Files
asterisk/main/udptl.c
Tilghman Lesher a13deff994 Fix crashes when receiving certain T.38 packets. Also, increase the maximum
size of T.38 packets and warn users when they try to set the limits above those
maximums.
(closes issue #13050)
 Reported by: schern
 Patches: 
       20090212__bug13050.diff.txt uploaded by Corydon76 (license 14)
 Tested by: schern


git-svn-id: https://origsvn.digium.com/svn/asterisk/branches/1.4@175311 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2009-02-12 21:19:40 +00:00

1276 lines
34 KiB
C

/*
* Asterisk -- A telephony toolkit for Linux.
*
* UDPTL support for T.38
*
* Copyright (C) 2005, Steve Underwood, partly based on RTP code which is
* Copyright (C) 1999-2006, Digium, Inc.
*
* Steve Underwood <steveu@coppice.org>
*
* This program is free software, distributed under the terms of
* the GNU General Public License
*
* A license has been granted to Digium (via disclaimer) for the use of
* this code.
*/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include "asterisk/udptl.h"
#include "asterisk/frame.h"
#include "asterisk/logger.h"
#include "asterisk/options.h"
#include "asterisk/channel.h"
#include "asterisk/acl.h"
#include "asterisk/channel.h"
#include "asterisk/config.h"
#include "asterisk/lock.h"
#include "asterisk/utils.h"
#include "asterisk/cli.h"
#include "asterisk/unaligned.h"
#include "asterisk/utils.h"
#define UDPTL_MTU 1200
#if !defined(FALSE)
#define FALSE 0
#endif
#if !defined(TRUE)
#define TRUE (!FALSE)
#endif
static int udptlstart;
static int udptlend;
static int udptldebug; /* Are we debugging? */
static struct sockaddr_in udptldebugaddr; /* Debug packets to/from this host */
#ifdef SO_NO_CHECK
static int nochecksums;
#endif
static int udptlfectype;
static int udptlfecentries;
static int udptlfecspan;
static int udptlmaxdatagram;
#define LOCAL_FAX_MAX_DATAGRAM 1400
#define MAX_FEC_ENTRIES 5
#define MAX_FEC_SPAN 5
#define UDPTL_BUF_MASK 15
typedef struct {
int buf_len;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
} udptl_fec_tx_buffer_t;
typedef struct {
int buf_len;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
int fec_len[MAX_FEC_ENTRIES];
uint8_t fec[MAX_FEC_ENTRIES][LOCAL_FAX_MAX_DATAGRAM];
int fec_span;
int fec_entries;
} udptl_fec_rx_buffer_t;
struct ast_udptl {
int fd;
char resp;
struct ast_frame f[16];
unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
unsigned int lasteventseqn;
int nat;
int flags;
struct sockaddr_in us;
struct sockaddr_in them;
int *ioid;
struct sched_context *sched;
struct io_context *io;
void *data;
ast_udptl_callback callback;
int udptl_offered_from_local;
/*! This option indicates the error correction scheme used in transmitted UDPTL
packets. */
int error_correction_scheme;
/*! This option indicates the number of error correction entries transmitted in
UDPTL packets. */
int error_correction_entries;
/*! This option indicates the span of the error correction entries in transmitted
UDPTL packets (FEC only). */
int error_correction_span;
/*! This option indicates the maximum size of a UDPTL packet that can be accepted by
the remote device. */
int far_max_datagram_size;
/*! This option indicates the maximum size of a UDPTL packet that we are prepared to
accept. */
int local_max_datagram_size;
int verbose;
struct sockaddr_in far;
int tx_seq_no;
int rx_seq_no;
int rx_expected_seq_no;
udptl_fec_tx_buffer_t tx[UDPTL_BUF_MASK + 1];
udptl_fec_rx_buffer_t rx[UDPTL_BUF_MASK + 1];
};
static struct ast_udptl_protocol *protos;
static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len);
static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, int buflen, uint8_t *ifp, int ifp_len);
static inline int udptl_debug_test_addr(struct sockaddr_in *addr)
{
if (udptldebug == 0)
return 0;
if (udptldebugaddr.sin_addr.s_addr) {
if (((ntohs(udptldebugaddr.sin_port) != 0)
&& (udptldebugaddr.sin_port != addr->sin_port))
|| (udptldebugaddr.sin_addr.s_addr != addr->sin_addr.s_addr))
return 0;
}
return 1;
}
static int decode_length(uint8_t *buf, int limit, int *len, int *pvalue)
{
if (*len >= limit)
return -1;
if ((buf[*len] & 0x80) == 0) {
*pvalue = buf[*len];
(*len)++;
return 0;
}
if ((buf[*len] & 0x40) == 0) {
if (*len == limit - 1)
return -1;
*pvalue = (buf[*len] & 0x3F) << 8;
(*len)++;
*pvalue |= buf[*len];
(*len)++;
return 0;
}
*pvalue = (buf[*len] & 0x3F) << 14;
(*len)++;
/* Indicate we have a fragment */
return 1;
}
/*- End of function --------------------------------------------------------*/
static int decode_open_type(uint8_t *buf, int limit, int *len, const uint8_t **p_object, int *p_num_octets)
{
int octet_cnt;
int octet_idx;
int stat;
int i;
const uint8_t **pbuf;
for (octet_idx = 0, *p_num_octets = 0; ; octet_idx += octet_cnt) {
if ((stat = decode_length(buf, limit, len, &octet_cnt)) < 0)
return -1;
if (octet_cnt > 0) {
*p_num_octets += octet_cnt;
pbuf = &p_object[octet_idx];
i = 0;
/* Make sure the buffer contains at least the number of bits requested */
if ((*len + octet_cnt) > limit)
return -1;
*pbuf = &buf[*len];
*len += octet_cnt;
}
if (stat == 0)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int encode_length(uint8_t *buf, int *len, int value)
{
int multiplier;
if (value < 0x80) {
/* 1 octet */
buf[*len] = value;
(*len)++;
return value;
}
if (value < 0x4000) {
/* 2 octets */
/* Set the first bit of the first octet */
buf[*len] = ((0x8000 | value) >> 8) & 0xFF;
(*len)++;
buf[*len] = value & 0xFF;
(*len)++;
return value;
}
/* Fragmentation */
multiplier = (value < 0x10000) ? (value >> 14) : 4;
/* Set the first 2 bits of the octet */
buf[*len] = 0xC0 | multiplier;
(*len)++;
return multiplier << 14;
}
/*- End of function --------------------------------------------------------*/
static int encode_open_type(uint8_t *buf, int buflen, int *len, const uint8_t *data, int num_octets)
{
int enclen;
int octet_idx;
uint8_t zero_byte;
/* If open type is of zero length, add a single zero byte (10.1) */
if (num_octets == 0) {
zero_byte = 0;
data = &zero_byte;
num_octets = 1;
}
/* Encode the open type */
for (octet_idx = 0; ; num_octets -= enclen, octet_idx += enclen) {
if ((enclen = encode_length(buf, len, num_octets)) < 0)
return -1;
if (enclen + *len > buflen) {
ast_log(LOG_ERROR, "Buffer overflow detected (%d + %d > %d)\n", enclen, *len, buflen);
return -1;
}
if (enclen > 0) {
memcpy(&buf[*len], &data[octet_idx], enclen);
*len += enclen;
}
if (enclen >= num_octets)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len)
{
int stat;
int stat2;
int i;
int j;
int k;
int l;
int m;
int x;
int limit;
int which;
int ptr;
int count;
int total_count;
int seq_no;
const uint8_t *ifp;
const uint8_t *data;
int ifp_len;
int repaired[16];
const uint8_t *bufs[16];
int lengths[16];
int span;
int entries;
int ifp_no;
ptr = 0;
ifp_no = 0;
memset(&s->f[0], 0, sizeof(s->f[0]));
/* Decode seq_number */
if (ptr + 2 > len)
return -1;
seq_no = (buf[0] << 8) | buf[1];
ptr += 2;
/* Break out the primary packet */
if ((stat = decode_open_type(buf, len, &ptr, &ifp, &ifp_len)) != 0)
return -1;
/* Decode error_recovery */
if (ptr + 1 > len)
return -1;
if ((buf[ptr++] & 0x80) == 0) {
/* Secondary packet mode for error recovery */
if (seq_no > s->rx_seq_no) {
/* We received a later packet than we expected, so we need to check if we can fill in the gap from the
secondary packets. */
total_count = 0;
do {
if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
return -1;
for (i = 0; i < count; i++) {
if ((stat = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0)
return -1;
}
total_count += count;
}
while (stat2 > 0);
/* Step through in reverse order, so we go oldest to newest */
for (i = total_count; i > 0; i--) {
if (seq_no - i >= s->rx_seq_no) {
/* This one wasn't seen before */
/* Decode the secondary IFP packet */
//fprintf(stderr, "Secondary %d, len %d\n", seq_no - i, lengths[i - 1]);
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
s->f[ifp_no].seqno = seq_no - i;
s->f[ifp_no].datalen = lengths[i - 1];
s->f[ifp_no].data = (uint8_t *) bufs[i - 1];
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
ifp_no++;
}
}
}
}
else
{
/* FEC mode for error recovery */
/* Our buffers cannot tolerate overlength IFP packets in FEC mode */
if (ifp_len > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Update any missed slots in the buffer */
for ( ; seq_no > s->rx_seq_no; s->rx_seq_no++) {
x = s->rx_seq_no & UDPTL_BUF_MASK;
s->rx[x].buf_len = -1;
s->rx[x].fec_len[0] = 0;
s->rx[x].fec_span = 0;
s->rx[x].fec_entries = 0;
}
x = seq_no & UDPTL_BUF_MASK;
memset(repaired, 0, sizeof(repaired));
/* Save the new IFP packet */
memcpy(s->rx[x].buf, ifp, ifp_len);
s->rx[x].buf_len = ifp_len;
repaired[x] = TRUE;
/* Decode the FEC packets */
/* The span is defined as an unconstrained integer, but will never be more
than a small value. */
if (ptr + 2 > len)
return -1;
if (buf[ptr++] != 1)
return -1;
span = buf[ptr++];
s->rx[x].fec_span = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
if (ptr + 1 > len)
return -1;
entries = buf[ptr++];
s->rx[x].fec_entries = entries;
/* Decode the elements */
for (i = 0; i < entries; i++) {
if ((stat = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
return -1;
if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Save the new FEC data */
memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
#if 0
fprintf(stderr, "FEC: ");
for (j = 0; j < s->rx[x].fec_len[i]; j++)
fprintf(stderr, "%02X ", data[j]);
fprintf(stderr, "\n");
#endif
}
/* See if we can reconstruct anything which is missing */
/* TODO: this does not comprehensively hunt back and repair everything that is possible */
for (l = x; l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK); l = (l - 1) & UDPTL_BUF_MASK) {
if (s->rx[l].fec_len[0] <= 0)
continue;
for (m = 0; m < s->rx[l].fec_entries; m++) {
limit = (l + m) & UDPTL_BUF_MASK;
for (which = -1, k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK) {
if (s->rx[k].buf_len <= 0)
which = (which == -1) ? k : -2;
}
if (which >= 0) {
/* Repairable */
for (j = 0; j < s->rx[l].fec_len[m]; j++) {
s->rx[which].buf[j] = s->rx[l].fec[m][j];
for (k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
s->rx[which].buf[j] ^= (s->rx[k].buf_len > j) ? s->rx[k].buf[j] : 0;
}
s->rx[which].buf_len = s->rx[l].fec_len[m];
repaired[which] = TRUE;
}
}
}
/* Now play any new packets forwards in time */
for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK; l != x; l = (l + 1) & UDPTL_BUF_MASK, j++) {
if (repaired[l]) {
//fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
s->f[ifp_no].seqno = j;
s->f[ifp_no].datalen = s->rx[l].buf_len;
s->f[ifp_no].data = s->rx[l].buf;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
ifp_no++;
}
}
}
/* If packets are received out of sequence, we may have already processed this packet from the error
recovery information in a packet already received. */
if (seq_no >= s->rx_seq_no) {
/* Decode the primary IFP packet */
s->f[ifp_no].frametype = AST_FRAME_MODEM;
s->f[ifp_no].subclass = AST_MODEM_T38;
s->f[ifp_no].mallocd = 0;
s->f[ifp_no].seqno = seq_no;
s->f[ifp_no].datalen = ifp_len;
s->f[ifp_no].data = (uint8_t *) ifp;
s->f[ifp_no].offset = 0;
s->f[ifp_no].src = "UDPTL";
if (ifp_no > 0)
AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
ifp_no++;
}
s->rx_seq_no = seq_no + 1;
return ifp_no;
}
/*- End of function --------------------------------------------------------*/
static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, int buflen, uint8_t *ifp, int ifp_len)
{
uint8_t fec[LOCAL_FAX_MAX_DATAGRAM * 2];
int i;
int j;
int seq;
int entry;
int entries;
int span;
int m;
int len;
int limit;
int high_tide;
seq = s->tx_seq_no & 0xFFFF;
/* Map the sequence number to an entry in the circular buffer */
entry = seq & UDPTL_BUF_MASK;
/* We save the message in a circular buffer, for generating FEC or
redundancy sets later on. */
s->tx[entry].buf_len = ifp_len;
memcpy(s->tx[entry].buf, ifp, ifp_len);
/* Build the UDPTLPacket */
len = 0;
/* Encode the sequence number */
buf[len++] = (seq >> 8) & 0xFF;
buf[len++] = seq & 0xFF;
/* Encode the primary IFP packet */
if (encode_open_type(buf, buflen, &len, ifp, ifp_len) < 0)
return -1;
/* Encode the appropriate type of error recovery information */
switch (s->error_correction_scheme)
{
case UDPTL_ERROR_CORRECTION_NONE:
/* Encode the error recovery type */
buf[len++] = 0x00;
/* The number of entries will always be zero, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, 0) < 0)
return -1;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
/* Encode the error recovery type */
buf[len++] = 0x00;
if (s->tx_seq_no > s->error_correction_entries)
entries = s->error_correction_entries;
else
entries = s->tx_seq_no;
/* The number of entries will always be small, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, entries) < 0)
return -1;
/* Encode the elements */
for (i = 0; i < entries; i++) {
j = (entry - i - 1) & UDPTL_BUF_MASK;
if (encode_open_type(buf, buflen, &len, s->tx[j].buf, s->tx[j].buf_len) < 0) {
if (option_debug) {
ast_log(LOG_DEBUG, "Encoding failed at i=%d, j=%d\n", i, j);
}
return -1;
}
}
break;
case UDPTL_ERROR_CORRECTION_FEC:
span = s->error_correction_span;
entries = s->error_correction_entries;
if (seq < s->error_correction_span*s->error_correction_entries) {
/* In the initial stages, wind up the FEC smoothly */
entries = seq/s->error_correction_span;
if (seq < s->error_correction_span)
span = 0;
}
/* Encode the error recovery type */
buf[len++] = 0x80;
/* Span is defined as an inconstrained integer, which it dumb. It will only
ever be a small value. Treat it as such. */
buf[len++] = 1;
buf[len++] = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
buf[len++] = entries;
for (m = 0; m < entries; m++) {
/* Make an XOR'ed entry the maximum length */
limit = (entry + m) & UDPTL_BUF_MASK;
high_tide = 0;
for (i = (limit - span*entries) & UDPTL_BUF_MASK; i != limit; i = (i + entries) & UDPTL_BUF_MASK) {
if (high_tide < s->tx[i].buf_len) {
for (j = 0; j < high_tide; j++)
fec[j] ^= s->tx[i].buf[j];
for ( ; j < s->tx[i].buf_len; j++)
fec[j] = s->tx[i].buf[j];
high_tide = s->tx[i].buf_len;
} else {
for (j = 0; j < s->tx[i].buf_len; j++)
fec[j] ^= s->tx[i].buf[j];
}
}
if (encode_open_type(buf, buflen, &len, fec, high_tide) < 0)
return -1;
}
break;
}
if (s->verbose)
fprintf(stderr, "\n");
s->tx_seq_no++;
return len;
}
int ast_udptl_fd(struct ast_udptl *udptl)
{
return udptl->fd;
}
void ast_udptl_set_data(struct ast_udptl *udptl, void *data)
{
udptl->data = data;
}
void ast_udptl_set_callback(struct ast_udptl *udptl, ast_udptl_callback callback)
{
udptl->callback = callback;
}
void ast_udptl_setnat(struct ast_udptl *udptl, int nat)
{
udptl->nat = nat;
}
static int udptlread(int *id, int fd, short events, void *cbdata)
{
struct ast_udptl *udptl = cbdata;
struct ast_frame *f;
if ((f = ast_udptl_read(udptl))) {
if (udptl->callback)
udptl->callback(udptl, f, udptl->data);
}
return 1;
}
struct ast_frame *ast_udptl_read(struct ast_udptl *udptl)
{
int res;
struct sockaddr_in sin;
socklen_t len;
uint16_t seqno = 0;
uint16_t *udptlheader;
len = sizeof(sin);
/* Cache where the header will go */
res = recvfrom(udptl->fd,
udptl->rawdata + AST_FRIENDLY_OFFSET,
sizeof(udptl->rawdata) - AST_FRIENDLY_OFFSET,
0,
(struct sockaddr *) &sin,
&len);
udptlheader = (uint16_t *)(udptl->rawdata + AST_FRIENDLY_OFFSET);
if (res < 0) {
if (errno != EAGAIN)
ast_log(LOG_WARNING, "UDPTL read error: %s\n", strerror(errno));
ast_assert(errno != EBADF);
return &ast_null_frame;
}
/* Ignore if the other side hasn't been given an address yet. */
if (!udptl->them.sin_addr.s_addr || !udptl->them.sin_port)
return &ast_null_frame;
if (udptl->nat) {
/* Send to whoever sent to us */
if ((udptl->them.sin_addr.s_addr != sin.sin_addr.s_addr) ||
(udptl->them.sin_port != sin.sin_port)) {
memcpy(&udptl->them, &sin, sizeof(udptl->them));
ast_log(LOG_DEBUG, "UDPTL NAT: Using address %s:%d\n", ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
}
}
if (udptl_debug_test_addr(&sin)) {
ast_verbose("Got UDPTL packet from %s:%d (type %d, seq %d, len %d)\n",
ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), 0, seqno, res);
}
#if 0
printf("Got UDPTL packet from %s:%d (seq %d, len = %d)\n", ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), seqno, res);
#endif
if (udptl_rx_packet(udptl, udptl->rawdata + AST_FRIENDLY_OFFSET, res) < 1)
return &ast_null_frame;
return &udptl->f[0];
}
void ast_udptl_offered_from_local(struct ast_udptl* udptl, int local)
{
if (udptl)
udptl->udptl_offered_from_local = local;
else
ast_log(LOG_WARNING, "udptl structure is null\n");
}
int ast_udptl_get_error_correction_scheme(struct ast_udptl* udptl)
{
if (udptl)
return udptl->error_correction_scheme;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
}
void ast_udptl_set_error_correction_scheme(struct ast_udptl* udptl, int ec)
{
if (udptl) {
switch (ec) {
case UDPTL_ERROR_CORRECTION_FEC:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
break;
case UDPTL_ERROR_CORRECTION_NONE:
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
break;
default:
ast_log(LOG_WARNING, "error correction parameter invalid\n");
};
} else
ast_log(LOG_WARNING, "udptl structure is null\n");
}
int ast_udptl_get_local_max_datagram(struct ast_udptl* udptl)
{
if (udptl)
return udptl->local_max_datagram_size;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
}
int ast_udptl_get_far_max_datagram(struct ast_udptl* udptl)
{
if (udptl)
return udptl->far_max_datagram_size;
else {
ast_log(LOG_WARNING, "udptl structure is null\n");
return -1;
}
}
void ast_udptl_set_local_max_datagram(struct ast_udptl* udptl, int max_datagram)
{
if (udptl)
udptl->local_max_datagram_size = max_datagram;
else
ast_log(LOG_WARNING, "udptl structure is null\n");
}
void ast_udptl_set_far_max_datagram(struct ast_udptl* udptl, int max_datagram)
{
if (udptl)
udptl->far_max_datagram_size = max_datagram;
else
ast_log(LOG_WARNING, "udptl structure is null\n");
}
struct ast_udptl *ast_udptl_new_with_bindaddr(struct sched_context *sched, struct io_context *io, int callbackmode, struct in_addr addr)
{
struct ast_udptl *udptl;
int x;
int startplace;
int i;
long int flags;
if (!(udptl = ast_calloc(1, sizeof(*udptl))))
return NULL;
if (udptlfectype == 2)
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
else if (udptlfectype == 1)
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
else
udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
udptl->error_correction_span = udptlfecspan;
udptl->error_correction_entries = udptlfecentries;
udptl->far_max_datagram_size = udptlmaxdatagram;
udptl->local_max_datagram_size = udptlmaxdatagram;
memset(&udptl->rx, 0, sizeof(udptl->rx));
memset(&udptl->tx, 0, sizeof(udptl->tx));
for (i = 0; i <= UDPTL_BUF_MASK; i++) {
udptl->rx[i].buf_len = -1;
udptl->tx[i].buf_len = -1;
}
udptl->them.sin_family = AF_INET;
udptl->us.sin_family = AF_INET;
if ((udptl->fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
free(udptl);
ast_log(LOG_WARNING, "Unable to allocate socket: %s\n", strerror(errno));
return NULL;
}
flags = fcntl(udptl->fd, F_GETFL);
fcntl(udptl->fd, F_SETFL, flags | O_NONBLOCK);
#ifdef SO_NO_CHECK
if (nochecksums)
setsockopt(udptl->fd, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
#endif
/* Find us a place */
x = (ast_random() % (udptlend - udptlstart)) + udptlstart;
startplace = x;
for (;;) {
udptl->us.sin_port = htons(x);
udptl->us.sin_addr = addr;
if (bind(udptl->fd, (struct sockaddr *) &udptl->us, sizeof(udptl->us)) == 0)
break;
if (errno != EADDRINUSE) {
ast_log(LOG_WARNING, "Unexpected bind error: %s\n", strerror(errno));
close(udptl->fd);
free(udptl);
return NULL;
}
if (++x > udptlend)
x = udptlstart;
if (x == startplace) {
ast_log(LOG_WARNING, "No UDPTL ports remaining\n");
close(udptl->fd);
free(udptl);
return NULL;
}
}
if (io && sched && callbackmode) {
/* Operate this one in a callback mode */
udptl->sched = sched;
udptl->io = io;
udptl->ioid = ast_io_add(udptl->io, udptl->fd, udptlread, AST_IO_IN, udptl);
}
return udptl;
}
struct ast_udptl *ast_udptl_new(struct sched_context *sched, struct io_context *io, int callbackmode)
{
struct in_addr ia;
memset(&ia, 0, sizeof(ia));
return ast_udptl_new_with_bindaddr(sched, io, callbackmode, ia);
}
int ast_udptl_settos(struct ast_udptl *udptl, int tos)
{
int res;
if ((res = setsockopt(udptl->fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos))))
ast_log(LOG_WARNING, "UDPTL unable to set TOS to %d\n", tos);
return res;
}
void ast_udptl_set_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
{
udptl->them.sin_port = them->sin_port;
udptl->them.sin_addr = them->sin_addr;
}
void ast_udptl_get_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
{
memset(them, 0, sizeof(*them));
them->sin_family = AF_INET;
them->sin_port = udptl->them.sin_port;
them->sin_addr = udptl->them.sin_addr;
}
void ast_udptl_get_us(struct ast_udptl *udptl, struct sockaddr_in *us)
{
memcpy(us, &udptl->us, sizeof(udptl->us));
}
void ast_udptl_stop(struct ast_udptl *udptl)
{
memset(&udptl->them.sin_addr, 0, sizeof(udptl->them.sin_addr));
memset(&udptl->them.sin_port, 0, sizeof(udptl->them.sin_port));
}
void ast_udptl_destroy(struct ast_udptl *udptl)
{
if (udptl->ioid)
ast_io_remove(udptl->io, udptl->ioid);
if (udptl->fd > -1)
close(udptl->fd);
free(udptl);
}
int ast_udptl_write(struct ast_udptl *s, struct ast_frame *f)
{
int seq;
int len;
int res;
uint8_t buf[LOCAL_FAX_MAX_DATAGRAM * 2];
/* If we have no peer, return immediately */
if (s->them.sin_addr.s_addr == INADDR_ANY)
return 0;
/* If there is no data length, return immediately */
if (f->datalen == 0)
return 0;
if (f->frametype != AST_FRAME_MODEM) {
ast_log(LOG_WARNING, "UDPTL can only send T.38 data\n");
return -1;
}
/* Save seq_no for debug output because udptl_build_packet increments it */
seq = s->tx_seq_no & 0xFFFF;
/* Cook up the UDPTL packet, with the relevant EC info. */
len = udptl_build_packet(s, buf, sizeof(buf), f->data, f->datalen);
if (len > 0 && s->them.sin_port && s->them.sin_addr.s_addr) {
if ((res = sendto(s->fd, buf, len, 0, (struct sockaddr *) &s->them, sizeof(s->them))) < 0)
ast_log(LOG_NOTICE, "UDPTL Transmission error to %s:%d: %s\n", ast_inet_ntoa(s->them.sin_addr), ntohs(s->them.sin_port), strerror(errno));
#if 0
printf("Sent %d bytes of UDPTL data to %s:%d\n", res, ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
#endif
if (udptl_debug_test_addr(&s->them))
ast_verbose("Sent UDPTL packet to %s:%d (type %d, seq %d, len %d)\n",
ast_inet_ntoa(s->them.sin_addr),
ntohs(s->them.sin_port), 0, seq, len);
}
return 0;
}
void ast_udptl_proto_unregister(struct ast_udptl_protocol *proto)
{
struct ast_udptl_protocol *cur;
struct ast_udptl_protocol *prev;
cur = protos;
prev = NULL;
while (cur) {
if (cur == proto) {
if (prev)
prev->next = proto->next;
else
protos = proto->next;
return;
}
prev = cur;
cur = cur->next;
}
}
int ast_udptl_proto_register(struct ast_udptl_protocol *proto)
{
struct ast_udptl_protocol *cur;
cur = protos;
while (cur) {
if (cur->type == proto->type) {
ast_log(LOG_WARNING, "Tried to register same protocol '%s' twice\n", cur->type);
return -1;
}
cur = cur->next;
}
proto->next = protos;
protos = proto;
return 0;
}
static struct ast_udptl_protocol *get_proto(struct ast_channel *chan)
{
struct ast_udptl_protocol *cur;
cur = protos;
while (cur) {
if (cur->type == chan->tech->type)
return cur;
cur = cur->next;
}
return NULL;
}
int ast_udptl_bridge(struct ast_channel *c0, struct ast_channel *c1, int flags, struct ast_frame **fo, struct ast_channel **rc)
{
struct ast_frame *f;
struct ast_channel *who;
struct ast_channel *cs[3];
struct ast_udptl *p0;
struct ast_udptl *p1;
struct ast_udptl_protocol *pr0;
struct ast_udptl_protocol *pr1;
struct sockaddr_in ac0;
struct sockaddr_in ac1;
struct sockaddr_in t0;
struct sockaddr_in t1;
void *pvt0;
void *pvt1;
int to;
ast_channel_lock(c0);
while (ast_channel_trylock(c1)) {
ast_channel_unlock(c0);
usleep(1);
ast_channel_lock(c0);
}
pr0 = get_proto(c0);
pr1 = get_proto(c1);
if (!pr0) {
ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c0->name);
ast_channel_unlock(c0);
ast_channel_unlock(c1);
return -1;
}
if (!pr1) {
ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c1->name);
ast_channel_unlock(c0);
ast_channel_unlock(c1);
return -1;
}
pvt0 = c0->tech_pvt;
pvt1 = c1->tech_pvt;
p0 = pr0->get_udptl_info(c0);
p1 = pr1->get_udptl_info(c1);
if (!p0 || !p1) {
/* Somebody doesn't want to play... */
ast_channel_unlock(c0);
ast_channel_unlock(c1);
return -2;
}
if (pr0->set_udptl_peer(c0, p1)) {
ast_log(LOG_WARNING, "Channel '%s' failed to talk to '%s'\n", c0->name, c1->name);
memset(&ac1, 0, sizeof(ac1));
} else {
/* Store UDPTL peer */
ast_udptl_get_peer(p1, &ac1);
}
if (pr1->set_udptl_peer(c1, p0)) {
ast_log(LOG_WARNING, "Channel '%s' failed to talk back to '%s'\n", c1->name, c0->name);
memset(&ac0, 0, sizeof(ac0));
} else {
/* Store UDPTL peer */
ast_udptl_get_peer(p0, &ac0);
}
ast_channel_unlock(c0);
ast_channel_unlock(c1);
cs[0] = c0;
cs[1] = c1;
cs[2] = NULL;
for (;;) {
if ((c0->tech_pvt != pvt0) ||
(c1->tech_pvt != pvt1) ||
(c0->masq || c0->masqr || c1->masq || c1->masqr)) {
ast_log(LOG_DEBUG, "Oooh, something is weird, backing out\n");
/* Tell it to try again later */
return -3;
}
to = -1;
ast_udptl_get_peer(p1, &t1);
ast_udptl_get_peer(p0, &t0);
if (inaddrcmp(&t1, &ac1)) {
ast_log(LOG_DEBUG, "Oooh, '%s' changed end address to %s:%d\n",
c1->name, ast_inet_ntoa(t1.sin_addr), ntohs(t1.sin_port));
ast_log(LOG_DEBUG, "Oooh, '%s' was %s:%d\n",
c1->name, ast_inet_ntoa(ac1.sin_addr), ntohs(ac1.sin_port));
memcpy(&ac1, &t1, sizeof(ac1));
}
if (inaddrcmp(&t0, &ac0)) {
ast_log(LOG_DEBUG, "Oooh, '%s' changed end address to %s:%d\n",
c0->name, ast_inet_ntoa(t0.sin_addr), ntohs(t0.sin_port));
ast_log(LOG_DEBUG, "Oooh, '%s' was %s:%d\n",
c0->name, ast_inet_ntoa(ac0.sin_addr), ntohs(ac0.sin_port));
memcpy(&ac0, &t0, sizeof(ac0));
}
who = ast_waitfor_n(cs, 2, &to);
if (!who) {
ast_log(LOG_DEBUG, "Ooh, empty read...\n");
/* check for hangup / whentohangup */
if (ast_check_hangup(c0) || ast_check_hangup(c1))
break;
continue;
}
f = ast_read(who);
if (!f) {
*fo = f;
*rc = who;
ast_log(LOG_DEBUG, "Oooh, got a %s\n", f ? "digit" : "hangup");
/* That's all we needed */
return 0;
} else {
if (f->frametype == AST_FRAME_MODEM) {
/* Forward T.38 frames if they happen upon us */
if (who == c0) {
ast_write(c1, f);
} else if (who == c1) {
ast_write(c0, f);
}
}
ast_frfree(f);
}
/* Swap priority. Not that it's a big deal at this point */
cs[2] = cs[0];
cs[0] = cs[1];
cs[1] = cs[2];
}
return -1;
}
static int udptl_do_debug_ip(int fd, int argc, char *argv[])
{
struct hostent *hp;
struct ast_hostent ahp;
int port;
char *p;
char *arg;
port = 0;
if (argc != 4)
return RESULT_SHOWUSAGE;
arg = argv[3];
p = strstr(arg, ":");
if (p) {
*p = '\0';
p++;
port = atoi(p);
}
hp = ast_gethostbyname(arg, &ahp);
if (hp == NULL)
return RESULT_SHOWUSAGE;
udptldebugaddr.sin_family = AF_INET;
memcpy(&udptldebugaddr.sin_addr, hp->h_addr, sizeof(udptldebugaddr.sin_addr));
udptldebugaddr.sin_port = htons(port);
if (port == 0)
ast_cli(fd, "UDPTL Debugging Enabled for IP: %s\n", ast_inet_ntoa(udptldebugaddr.sin_addr));
else
ast_cli(fd, "UDPTL Debugging Enabled for IP: %s:%d\n", ast_inet_ntoa(udptldebugaddr.sin_addr), port);
udptldebug = 1;
return RESULT_SUCCESS;
}
static int udptl_do_debug(int fd, int argc, char *argv[])
{
if (argc != 2) {
if (argc != 4)
return RESULT_SHOWUSAGE;
return udptl_do_debug_ip(fd, argc, argv);
}
udptldebug = 1;
memset(&udptldebugaddr,0,sizeof(udptldebugaddr));
ast_cli(fd, "UDPTL Debugging Enabled\n");
return RESULT_SUCCESS;
}
static int udptl_nodebug(int fd, int argc, char *argv[])
{
if (argc != 3)
return RESULT_SHOWUSAGE;
udptldebug = 0;
ast_cli(fd,"UDPTL Debugging Disabled\n");
return RESULT_SUCCESS;
}
static char debug_usage[] =
"Usage: udptl debug [ip host[:port]]\n"
" Enable dumping of all UDPTL packets to and from host.\n";
static char nodebug_usage[] =
"Usage: udptl debug off\n"
" Disable all UDPTL debugging\n";
static struct ast_cli_entry cli_udptl_no_debug = {
{ "udptl", "no", "debug", NULL },
udptl_nodebug, NULL,
NULL };
static struct ast_cli_entry cli_udptl[] = {
{ { "udptl", "debug", NULL },
udptl_do_debug, "Enable UDPTL debugging",
debug_usage },
{ { "udptl", "debug", "ip", NULL },
udptl_do_debug, "Enable UDPTL debugging on IP",
debug_usage },
{ { "udptl", "debug", "off", NULL },
udptl_nodebug, "Disable UDPTL debugging",
nodebug_usage, NULL, &cli_udptl_no_debug },
};
void ast_udptl_reload(void)
{
struct ast_config *cfg;
const char *s;
udptlstart = 4500;
udptlend = 4999;
udptlfectype = 0;
udptlfecentries = 0;
udptlfecspan = 0;
udptlmaxdatagram = 0;
if ((cfg = ast_config_load("udptl.conf"))) {
if ((s = ast_variable_retrieve(cfg, "general", "udptlstart"))) {
udptlstart = atoi(s);
if (udptlstart < 1024) {
ast_log(LOG_WARNING, "Ports under 1024 are not allowed for T.38.\n");
udptlstart = 1024;
}
if (udptlstart > 65535) {
ast_log(LOG_WARNING, "Ports over 65535 are invalid.\n");
udptlstart = 65535;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "udptlend"))) {
udptlend = atoi(s);
if (udptlend < 1024) {
ast_log(LOG_WARNING, "Ports under 1024 are not allowed for T.38.\n");
udptlend = 1024;
}
if (udptlend > 65535) {
ast_log(LOG_WARNING, "Ports over 65535 are invalid.\n");
udptlend = 65535;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "udptlchecksums"))) {
#ifdef SO_NO_CHECK
if (ast_false(s))
nochecksums = 1;
else
nochecksums = 0;
#else
if (ast_false(s))
ast_log(LOG_WARNING, "Disabling UDPTL checksums is not supported on this operating system!\n");
#endif
}
if ((s = ast_variable_retrieve(cfg, "general", "T38FaxUdpEC"))) {
if (strcmp(s, "t38UDPFEC") == 0)
udptlfectype = 2;
else if (strcmp(s, "t38UDPRedundancy") == 0)
udptlfectype = 1;
}
if ((s = ast_variable_retrieve(cfg, "general", "T38FaxMaxDatagram"))) {
udptlmaxdatagram = atoi(s);
if (udptlmaxdatagram < 100) {
ast_log(LOG_WARNING, "Too small T38FaxMaxDatagram size. Defaulting to 100.\n");
udptlmaxdatagram = 100;
}
if (udptlmaxdatagram > LOCAL_FAX_MAX_DATAGRAM) {
ast_log(LOG_WARNING, "Too large T38FaxMaxDatagram size. Defaulting to %d.\n", LOCAL_FAX_MAX_DATAGRAM);
udptlmaxdatagram = LOCAL_FAX_MAX_DATAGRAM;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECentries"))) {
udptlfecentries = atoi(s);
if (udptlfecentries < 1) {
ast_log(LOG_WARNING, "Too small UDPTLFECentries value. Defaulting to 1.\n");
udptlfecentries = 1;
}
if (udptlfecentries > MAX_FEC_ENTRIES) {
ast_log(LOG_WARNING, "Too large UDPTLFECentries value. Defaulting to %d.\n", MAX_FEC_ENTRIES);
udptlfecentries = MAX_FEC_ENTRIES;
}
}
if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECspan"))) {
udptlfecspan = atoi(s);
if (udptlfecspan < 1) {
ast_log(LOG_WARNING, "Too small UDPTLFECspan value. Defaulting to 1.\n");
udptlfecspan = 1;
}
if (udptlfecspan > MAX_FEC_SPAN) {
ast_log(LOG_WARNING, "Too large UDPTLFECspan value. Defaulting to %d.\n", MAX_FEC_SPAN);
udptlfecspan = MAX_FEC_SPAN;
}
}
ast_config_destroy(cfg);
}
if (udptlstart >= udptlend) {
ast_log(LOG_WARNING, "Unreasonable values for UDPTL start/end\n");
udptlstart = 4500;
udptlend = 4999;
}
if (option_verbose > 1)
ast_verbose(VERBOSE_PREFIX_2 "UDPTL allocating from port range %d -> %d\n", udptlstart, udptlend);
}
void ast_udptl_init(void)
{
ast_cli_register_multiple(cli_udptl, sizeof(cli_udptl) / sizeof(struct ast_cli_entry));
ast_udptl_reload();
}