mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-29 07:24:55 +00:00 
			
		
		
		
	
		
			
	
	
		
			464 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			464 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  --------------------------------------------------------------------------- | ||
|  |  Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||
|  |  All rights reserved. | ||
|  | 
 | ||
|  |  LICENSE TERMS | ||
|  | 
 | ||
|  |  The free distribution and use of this software in both source and binary | ||
|  |  form is allowed (with or without changes) provided that: | ||
|  | 
 | ||
|  |    1. distributions of this source code include the above copyright | ||
|  |       notice, this list of conditions and the following disclaimer; | ||
|  | 
 | ||
|  |    2. distributions in binary form include the above copyright | ||
|  |       notice, this list of conditions and the following disclaimer | ||
|  |       in the documentation and/or other associated materials; | ||
|  | 
 | ||
|  |    3. the copyright holder's name is not used to endorse products | ||
|  |       built using this software without specific written permission. | ||
|  | 
 | ||
|  |  ALTERNATIVELY, provided that this notice is retained in full, this product | ||
|  |  may be distributed under the terms of the GNU General Public License (GPL), | ||
|  |  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
|  | 
 | ||
|  |  DISCLAIMER | ||
|  | 
 | ||
|  |  This software is provided 'as is' with no explicit or implied warranties | ||
|  |  in respect of its properties, including, but not limited to, correctness | ||
|  |  and/or fitness for purpose. | ||
|  |  --------------------------------------------------------------------------- | ||
|  |  Issue Date: 26/08/2003 | ||
|  | 
 | ||
|  |  This file contains the code for implementing the key schedule for AES | ||
|  |  (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h | ||
|  |  for further details including optimisation. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "aesopt.h"
 | ||
|  | 
 | ||
|  | #if defined(__cplusplus)
 | ||
|  | extern "C" | ||
|  | { | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Initialise the key schedule from the user supplied key. The key
 | ||
|  |    length can be specified in bytes, with legal values of 16, 24 | ||
|  |    and 32, or in bits, with legal values of 128, 192 and 256. These | ||
|  |    values correspond with Nk values of 4, 6 and 8 respectively. | ||
|  | 
 | ||
|  |    The following macros implement a single cycle in the key | ||
|  |    schedule generation process. The number of cycles needed | ||
|  |    for each cx->n_col and nk value is: | ||
|  | 
 | ||
|  |     nk =             4  5  6  7  8 | ||
|  |     ------------------------------ | ||
|  |     cx->n_col = 4   10  9  8  7  7 | ||
|  |     cx->n_col = 5   14 11 10  9  9 | ||
|  |     cx->n_col = 6   19 15 12 11 11 | ||
|  |     cx->n_col = 7   21 19 16 13 14 | ||
|  |     cx->n_col = 8   29 23 19 17 14 | ||
|  | */ | ||
|  | 
 | ||
|  | #define ke4(k,i) \
 | ||
|  | {   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
|  |     k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
|  | } | ||
|  | #define kel4(k,i) \
 | ||
|  | {   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
|  |     k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
|  | } | ||
|  | 
 | ||
|  | #define ke6(k,i) \
 | ||
|  | {   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
|  |     k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
|  |     k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \ | ||
|  | } | ||
|  | #define kel6(k,i) \
 | ||
|  | {   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
|  |     k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
|  | } | ||
|  | 
 | ||
|  | #define ke8(k,i) \
 | ||
|  | {   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
|  |     k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
|  |     k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ | ||
|  |     k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \ | ||
|  | } | ||
|  | #define kel8(k,i) \
 | ||
|  | {   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
|  |     k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
|  | } | ||
|  | 
 | ||
|  | #if defined(ENCRYPTION_KEY_SCHEDULE)
 | ||
|  | 
 | ||
|  | #if defined(AES_128) || defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]) | ||
|  | {   aes_32t    ss[4]; | ||
|  | 
 | ||
|  |     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||
|  |     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||
|  |     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||
|  |     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||
|  | 
 | ||
|  | #if ENC_UNROLL == NONE
 | ||
|  |     {   aes_32t i; | ||
|  | 
 | ||
|  |         for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i) | ||
|  |             ke4(cx->ks, i); | ||
|  |     } | ||
|  | #else
 | ||
|  |     ke4(cx->ks, 0);  ke4(cx->ks, 1); | ||
|  |     ke4(cx->ks, 2);  ke4(cx->ks, 3); | ||
|  |     ke4(cx->ks, 4);  ke4(cx->ks, 5); | ||
|  |     ke4(cx->ks, 6);  ke4(cx->ks, 7); | ||
|  |     ke4(cx->ks, 8); kel4(cx->ks, 9); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||
|  |     /* key and must be non-zero for 128 and 192 bits keys   */ | ||
|  |     cx->ks[53] = cx->ks[45] = 0; | ||
|  |     cx->ks[52] = 10; | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     return aes_good; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(AES_192) || defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]) | ||
|  | {   aes_32t    ss[6]; | ||
|  | 
 | ||
|  |     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||
|  |     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||
|  |     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||
|  |     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||
|  |     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||
|  |     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||
|  | 
 | ||
|  | #if ENC_UNROLL == NONE
 | ||
|  |     {   aes_32t i; | ||
|  | 
 | ||
|  |         for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) | ||
|  |             ke6(cx->ks, i); | ||
|  |     } | ||
|  | #else
 | ||
|  |     ke6(cx->ks, 0);  ke6(cx->ks, 1); | ||
|  |     ke6(cx->ks, 2);  ke6(cx->ks, 3); | ||
|  |     ke6(cx->ks, 4);  ke6(cx->ks, 5); | ||
|  |     ke6(cx->ks, 6); kel6(cx->ks, 7); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||
|  |     /* key and must be non-zero for 128 and 192 bits keys   */ | ||
|  |     cx->ks[53] = cx->ks[45]; | ||
|  |     cx->ks[52] = 12; | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     return aes_good; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(AES_256) || defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]) | ||
|  | {   aes_32t    ss[8]; | ||
|  | 
 | ||
|  |     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||
|  |     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||
|  |     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||
|  |     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||
|  |     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||
|  |     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||
|  |     cx->ks[6] = ss[6] = word_in(in_key, 6); | ||
|  |     cx->ks[7] = ss[7] = word_in(in_key, 7); | ||
|  | 
 | ||
|  | #if ENC_UNROLL == NONE
 | ||
|  |     {   aes_32t i; | ||
|  | 
 | ||
|  |         for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) | ||
|  |             ke8(cx->ks,  i); | ||
|  |     } | ||
|  | #else
 | ||
|  |     ke8(cx->ks, 0); ke8(cx->ks, 1); | ||
|  |     ke8(cx->ks, 2); ke8(cx->ks, 3); | ||
|  |     ke8(cx->ks, 4); ke8(cx->ks, 5); | ||
|  |     kel8(cx->ks, 6); | ||
|  | #endif
 | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     return aes_good; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]) | ||
|  | { | ||
|  |     switch(key_len) | ||
|  |     { | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     case 16: case 128: return aes_encrypt_key128(in_key, cx); | ||
|  |     case 24: case 192: return aes_encrypt_key192(in_key, cx); | ||
|  |     case 32: case 256: return aes_encrypt_key256(in_key, cx); | ||
|  |     default: return aes_error; | ||
|  | #else
 | ||
|  |     case 16: case 128: aes_encrypt_key128(in_key, cx); return; | ||
|  |     case 24: case 192: aes_encrypt_key192(in_key, cx); return; | ||
|  |     case 32: case 256: aes_encrypt_key256(in_key, cx); return; | ||
|  | #endif
 | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(DECRYPTION_KEY_SCHEDULE)
 | ||
|  | 
 | ||
|  | #if DEC_ROUND == NO_TABLES
 | ||
|  | #define ff(x)   (x)
 | ||
|  | #else
 | ||
|  | #define ff(x)   inv_mcol(x)
 | ||
|  | #ifdef  dec_imvars
 | ||
|  | #define d_vars  dec_imvars
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if 1
 | ||
|  | #define kdf4(k,i) \
 | ||
|  | {   ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ | ||
|  |     ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ | ||
|  |     ss[4] ^= k[4*(i)];   k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ | ||
|  |     ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \ | ||
|  | } | ||
|  | #define kd4(k,i) \
 | ||
|  | {   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ | ||
|  |     k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ | ||
|  |     k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ | ||
|  | } | ||
|  | #define kdl4(k,i) \
 | ||
|  | {   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ | ||
|  |     k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ | ||
|  |     k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \ | ||
|  | } | ||
|  | #else
 | ||
|  | #define kdf4(k,i) \
 | ||
|  | {   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ | ||
|  |     ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \ | ||
|  | } | ||
|  | #define kd4(k,i) \
 | ||
|  | {   ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ | ||
|  |     ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ | ||
|  |     ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ | ||
|  |     ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ | ||
|  |     ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \ | ||
|  | } | ||
|  | #define kdl4(k,i) \
 | ||
|  | {   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ | ||
|  |     ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \ | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define kdf6(k,i) \
 | ||
|  | {   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ | ||
|  |     ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ | ||
|  |     ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \ | ||
|  | } | ||
|  | #define kd6(k,i) \
 | ||
|  | {   ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ | ||
|  |     ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ | ||
|  |     ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ | ||
|  |     ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ | ||
|  |     ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ | ||
|  |     ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ | ||
|  |     ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ | ||
|  | } | ||
|  | #define kdl6(k,i) \
 | ||
|  | {   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ | ||
|  |     ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \ | ||
|  | } | ||
|  | 
 | ||
|  | #define kdf8(k,i) \
 | ||
|  | {   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ | ||
|  |     ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ | ||
|  |     ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ | ||
|  |     ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \ | ||
|  | } | ||
|  | #define kd8(k,i) \
 | ||
|  | {   aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ | ||
|  |     ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ | ||
|  |     ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ | ||
|  |     ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ | ||
|  |     ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ | ||
|  |     g = ls_box(ss[3],0); \ | ||
|  |     ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ | ||
|  |     ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ | ||
|  |     ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ | ||
|  |     ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \ | ||
|  | } | ||
|  | #define kdl8(k,i) \
 | ||
|  | {   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ | ||
|  |     ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \ | ||
|  | } | ||
|  | 
 | ||
|  | #if defined(AES_128) || defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]) | ||
|  | {   aes_32t    ss[5]; | ||
|  | #ifdef  d_vars
 | ||
|  |         d_vars; | ||
|  | #endif
 | ||
|  |     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||
|  |     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||
|  |     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||
|  |     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||
|  | 
 | ||
|  | #if DEC_UNROLL == NONE
 | ||
|  |     {   aes_32t i; | ||
|  | 
 | ||
|  |         for(i = 0; i < (11 * N_COLS - 1) / 4; ++i) | ||
|  |             ke4(cx->ks, i); | ||
|  | #if !(DEC_ROUND == NO_TABLES)
 | ||
|  |         for(i = N_COLS; i < 10 * N_COLS; ++i) | ||
|  |             cx->ks[i] = inv_mcol(cx->ks[i]); | ||
|  | #endif
 | ||
|  |     } | ||
|  | #else
 | ||
|  |     kdf4(cx->ks, 0);  kd4(cx->ks, 1); | ||
|  |      kd4(cx->ks, 2);  kd4(cx->ks, 3); | ||
|  |      kd4(cx->ks, 4);  kd4(cx->ks, 5); | ||
|  |      kd4(cx->ks, 6);  kd4(cx->ks, 7); | ||
|  |      kd4(cx->ks, 8); kdl4(cx->ks, 9); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||
|  |     /* key and must be non-zero for 128 and 192 bits keys   */ | ||
|  |     cx->ks[53] = cx->ks[45] = 0; | ||
|  |     cx->ks[52] = 10; | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     return aes_good; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(AES_192) || defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]) | ||
|  | {   aes_32t    ss[7]; | ||
|  | #ifdef  d_vars
 | ||
|  |         d_vars; | ||
|  | #endif
 | ||
|  |     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||
|  |     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||
|  |     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||
|  |     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||
|  | 
 | ||
|  | #if DEC_UNROLL == NONE
 | ||
|  |     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||
|  |     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||
|  |     {   aes_32t i; | ||
|  | 
 | ||
|  |         for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) | ||
|  |             ke6(cx->ks, i); | ||
|  | #if !(DEC_ROUND == NO_TABLES)
 | ||
|  |         for(i = N_COLS; i < 12 * N_COLS; ++i) | ||
|  |             cx->ks[i] = inv_mcol(cx->ks[i]); | ||
|  | #endif
 | ||
|  |     } | ||
|  | #else
 | ||
|  |     cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); | ||
|  |     cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); | ||
|  |     kdf6(cx->ks, 0); kd6(cx->ks, 1); | ||
|  |     kd6(cx->ks, 2);  kd6(cx->ks, 3); | ||
|  |     kd6(cx->ks, 4);  kd6(cx->ks, 5); | ||
|  |     kd6(cx->ks, 6); kdl6(cx->ks, 7); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||
|  |     /* key and must be non-zero for 128 and 192 bits keys   */ | ||
|  |     cx->ks[53] = cx->ks[45]; | ||
|  |     cx->ks[52] = 12; | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     return aes_good; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(AES_256) || defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]) | ||
|  | {   aes_32t    ss[8]; | ||
|  | #ifdef  d_vars
 | ||
|  |         d_vars; | ||
|  | #endif
 | ||
|  |     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||
|  |     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||
|  |     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||
|  |     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||
|  | 
 | ||
|  | #if DEC_UNROLL == NONE
 | ||
|  |     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||
|  |     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||
|  |     cx->ks[6] = ss[6] = word_in(in_key, 6); | ||
|  |     cx->ks[7] = ss[7] = word_in(in_key, 7); | ||
|  |     {   aes_32t i; | ||
|  | 
 | ||
|  |         for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) | ||
|  |             ke8(cx->ks,  i); | ||
|  | #if !(DEC_ROUND == NO_TABLES)
 | ||
|  |         for(i = N_COLS; i < 14 * N_COLS; ++i) | ||
|  |             cx->ks[i] = inv_mcol(cx->ks[i]); | ||
|  | #endif
 | ||
|  |     } | ||
|  | #else
 | ||
|  |     cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); | ||
|  |     cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); | ||
|  |     cx->ks[6] = ff(ss[6] = word_in(in_key, 6)); | ||
|  |     cx->ks[7] = ff(ss[7] = word_in(in_key, 7)); | ||
|  |     kdf8(cx->ks, 0); kd8(cx->ks, 1); | ||
|  |     kd8(cx->ks, 2);  kd8(cx->ks, 3); | ||
|  |     kd8(cx->ks, 4);  kd8(cx->ks, 5); | ||
|  |     kdl8(cx->ks, 6); | ||
|  | #endif
 | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     return aes_good; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(AES_VAR)
 | ||
|  | 
 | ||
|  | aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]) | ||
|  | { | ||
|  |     switch(key_len) | ||
|  |     { | ||
|  | #ifdef AES_ERR_CHK
 | ||
|  |     case 16: case 128: return aes_decrypt_key128(in_key, cx); | ||
|  |     case 24: case 192: return aes_decrypt_key192(in_key, cx); | ||
|  |     case 32: case 256: return aes_decrypt_key256(in_key, cx); | ||
|  |     default: return aes_error; | ||
|  | #else
 | ||
|  |     case 16: case 128: aes_decrypt_key128(in_key, cx); return; | ||
|  |     case 24: case 192: aes_decrypt_key192(in_key, cx); return; | ||
|  |     case 32: case 256: aes_decrypt_key256(in_key, cx); return; | ||
|  | #endif
 | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(__cplusplus)
 | ||
|  | } | ||
|  | #endif
 |