mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-29 07:24:55 +00:00 
			
		
		
		
	
		
			
	
	
		
			284 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			284 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | 
 | ||
|  |    /******************************************************************
 | ||
|  | 
 | ||
|  |        iLBC Speech Coder ANSI-C Source Code | ||
|  | 
 | ||
|  |        lsf.c | ||
|  | 
 | ||
|  |        Copyright (C) The Internet Society (2004). | ||
|  |        All Rights Reserved. | ||
|  | 
 | ||
|  |    ******************************************************************/ | ||
|  | 
 | ||
|  |    #include <string.h>
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |    #include <math.h>
 | ||
|  | 
 | ||
|  |    #include "iLBC_define.h"
 | ||
|  | 
 | ||
|  |    /*----------------------------------------------------------------*
 | ||
|  |     *  conversion from lpc coefficients to lsf coefficients | ||
|  |     *---------------------------------------------------------------*/ | ||
|  | 
 | ||
|  |    void a2lsf( | ||
|  |        float *freq,/* (o) lsf coefficients */ | ||
|  |        float *a    /* (i) lpc coefficients */ | ||
|  |    ){ | ||
|  |        float steps[LSF_NUMBER_OF_STEPS] = | ||
|  |            {(float)0.00635, (float)0.003175, (float)0.0015875, | ||
|  |            (float)0.00079375}; | ||
|  |        float step; | ||
|  |        int step_idx; | ||
|  |        int lsp_index; | ||
|  |        float p[LPC_HALFORDER]; | ||
|  |        float q[LPC_HALFORDER]; | ||
|  |        float p_pre[LPC_HALFORDER]; | ||
|  |        float q_pre[LPC_HALFORDER]; | ||
|  |        float old_p, old_q, *old; | ||
|  |        float *pq_coef; | ||
|  |        float omega, old_omega; | ||
|  |        int i; | ||
|  |        float hlp, hlp1, hlp2, hlp3, hlp4, hlp5; | ||
|  | 
 | ||
|  |        for (i=0; i<LPC_HALFORDER; i++) { | ||
|  |            p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]); | ||
|  |            q[i] = a[LPC_FILTERORDER - i] - a[i + 1]; | ||
|  |        } | ||
|  | 
 | ||
|  |        p_pre[0] = (float)-1.0 - p[0]; | ||
|  |        p_pre[1] = - p_pre[0] - p[1]; | ||
|  |        p_pre[2] = - p_pre[1] - p[2]; | ||
|  |        p_pre[3] = - p_pre[2] - p[3]; | ||
|  |        p_pre[4] = - p_pre[3] - p[4]; | ||
|  |        p_pre[4] = p_pre[4] / 2; | ||
|  | 
 | ||
|  |        q_pre[0] = (float)1.0 - q[0]; | ||
|  |        q_pre[1] = q_pre[0] - q[1]; | ||
|  |        q_pre[2] = q_pre[1] - q[2]; | ||
|  |        q_pre[3] = q_pre[2] - q[3]; | ||
|  |        q_pre[4] = q_pre[3] - q[4]; | ||
|  |        q_pre[4] = q_pre[4] / 2; | ||
|  | 
 | ||
|  |        omega = 0.0; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |        old_omega = 0.0; | ||
|  | 
 | ||
|  |        old_p = FLOAT_MAX; | ||
|  |        old_q = FLOAT_MAX; | ||
|  | 
 | ||
|  |        /* Here we loop through lsp_index to find all the
 | ||
|  |           LPC_FILTERORDER roots for omega. */ | ||
|  | 
 | ||
|  |        for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) { | ||
|  | 
 | ||
|  |            /* Depending on lsp_index being even or odd, we
 | ||
|  |            alternatively solve the roots for the two LSP equations. */ | ||
|  | 
 | ||
|  | 
 | ||
|  |            if ((lsp_index & 0x1) == 0) { | ||
|  |                pq_coef = p_pre; | ||
|  |                old = &old_p; | ||
|  |            } else { | ||
|  |                pq_coef = q_pre; | ||
|  |                old = &old_q; | ||
|  |            } | ||
|  | 
 | ||
|  |            /* Start with low resolution grid */ | ||
|  | 
 | ||
|  |            for (step_idx = 0, step = steps[step_idx]; | ||
|  |                step_idx < LSF_NUMBER_OF_STEPS;){ | ||
|  | 
 | ||
|  |                /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
 | ||
|  |                pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */ | ||
|  | 
 | ||
|  |                hlp = (float)cos(omega * TWO_PI); | ||
|  |                hlp1 = (float)2.0 * hlp + pq_coef[0]; | ||
|  |                hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 + | ||
|  |                    pq_coef[1]; | ||
|  |                hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2]; | ||
|  |                hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3]; | ||
|  |                hlp5 = hlp * hlp4 - hlp3 + pq_coef[4]; | ||
|  | 
 | ||
|  | 
 | ||
|  |                if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){ | ||
|  | 
 | ||
|  |                    if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){ | ||
|  | 
 | ||
|  |                        if (fabs(hlp5) >= fabs(*old)) { | ||
|  |                            freq[lsp_index] = omega - step; | ||
|  |                        } else { | ||
|  |                            freq[lsp_index] = omega; | ||
|  |                        } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |                        if ((*old) >= 0.0){ | ||
|  |                            *old = (float)-1.0 * FLOAT_MAX; | ||
|  |                        } else { | ||
|  |                            *old = FLOAT_MAX; | ||
|  |                        } | ||
|  | 
 | ||
|  |                        omega = old_omega; | ||
|  |                        step_idx = 0; | ||
|  | 
 | ||
|  |                        step_idx = LSF_NUMBER_OF_STEPS; | ||
|  |                    } else { | ||
|  | 
 | ||
|  |                        if (step_idx == 0) { | ||
|  |                            old_omega = omega; | ||
|  |                        } | ||
|  | 
 | ||
|  |                        step_idx++; | ||
|  |                        omega -= steps[step_idx]; | ||
|  | 
 | ||
|  |                        /* Go back one grid step */ | ||
|  | 
 | ||
|  |                        step = steps[step_idx]; | ||
|  |                    } | ||
|  |                } else { | ||
|  | 
 | ||
|  |                /* increment omega until they are of different sign,
 | ||
|  |                and we know there is at least one root between omega | ||
|  |                and old_omega */ | ||
|  |                    *old = hlp5; | ||
|  |                    omega += step; | ||
|  |                } | ||
|  |            } | ||
|  |        } | ||
|  | 
 | ||
|  |        for (i = 0; i<LPC_FILTERORDER; i++) { | ||
|  |            freq[i] = freq[i] * TWO_PI; | ||
|  |        } | ||
|  |    } | ||
|  | 
 | ||
|  |    /*----------------------------------------------------------------*
 | ||
|  |     *  conversion from lsf coefficients to lpc coefficients | ||
|  |     *---------------------------------------------------------------*/ | ||
|  | 
 | ||
|  |    void lsf2a( | ||
|  |        float *a_coef,  /* (o) lpc coefficients */ | ||
|  |        float *freq     /* (i) lsf coefficients */ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |    ){ | ||
|  |        int i, j; | ||
|  |        float hlp; | ||
|  |        float p[LPC_HALFORDER], q[LPC_HALFORDER]; | ||
|  |        float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], | ||
|  |            a2[LPC_HALFORDER]; | ||
|  |        float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], | ||
|  |            b2[LPC_HALFORDER]; | ||
|  | 
 | ||
|  |        for (i=0; i<LPC_FILTERORDER; i++) { | ||
|  |            freq[i] = freq[i] * PI2; | ||
|  |        } | ||
|  | 
 | ||
|  |        /* Check input for ill-conditioned cases.  This part is not
 | ||
|  |        found in the TIA standard.  It involves the following 2 IF | ||
|  |        blocks.  If "freq" is judged ill-conditioned, then we first | ||
|  |        modify freq[0] and freq[LPC_HALFORDER-1] (normally | ||
|  |        LPC_HALFORDER = 10 for LPC applications), then we adjust | ||
|  |        the other "freq" values slightly */ | ||
|  | 
 | ||
|  | 
 | ||
|  |        if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){ | ||
|  | 
 | ||
|  | 
 | ||
|  |            if (freq[0] <= 0.0) { | ||
|  |                freq[0] = (float)0.022; | ||
|  |            } | ||
|  | 
 | ||
|  | 
 | ||
|  |            if (freq[LPC_FILTERORDER - 1] >= 0.5) { | ||
|  |                freq[LPC_FILTERORDER - 1] = (float)0.499; | ||
|  |            } | ||
|  | 
 | ||
|  |            hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) / | ||
|  |                (float) (LPC_FILTERORDER - 1); | ||
|  | 
 | ||
|  |            for (i=1; i<LPC_FILTERORDER; i++) { | ||
|  |                freq[i] = freq[i - 1] + hlp; | ||
|  |            } | ||
|  |        } | ||
|  | 
 | ||
|  |        memset(a1, 0, LPC_HALFORDER*sizeof(float)); | ||
|  |        memset(a2, 0, LPC_HALFORDER*sizeof(float)); | ||
|  |        memset(b1, 0, LPC_HALFORDER*sizeof(float)); | ||
|  |        memset(b2, 0, LPC_HALFORDER*sizeof(float)); | ||
|  |        memset(a, 0, (LPC_HALFORDER+1)*sizeof(float)); | ||
|  |        memset(b, 0, (LPC_HALFORDER+1)*sizeof(float)); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |        /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and
 | ||
|  |        cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2. | ||
|  |        Note that for this code p[i] specifies the coefficients | ||
|  |        used in .Q_A(z) while q[i] specifies the coefficients used | ||
|  |        in .P_A(z) */ | ||
|  | 
 | ||
|  |        for (i=0; i<LPC_HALFORDER; i++) { | ||
|  |            p[i] = (float)cos(TWO_PI * freq[2 * i]); | ||
|  |            q[i] = (float)cos(TWO_PI * freq[2 * i + 1]); | ||
|  |        } | ||
|  | 
 | ||
|  |        a[0] = 0.25; | ||
|  |        b[0] = 0.25; | ||
|  | 
 | ||
|  |        for (i= 0; i<LPC_HALFORDER; i++) { | ||
|  |            a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; | ||
|  |            b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; | ||
|  |            a2[i] = a1[i]; | ||
|  |            a1[i] = a[i]; | ||
|  |            b2[i] = b1[i]; | ||
|  |            b1[i] = b[i]; | ||
|  |        } | ||
|  | 
 | ||
|  |        for (j=0; j<LPC_FILTERORDER; j++) { | ||
|  | 
 | ||
|  |            if (j == 0) { | ||
|  |                a[0] = 0.25; | ||
|  |                b[0] = -0.25; | ||
|  |            } else { | ||
|  |                a[0] = b[0] = 0.0; | ||
|  |            } | ||
|  | 
 | ||
|  |            for (i=0; i<LPC_HALFORDER; i++) { | ||
|  |                a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; | ||
|  |                b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; | ||
|  |                a2[i] = a1[i]; | ||
|  |                a1[i] = a[i]; | ||
|  |                b2[i] = b1[i]; | ||
|  |                b1[i] = b[i]; | ||
|  |            } | ||
|  | 
 | ||
|  |            a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]); | ||
|  |        } | ||
|  | 
 | ||
|  |        a_coef[0] = 1.0; | ||
|  |    } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |