2 is created with same counter and should always be called after door1
incrementRollingCodeCounter();
}
}
void RATGDOComponent::setRollingCodeCounter(uint32_t counter)
{
ESP_LOGD(TAG, "Set rolling code counter to %d", counter);
this->rollingCodeCounter = counter;
this->pref_.save(&this->rollingCodeCounter);
sendRollingCodeChanged();
}
void RATGDOComponent::incrementRollingCodeCounter()
{
ESP_LOGD(TAG, "Incrementing rolling code counter");
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
sendRollingCodeChanged();
}
void RATGDOComponent::sendRollingCodeChanged()
{
for (auto* child : this->children_) {
child->on_rolling_code_change(this->rollingCodeCounter);
}
}
void RATGDOComponent::printRollingCode()
{
ESP_LOGD(TAG, "Counter: %d Send code: [%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X]",
this->rollingCodeCounter,
this->txRollingCode[0],
this->txRollingCode[1],
this->txRollingCode[2],
this->txRollingCode[3],
this->txRollingCode[4],
this->txRollingCode[5],
this->txRollingCode[6],
this->txRollingCode[7],
this->txRollingCode[8],
this->txRollingCode[9],
this->txRollingCode[10],
this->txRollingCode[11],
this->txRollingCode[12],
this->txRollingCode[13],
this->txRollingCode[14],
this->txRollingCode[15],
this->txRollingCode[16],
this->txRollingCode[17],
this->txRollingCode[18]);
}
/*************************** OBSTRUCTION DETECTION ***************************/
void RATGDOComponent::obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line
if (this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8) {
// obstructionCleared();
this->obstructionState = ObstructionState::OBSTRUCTION_STATE_CLEAR;
// if there have been no pulses the line is steady high or low
} else if (this->store_.obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if (this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70) {
this->obstructionState = ObstructionState::OBSTRUCTION_STATE_OBSTRUCTED;
// obstructionDetected();
} else {
// asleep
}
}
lastMillis = currentMillis;
this->store_.obstructionLowCount = 0;
}
}
void RATGDOComponent::gdoStateLoop()
{
static uint32_t msgStart;
static bool reading = false;
static uint16_t byteCount = 0;
static bool isStatus = false;
while (this->available()) {
// ESP_LOGD(TAG, "No data available input:%d output:%d", this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin());
uint8_t serData;
if (!this->read_byte(&serData)) {
ESP_LOGD(TAG, "Failed to read byte");
return;
}
if (!reading) {
// shift serial byte onto msg start
msgStart <<= 8;
msgStart |= serData;
// truncate to 3 bytes
msgStart &= 0x00FFFFFF;
// if we are at the start of a message, capture the next 16 bytes
if (msgStart == 0x550100) {
byteCount = 3;
rxRollingCode[0] = 0x55;
rxRollingCode[1] = 0x01;
rxRollingCode[2] = 0x00;
reading = true;
return;
}
}
if (reading) {
this->rxRollingCode[byteCount] = serData;
byteCount++;
if (byteCount == CODE_LENGTH) {
reading = false;
msgStart = 0;
byteCount = 0;
isStatus = false;
readRollingCode(isStatus, this->doorState, this->lightState, this->lockState, this->motionState, this->obstructionState, this->motorState);
if (isStatus && this->forceUpdate_) {
this->forceUpdate_ = false;
this->previousDoorState = DoorState::DOOR_STATE_UNKNOWN;
this->previousLightState = LightState::LIGHT_STATE_UNKNOWN;
this->previousLockState = LockState::LOCK_STATE_UNKNOWN;
}
}
}
}
}
void RATGDOComponent::statusUpdateLoop()
{
if (this->doorState != this->previousDoorState)
sendDoorStatus();
if (this->lightState != this->previousLightState)
sendLightStatus();
if (this->lockState != this->previousLockState)
sendLockStatus();
if (this->obstructionState != this->previousObstructionState)
sendObstructionStatus();
if (this->motorState != this->previousMotorState) {
sendMotorStatus();
}
if (this->motionState == MotionState::MOTION_STATE_DETECTED) {
sendMotionStatus();
this->motionState = MotionState::MOTION_STATE_CLEAR;
}
this->previousDoorState = this->doorState;
this->previousLightState = this->lightState;
this->previousLockState = this->lockState;
this->previousObstructionState = this->obstructionState;
this->previousMotorState = this->motorState;
}
void RATGDOComponent::query()
{
this->forceUpdate_ = true;
sendCommandAndSaveCounter(Command.REBOOT2);
}
void RATGDOComponent::sendDoorStatus()
{
DoorState val = static_cast<DoorState>(this->doorState);
ESP_LOGD(TAG, "Door state: %s", door_state_to_string(val));
for (auto* child : this->children_) {
child->on_door_state(val);
}
}
void RATGDOComponent::sendLightStatus()
{
LightState val = static_cast<LightState>(this->lightState);
ESP_LOGD(TAG, "Light state %s (%d)", light_state_to_string(val), this->lightState);
for (auto* child : this->children_) {
child->on_light_state(val);
}
}
void RATGDOComponent::sendLockStatus()
{
LockState val = static_cast<LockState>(this->lockState);
ESP_LOGD(TAG, "Lock state %s", lock_state_to_string(val));
for (auto* child : this->children_) {
child->on_lock_state(val);
}
}
void RATGDOComponent::sendMotionStatus()
{
MotionState val = static_cast<MotionState>(this->motionState);
ESP_LOGD(TAG, "Motion state %s", motion_state_to_string(val));
for (auto* child : this->children_) {
child->on_motion_state(val);
}
}
void RATGDOComponent::sendMotorStatus()
{
MotorState val = static_cast<MotorState>(this->motorState);
ESP_LOGD(TAG, "Motor state %s", motor_state_to_string(val));
for (auto* child : this->children_) {
child->on_motor_state(val);
}
}
void RATGDOComponent::sendObstructionStatus()
{
ObstructionState val = static_cast<ObstructionState>(this->obstructionState);
ESP_LOGD(TAG, "Obstruction state %s", obstruction_state_to_string(val));
for (auto* child : this->children_) {
child->on_obstruction_state(val);
}
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::transmit(cmd command)
{
getRollingCode(command);
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->write_array(this->txRollingCode, CODE_LENGTH);
}
void RATGDOComponent::sync()
{
transmit(Command.REBOOT1);
delay(65);
transmit(Command.REBOOT2);
delay(65);
transmit(Command.REBOOT3);
delay(65);
transmit(Command.REBOOT4);
delay(65);
transmit(Command.REBOOT5);
delay(65);
sendCommandAndSaveCounter(Command.REBOOT6);
delay(65);
}
void RATGDOComponent::openDoor()
{
if (this->doorState == DoorState::DOOR_STATE_OPEN || this->doorState == DoorState::DOOR_STATE_OPENING) {
ESP_LOGD(TAG, "The door is already %s", door_state_to_string(static_cast<DoorState>(this->doorState)));
return;
}
toggleDoor();
}
void RATGDOComponent::closeDoor()
{
if (this->doorState == DoorState::DOOR_STATE_CLOSED || this->doorState == DoorState::DOOR_STATE_CLOSING) {
ESP_LOGD(TAG, "The door is already %s", door_state_to_string(static_cast<DoorState>(this->doorState)));
return;
}
toggleDoor();
}
void RATGDOComponent::stopDoor()
{
if (this->doorState != DoorState::DOOR_STATE_OPENING && this->doorState != DoorState::DOOR_STATE_CLOSING) {
ESP_LOGD(TAG, "The door is not moving.");
return;
}
toggleDoor();
}
void RATGDOComponent::toggleDoor()
{
transmit(Command.DOOR1);
delay(40);
sendCommandAndSaveCounter(Command.DOOR2);
}
bool RATGDOComponent::isLightOn()
{
return this->lightState == LightState::LIGHT_STATE_ON;
}
void RATGDOComponent::lightOn()
{
if (this->lightState == LightState::LIGHT_STATE_ON) {
ESP_LOGD(TAG, "The light is already on");
return;
}
toggleLight();
// We don't always get the state back so be optimistic
this->previousLightState = this->lightState;
this->lightState = LightState::LIGHT_STATE_ON;
}
void RATGDOComponent::lightOff()
{
if (this->lightState == LightState::LIGHT_STATE_OFF) {
ESP_LOGD(TAG, "The light is already off");
return;
}
toggleLight();
// We don't always get the state back so be optimistic
this->previousLightState = this->lightState;
this->lightState = LightState::LIGHT_STATE_OFF;
}
void RATGDOComponent::toggleLight()
{
sendCommandAndSaveCounter(Command.LIGHT);
}
// Lock functions
void RATGDOComponent::lock()
{
if (this->lockState == LockState::LOCK_STATE_LOCKED) {
ESP_LOGD(TAG, "already locked");
return;
}
toggleLock();
}
void RATGDOComponent::unlock()
{
if (this->lockState == LockState::LOCK_STATE_UNLOCKED) {
ESP_LOGD(TAG, "already unlocked");
return;
}
toggleLock();
}
void RATGDOComponent::toggleLock()
{
sendCommandAndSaveCounter(Command.LOCK);
}
void RATGDOComponent::sendCommandAndSaveCounter(cmd command)
{
transmit(command);
this->pref_.save(&this->rollingCodeCounter);
global_preferences->sync();
}
void RATGDOComponent::register_child(RATGDOClient* obj)
{
this->children_.push_back(obj);
obj->set_parent(this);
}
LightState RATGDOComponent::getLightState()
{
return static_cast<LightState>(this->lightState);
}
} // namespace ratgdo
} // namespace esphome