Files
asterisk/formats/format_wav_gsm.c
Matthew Jordan a2c912e997 media formats: re-architect handling of media for performance improvements
In the old times media formats were represented using a bit field. This was
fast but had a few limitations.
 1. Asterisk was limited in how many formats it could handle.
 2. Formats, being a bit field, could not include any attribute information.
    A format was strictly its type, e.g., "this is ulaw".
This was changed in Asterisk 10 (see
https://wiki.asterisk.org/wiki/display/AST/Media+Architecture+Proposal for
notes on that work) which led to the creation of the ast_format structure.
This structure allowed Asterisk to handle attributes and bundle information
with a format.

Additionally, ast_format_cap was created to act as a container for multiple
formats that, together, formed the capability of some entity. Another
mechanism was added to allow logic to be registered which performed format
attribute negotiation. Everywhere throughout the codebase Asterisk was
changed to use this strategy.

Unfortunately, in software, there is no free lunch. These new capabilities
came at a cost.

Performance analysis and profiling showed that we spend an inordinate
amount of time comparing, copying, and generally manipulating formats and
their related structures. Basic prototyping has shown that a reasonably
large performance improvement could be made in this area. This patch is the
result of that project, which overhauled the media format architecture
and its usage in Asterisk to improve performance.

Generally, the new philosophy for handling formats is as follows:
 * The ast_format structure is reference counted. This removed a large amount
   of the memory allocations and copying that was done in prior versions.
 * In order to prevent race conditions while keeping things performant, the
   ast_format structure is immutable by convention and lock-free. Violate this
   tenet at your peril!
 * Because formats are reference counted, codecs are also reference counted.
   The Asterisk core generally provides built-in codecs and caches the
   ast_format structures created to represent them. Generally, to prevent
   inordinate amounts of module reference bumping, codecs and formats can be
   added at run-time but cannot be removed.
 * All compatibility with the bit field representation of codecs/formats has
   been moved to a compatibility API. The primary user of this representation
   is chan_iax2, which must continue to maintain its bit-field usage of formats
   for interoperability concerns.
 * When a format is negotiated with attributes, or when a format cannot be
   represented by one of the cached formats, a new format object is created or
   cloned from an existing format. That format may have the same codec
   underlying it, but is a different format than a version of the format with
   different attributes or without attributes.
 * While formats are reference counted objects, the reference count maintained
   on the format should be manipulated with care. Formats are generally cached
   and will persist for the lifetime of Asterisk and do not explicitly need
   to have their lifetime modified. An exception to this is when the user of a
   format does not know where the format came from *and* the user may outlive
   the provider of the format. This occurs, for example, when a format is read
   from a channel: the channel may have a format with attributes (hence,
   non-cached) and the user of the format may last longer than the channel (if
   the reference to the channel is released prior to the format's reference).

For more information on this work, see the API design notes:
  https://wiki.asterisk.org/wiki/display/AST/Media+Format+Rewrite

Finally, this work was the culmination of a large number of developer's
efforts. Extra thanks goes to Corey Farrell, who took on a large amount of the
work in the Asterisk core, chan_sip, and was an invaluable resource in peer
reviews throughout this project.

There were a substantial number of patches contributed during this work; the
following issues/patch names simply reflect some of the work (and will cause
the release scripts to give attribution to the individuals who work on them).

Reviews:
 https://reviewboard.asterisk.org/r/3814
 https://reviewboard.asterisk.org/r/3808
 https://reviewboard.asterisk.org/r/3805
 https://reviewboard.asterisk.org/r/3803
 https://reviewboard.asterisk.org/r/3801
 https://reviewboard.asterisk.org/r/3798
 https://reviewboard.asterisk.org/r/3800
 https://reviewboard.asterisk.org/r/3794
 https://reviewboard.asterisk.org/r/3793
 https://reviewboard.asterisk.org/r/3792
 https://reviewboard.asterisk.org/r/3791
 https://reviewboard.asterisk.org/r/3790
 https://reviewboard.asterisk.org/r/3789
 https://reviewboard.asterisk.org/r/3788
 https://reviewboard.asterisk.org/r/3787
 https://reviewboard.asterisk.org/r/3786
 https://reviewboard.asterisk.org/r/3784
 https://reviewboard.asterisk.org/r/3783
 https://reviewboard.asterisk.org/r/3778
 https://reviewboard.asterisk.org/r/3774
 https://reviewboard.asterisk.org/r/3775
 https://reviewboard.asterisk.org/r/3772
 https://reviewboard.asterisk.org/r/3761
 https://reviewboard.asterisk.org/r/3754
 https://reviewboard.asterisk.org/r/3753
 https://reviewboard.asterisk.org/r/3751
 https://reviewboard.asterisk.org/r/3750
 https://reviewboard.asterisk.org/r/3748
 https://reviewboard.asterisk.org/r/3747
 https://reviewboard.asterisk.org/r/3746
 https://reviewboard.asterisk.org/r/3742
 https://reviewboard.asterisk.org/r/3740
 https://reviewboard.asterisk.org/r/3739
 https://reviewboard.asterisk.org/r/3738
 https://reviewboard.asterisk.org/r/3737
 https://reviewboard.asterisk.org/r/3736
 https://reviewboard.asterisk.org/r/3734
 https://reviewboard.asterisk.org/r/3722
 https://reviewboard.asterisk.org/r/3713
 https://reviewboard.asterisk.org/r/3703
 https://reviewboard.asterisk.org/r/3689
 https://reviewboard.asterisk.org/r/3687
 https://reviewboard.asterisk.org/r/3674
 https://reviewboard.asterisk.org/r/3671
 https://reviewboard.asterisk.org/r/3667
 https://reviewboard.asterisk.org/r/3665
 https://reviewboard.asterisk.org/r/3625
 https://reviewboard.asterisk.org/r/3602
 https://reviewboard.asterisk.org/r/3519
 https://reviewboard.asterisk.org/r/3518
 https://reviewboard.asterisk.org/r/3516
 https://reviewboard.asterisk.org/r/3515
 https://reviewboard.asterisk.org/r/3512
 https://reviewboard.asterisk.org/r/3506
 https://reviewboard.asterisk.org/r/3413
 https://reviewboard.asterisk.org/r/3410
 https://reviewboard.asterisk.org/r/3387
 https://reviewboard.asterisk.org/r/3388
 https://reviewboard.asterisk.org/r/3389
 https://reviewboard.asterisk.org/r/3390
 https://reviewboard.asterisk.org/r/3321
 https://reviewboard.asterisk.org/r/3320
 https://reviewboard.asterisk.org/r/3319
 https://reviewboard.asterisk.org/r/3318
 https://reviewboard.asterisk.org/r/3266
 https://reviewboard.asterisk.org/r/3265
 https://reviewboard.asterisk.org/r/3234
 https://reviewboard.asterisk.org/r/3178

ASTERISK-23114 #close
Reported by: mjordan
  media_formats_translation_core.diff uploaded by kharwell (License 6464)
  rb3506.diff uploaded by mjordan (License 6283)
  media_format_app_file.diff uploaded by kharwell (License 6464) 
  misc-2.diff uploaded by file (License 5000)
  chan_mild-3.diff uploaded by file (License 5000) 
  chan_obscure.diff uploaded by file (License 5000) 
  jingle.diff uploaded by file (License 5000) 
  funcs.diff uploaded by file (License 5000) 
  formats.diff uploaded by file (License 5000) 
  core.diff uploaded by file (License 5000) 
  bridges.diff uploaded by file (License 5000) 
  mf-codecs-2.diff uploaded by file (License 5000) 
  mf-app_fax.diff uploaded by file (License 5000) 
  mf-apps-3.diff uploaded by file (License 5000) 
  media-formats-3.diff uploaded by file (License 5000) 

ASTERISK-23715
  rb3713.patch uploaded by coreyfarrell (License 5909)
  rb3689.patch uploaded by mjordan (License 6283)
  
ASTERISK-23957
  rb3722.patch uploaded by mjordan (License 6283) 
  mf-attributes-3.diff uploaded by file (License 5000) 

ASTERISK-23958
Tested by: jrose
  rb3822.patch uploaded by coreyfarrell (License 5909) 
  rb3800.patch uploaded by jrose (License 6182)
  chan_sip.diff uploaded by mjordan (License 6283) 
  rb3747.patch uploaded by jrose (License 6182)

ASTERISK-23959 #close
Tested by: sgriepentrog, mjordan, coreyfarrell
  sip_cleanup.diff uploaded by opticron (License 6273)
  chan_sip_caps.diff uploaded by mjordan (License 6283) 
  rb3751.patch uploaded by coreyfarrell (License 5909) 
  chan_sip-3.diff uploaded by file (License 5000) 

ASTERISK-23960 #close
Tested by: opticron
  direct_media.diff uploaded by opticron (License 6273) 
  pjsip-direct-media.diff uploaded by file (License 5000) 
  format_cap_remove.diff uploaded by opticron (License 6273) 
  media_format_fixes.diff uploaded by opticron (License 6273) 
  chan_pjsip-2.diff uploaded by file (License 5000) 

ASTERISK-23966 #close
Tested by: rmudgett
  rb3803.patch uploaded by rmudgetti (License 5621)
  chan_dahdi.diff uploaded by file (License 5000) 
  
ASTERISK-24064 #close
Tested by: coreyfarrell, mjordan, opticron, file, rmudgett, sgriepentrog, jrose
  rb3814.patch uploaded by rmudgett (License 5621) 
  moh_cleanup.diff uploaded by opticron (License 6273) 
  bridge_leak.diff uploaded by opticron (License 6273) 
  translate.diff uploaded by file (License 5000) 
  rb3795.patch uploaded by rmudgett (License 5621) 
  tls_fix.diff uploaded by mjordan (License 6283) 
  fax-mf-fix-2.diff uploaded by file (License 5000) 
  rtp_transfer_stuff uploaded by mjordan (License 6283) 
  rb3787.patch uploaded by rmudgett (License 5621) 
  media-formats-explicit-translate-format-3.diff uploaded by file (License 5000) 
  format_cache_case_fix.diff uploaded by opticron (License 6273) 
  rb3774.patch uploaded by rmudgett (License 5621) 
  rb3775.patch uploaded by rmudgett (License 5621) 
  rtp_engine_fix.diff uploaded by opticron (License 6273) 
  rtp_crash_fix.diff uploaded by opticron (License 6273) 
  rb3753.patch uploaded by mjordan (License 6283) 
  rb3750.patch uploaded by mjordan (License 6283) 
  rb3748.patch uploaded by rmudgett (License 5621) 
  media_format_fixes.diff uploaded by opticron (License 6273) 
  rb3740.patch uploaded by mjordan (License 6283) 
  rb3739.patch uploaded by mjordan (License 6283) 
  rb3734.patch uploaded by mjordan (License 6283) 
  rb3689.patch uploaded by mjordan (License 6283) 
  rb3674.patch uploaded by coreyfarrell (License 5909) 
  rb3671.patch uploaded by coreyfarrell (License 5909) 
  rb3667.patch uploaded by coreyfarrell (License 5909) 
  rb3665.patch uploaded by mjordan (License 6283) 
  rb3625.patch uploaded by coreyfarrell (License 5909) 
  rb3602.patch uploaded by coreyfarrell (License 5909) 
  format_compatibility-2.diff uploaded by file (License 5000) 
  core.diff uploaded by file (License 5000) 
  


git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@419044 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-07-20 22:06:33 +00:00

585 lines
16 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Save GSM in the proprietary Microsoft format.
*
* Microsoft WAV format (Proprietary GSM)
* \arg File name extension: WAV,wav49 (Upper case WAV, lower case is another format)
* This format can be played on Windows systems, used for
* e-mail attachments mainly.
* \ingroup formats
*/
/*** MODULEINFO
<support_level>core</support_level>
***/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include "asterisk/mod_format.h"
#include "asterisk/module.h"
#include "asterisk/endian.h"
#include "asterisk/format_cache.h"
#include "msgsm.h"
/* Some Ideas for this code came from makewave.c by Jeffrey Chilton */
/* Portions of the conversion code are by guido@sienanet.it */
#define GSM_FRAME_SIZE 33
#define MSGSM_FRAME_SIZE 65
#define MSGSM_DATA_OFFSET 60 /* offset of data bytes */
#define GSM_SAMPLES 160 /* samples in a GSM block */
#define MSGSM_SAMPLES (2*GSM_SAMPLES) /* samples in an MSGSM block */
/* begin binary data: */
static char msgsm_silence[] = /* 65 */
{0x48,0x17,0xD6,0x84,0x02,0x80,0x24,0x49,0x92,0x24,0x89,0x02,0x80,0x24,0x49
,0x92,0x24,0x89,0x02,0x80,0x24,0x49,0x92,0x24,0x89,0x02,0x80,0x24,0x49,0x92
,0x24,0x09,0x82,0x74,0x61,0x4D,0x28,0x00,0x48,0x92,0x24,0x49,0x92,0x28,0x00
,0x48,0x92,0x24,0x49,0x92,0x28,0x00,0x48,0x92,0x24,0x49,0x92,0x28,0x00,0x48
,0x92,0x24,0x49,0x92,0x00};
/* end binary data. size = 65 bytes */
struct wavg_desc {
/* Believe it or not, we must decode/recode to account for the
weird MS format */
int secondhalf; /* Are we on the second half */
};
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define htoll(b) (b)
#define htols(b) (b)
#define ltohl(b) (b)
#define ltohs(b) (b)
#else
#if __BYTE_ORDER == __BIG_ENDIAN
#define htoll(b) \
(((((b) ) & 0xFF) << 24) | \
((((b) >> 8) & 0xFF) << 16) | \
((((b) >> 16) & 0xFF) << 8) | \
((((b) >> 24) & 0xFF) ))
#define htols(b) \
(((((b) ) & 0xFF) << 8) | \
((((b) >> 8) & 0xFF) ))
#define ltohl(b) htoll(b)
#define ltohs(b) htols(b)
#else
#error "Endianess not defined"
#endif
#endif
static int check_header(FILE *f)
{
int type, size, formtype;
int fmt, hsize, fact;
short format, chans;
int freq;
int data;
if (fread(&type, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (type)\n");
return -1;
}
if (fread(&size, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (size)\n");
return -1;
}
size = ltohl(size);
if (fread(&formtype, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (formtype)\n");
return -1;
}
if (memcmp(&type, "RIFF", 4)) {
ast_log(LOG_WARNING, "Does not begin with RIFF\n");
return -1;
}
if (memcmp(&formtype, "WAVE", 4)) {
ast_log(LOG_WARNING, "Does not contain WAVE\n");
return -1;
}
if (fread(&fmt, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (fmt)\n");
return -1;
}
if (memcmp(&fmt, "fmt ", 4)) {
ast_log(LOG_WARNING, "Does not say fmt\n");
return -1;
}
if (fread(&hsize, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (formtype)\n");
return -1;
}
if (ltohl(hsize) != 20) {
ast_log(LOG_WARNING, "Unexpected header size %d\n", ltohl(hsize));
return -1;
}
if (fread(&format, 1, 2, f) != 2) {
ast_log(LOG_WARNING, "Read failed (format)\n");
return -1;
}
if (ltohs(format) != 49) {
ast_log(LOG_WARNING, "Not a GSM file %d\n", ltohs(format));
return -1;
}
if (fread(&chans, 1, 2, f) != 2) {
ast_log(LOG_WARNING, "Read failed (format)\n");
return -1;
}
if (ltohs(chans) != 1) {
ast_log(LOG_WARNING, "Not in mono %d\n", ltohs(chans));
return -1;
}
if (fread(&freq, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (freq)\n");
return -1;
}
if (ltohl(freq) != DEFAULT_SAMPLE_RATE) {
ast_log(LOG_WARNING, "Unexpected frequency %d\n", ltohl(freq));
return -1;
}
/* Ignore the byte frequency */
if (fread(&freq, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (X_1)\n");
return -1;
}
/* Ignore the two weird fields */
if (fread(&freq, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (X_2/X_3)\n");
return -1;
}
/* Ignore the byte frequency */
if (fread(&freq, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (Y_1)\n");
return -1;
}
/* Check for the word fact */
if (fread(&fact, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (fact)\n");
return -1;
}
if (memcmp(&fact, "fact", 4)) {
ast_log(LOG_WARNING, "Does not say fact\n");
return -1;
}
/* Ignore the "fact value" */
if (fread(&fact, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (fact header)\n");
return -1;
}
if (fread(&fact, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (fact value)\n");
return -1;
}
/* Check for the word data */
if (fread(&data, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (data)\n");
return -1;
}
if (memcmp(&data, "data", 4)) {
ast_log(LOG_WARNING, "Does not say data\n");
return -1;
}
/* Ignore the data length */
if (fread(&data, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Read failed (data)\n");
return -1;
}
return 0;
}
static int update_header(FILE *f)
{
off_t cur,end,bytes;
int datalen, filelen, samples;
cur = ftello(f);
fseek(f, 0, SEEK_END);
end = ftello(f);
/* in a gsm WAV, data starts 60 bytes in */
bytes = end - MSGSM_DATA_OFFSET;
samples = htoll(bytes / MSGSM_FRAME_SIZE * MSGSM_SAMPLES);
datalen = htoll(bytes);
filelen = htoll(MSGSM_DATA_OFFSET - 8 + bytes);
if (cur < 0) {
ast_log(LOG_WARNING, "Unable to find our position\n");
return -1;
}
if (fseek(f, 4, SEEK_SET)) {
ast_log(LOG_WARNING, "Unable to set our position\n");
return -1;
}
if (fwrite(&filelen, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write file size\n");
return -1;
}
if (fseek(f, 48, SEEK_SET)) {
ast_log(LOG_WARNING, "Unable to set our position\n");
return -1;
}
if (fwrite(&samples, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write samples\n");
return -1;
}
if (fseek(f, 56, SEEK_SET)) {
ast_log(LOG_WARNING, "Unable to set our position\n");
return -1;
}
if (fwrite(&datalen, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write datalen\n");
return -1;
}
if (fseeko(f, cur, SEEK_SET)) {
ast_log(LOG_WARNING, "Unable to return to position\n");
return -1;
}
return 0;
}
static int write_header(FILE *f)
{
/* Samples per second (always 8000 for this format). */
unsigned int sample_rate = htoll(8000);
/* Bytes per second (always 1625 for this format). */
unsigned int byte_sample_rate = htoll(1625);
/* This is the size of the "fmt " subchunk */
unsigned int fmtsize = htoll(20);
/* WAV #49 */
unsigned short fmt = htols(49);
/* Mono = 1 channel */
unsigned short chans = htols(1);
/* Each block of data is exactly 65 bytes in size. */
unsigned int block_align = htoll(MSGSM_FRAME_SIZE);
/* Not actually 2, but rounded up to the nearest bit */
unsigned short bits_per_sample = htols(2);
/* Needed for compressed formats */
unsigned short extra_format = htols(MSGSM_SAMPLES);
/* This is the size of the "fact" subchunk */
unsigned int factsize = htoll(4);
/* Number of samples in the data chunk */
unsigned int num_samples = htoll(0);
/* Number of bytes in the data chunk */
unsigned int size = htoll(0);
/* Write a GSM header, ignoring sizes which will be filled in later */
/* 0: Chunk ID */
if (fwrite("RIFF", 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 4: Chunk Size */
if (fwrite(&size, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 8: Chunk Format */
if (fwrite("WAVE", 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 12: Subchunk 1: ID */
if (fwrite("fmt ", 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 16: Subchunk 1: Size (minus 8) */
if (fwrite(&fmtsize, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 20: Subchunk 1: Audio format (49) */
if (fwrite(&fmt, 1, 2, f) != 2) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 22: Subchunk 1: Number of channels */
if (fwrite(&chans, 1, 2, f) != 2) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 24: Subchunk 1: Sample rate */
if (fwrite(&sample_rate, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 28: Subchunk 1: Byte rate */
if (fwrite(&byte_sample_rate, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 32: Subchunk 1: Block align */
if (fwrite(&block_align, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 36: Subchunk 1: Bits per sample */
if (fwrite(&bits_per_sample, 1, 2, f) != 2) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 38: Subchunk 1: Extra format bytes */
if (fwrite(&extra_format, 1, 2, f) != 2) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 40: Subchunk 2: ID */
if (fwrite("fact", 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 44: Subchunk 2: Size (minus 8) */
if (fwrite(&factsize, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 48: Subchunk 2: Number of samples */
if (fwrite(&num_samples, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 52: Subchunk 3: ID */
if (fwrite("data", 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
/* 56: Subchunk 3: Size */
if (fwrite(&size, 1, 4, f) != 4) {
ast_log(LOG_WARNING, "Unable to write header\n");
return -1;
}
return 0;
}
static int wav_open(struct ast_filestream *s)
{
/* We don't have any header to read or anything really, but
if we did, it would go here. We also might want to check
and be sure it's a valid file. */
struct wavg_desc *fs = (struct wavg_desc *)s->_private;
if (check_header(s->f))
return -1;
fs->secondhalf = 0; /* not strictly necessary */
return 0;
}
static int wav_rewrite(struct ast_filestream *s, const char *comment)
{
/* We don't have any header to read or anything really, but
if we did, it would go here. We also might want to check
and be sure it's a valid file. */
if (write_header(s->f))
return -1;
return 0;
}
static void wav_close(struct ast_filestream *s)
{
if (s->mode == O_RDONLY) {
return;
}
if (s->filename) {
update_header(s->f);
}
}
static struct ast_frame *wav_read(struct ast_filestream *s, int *whennext)
{
/* Send a frame from the file to the appropriate channel */
struct wavg_desc *fs = (struct wavg_desc *)s->_private;
s->fr.samples = GSM_SAMPLES;
AST_FRAME_SET_BUFFER(&s->fr, s->buf, AST_FRIENDLY_OFFSET, GSM_FRAME_SIZE);
if (fs->secondhalf) {
/* Just return a frame based on the second GSM frame */
s->fr.data.ptr = (char *)s->fr.data.ptr + GSM_FRAME_SIZE;
s->fr.offset += GSM_FRAME_SIZE;
} else {
/* read and convert */
unsigned char msdata[MSGSM_FRAME_SIZE];
int res;
if ((res = fread(msdata, 1, MSGSM_FRAME_SIZE, s->f)) != MSGSM_FRAME_SIZE) {
if (res && (res != 1))
ast_log(LOG_WARNING, "Short read (%d) (%s)!\n", res, strerror(errno));
return NULL;
}
/* Convert from MS format to two real GSM frames */
conv65(msdata, s->fr.data.ptr);
}
fs->secondhalf = !fs->secondhalf;
*whennext = GSM_SAMPLES;
return &s->fr;
}
static int wav_write(struct ast_filestream *s, struct ast_frame *f)
{
int len;
int size;
struct wavg_desc *fs = (struct wavg_desc *)s->_private;
/* XXX this might fail... if the input is a multiple of MSGSM_FRAME_SIZE
* we assume it is already in the correct format.
*/
if (!(f->datalen % MSGSM_FRAME_SIZE)) {
size = MSGSM_FRAME_SIZE;
fs->secondhalf = 0;
} else {
size = GSM_FRAME_SIZE;
}
for (len = 0; len < f->datalen ; len += size) {
int res;
unsigned char *src, msdata[MSGSM_FRAME_SIZE];
if (fs->secondhalf) { /* second half of raw gsm to be converted */
memcpy(s->buf + GSM_FRAME_SIZE, f->data.ptr + len, GSM_FRAME_SIZE);
conv66((unsigned char *) s->buf, msdata);
src = msdata;
fs->secondhalf = 0;
} else if (size == GSM_FRAME_SIZE) { /* first half of raw gsm */
memcpy(s->buf, f->data.ptr + len, GSM_FRAME_SIZE);
src = NULL; /* nothing to write */
fs->secondhalf = 1;
} else { /* raw msgsm data */
src = f->data.ptr + len;
}
if (src && (res = fwrite(src, 1, MSGSM_FRAME_SIZE, s->f)) != MSGSM_FRAME_SIZE) {
ast_log(LOG_WARNING, "Bad write (%d/65): %s\n", res, strerror(errno));
return -1;
}
}
return 0;
}
static int wav_seek(struct ast_filestream *fs, off_t sample_offset, int whence)
{
off_t offset = 0, min = MSGSM_DATA_OFFSET, distance, max, cur;
struct wavg_desc *s = (struct wavg_desc *)fs->_private;
if ((cur = ftello(fs->f)) < 0) {
ast_log(AST_LOG_WARNING, "Unable to determine current position in WAV filestream %p: %s\n", fs, strerror(errno));
return -1;
}
if (fseeko(fs->f, 0, SEEK_END) < 0) {
ast_log(AST_LOG_WARNING, "Unable to seek to end of WAV filestream %p: %s\n", fs, strerror(errno));
return -1;
}
/* XXX ideally, should round correctly */
if ((max = ftello(fs->f)) < 0) {
ast_log(AST_LOG_WARNING, "Unable to determine max position in WAV filestream %p: %s\n", fs, strerror(errno));
return -1;
}
/* Compute the distance in bytes, rounded to the block size */
distance = (sample_offset/MSGSM_SAMPLES) * MSGSM_FRAME_SIZE;
if (whence == SEEK_SET)
offset = distance + min;
else if (whence == SEEK_CUR || whence == SEEK_FORCECUR)
offset = distance + cur;
else if (whence == SEEK_END)
offset = max - distance;
/* always protect against seeking past end of header */
if (offset < min)
offset = min;
if (whence != SEEK_FORCECUR) {
if (offset > max)
offset = max;
} else if (offset > max) {
int i;
fseek(fs->f, 0, SEEK_END);
for (i=0; i< (offset - max) / MSGSM_FRAME_SIZE; i++) {
if (!fwrite(msgsm_silence, 1, MSGSM_FRAME_SIZE, fs->f)) {
ast_log(LOG_WARNING, "fwrite() failed: %s\n", strerror(errno));
}
}
}
s->secondhalf = 0;
return fseeko(fs->f, offset, SEEK_SET);
}
static int wav_trunc(struct ast_filestream *fs)
{
int fd;
off_t cur;
if ((fd = fileno(fs->f)) < 0) {
ast_log(AST_LOG_WARNING, "Unable to determine file descriptor for WAV filestream %p: %s\n", fs, strerror(errno));
return -1;
}
if ((cur = ftello(fs->f)) < 0) {
ast_log(AST_LOG_WARNING, "Unable to determine current position in WAV filestream %p: %s\n", fs, strerror(errno));
return -1;
}
/* Truncate file to current length */
if (ftruncate(fd, cur)) {
return -1;
}
return update_header(fs->f);
}
static off_t wav_tell(struct ast_filestream *fs)
{
off_t offset;
offset = ftello(fs->f);
/* since this will most likely be used later in play or record, lets stick
* to that level of resolution, just even frames boundaries */
return (offset - MSGSM_DATA_OFFSET)/MSGSM_FRAME_SIZE*MSGSM_SAMPLES;
}
static struct ast_format_def wav49_f = {
.name = "wav49",
.exts = "WAV|wav49",
.open = wav_open,
.rewrite = wav_rewrite,
.write = wav_write,
.seek = wav_seek,
.trunc = wav_trunc,
.tell = wav_tell,
.read = wav_read,
.close = wav_close,
.buf_size = 2*GSM_FRAME_SIZE + AST_FRIENDLY_OFFSET,
.desc_size = sizeof(struct wavg_desc),
};
static int load_module(void)
{
wav49_f.format = ast_format_gsm;
if (ast_format_def_register(&wav49_f))
return AST_MODULE_LOAD_FAILURE;
return AST_MODULE_LOAD_SUCCESS;
}
static int unload_module(void)
{
return ast_format_def_unregister(wav49_f.name);
}
AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_LOAD_ORDER, "Microsoft WAV format (Proprietary GSM)",
.load = load_module,
.unload = unload_module,
.load_pri = AST_MODPRI_APP_DEPEND
);