freeswitch/libs/tiff-4.0.2/tools/tiffmedian.c

907 lines
23 KiB
C
Raw Normal View History

/* $Id: tiffmedian.c,v 1.10 2010-03-10 18:56:50 bfriesen Exp $ */
/*
* Apply median cut on an image.
*
* tiffmedian [-c n] [-f] input output
* -C n - set colortable size. Default is 256.
* -f - use Floyd-Steinberg dithering.
* -c lzw - compress output with LZW
* -c none - use no compression on output
* -c packbits - use packbits compression on output
* -r n - create output with n rows/strip of data
* (by default the compression scheme and rows/strip are taken
* from the input file)
*
* Notes:
*
* [1] Floyd-Steinberg dither:
* I should point out that the actual fractions we used were, assuming
* you are at X, moving left to right:
*
* X 7/16
* 3/16 5/16 1/16
*
* Note that the error goes to four neighbors, not three. I think this
* will probably do better (at least for black and white) than the
* 3/8-3/8-1/4 distribution, at the cost of greater processing. I have
* seen the 3/8-3/8-1/4 distribution described as "our" algorithm before,
* but I have no idea who the credit really belongs to.
* Also, I should add that if you do zig-zag scanning (see my immediately
* previous message), it is sufficient (but not quite as good) to send
* half the error one pixel ahead (e.g. to the right on lines you scan
* left to right), and half one pixel straight down. Again, this is for
* black and white; I've not tried it with color.
* --
* Lou Steinberg
*
* [2] Color Image Quantization for Frame Buffer Display, Paul Heckbert,
* Siggraph '82 proceedings, pp. 297-307
*/
#include "tif_config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef NEED_LIBPORT
# include "libport.h"
#endif
#include "tiffio.h"
#define MAX_CMAP_SIZE 256
#define streq(a,b) (strcmp(a,b) == 0)
#define strneq(a,b,n) (strncmp(a,b,n) == 0)
#define COLOR_DEPTH 8
#define MAX_COLOR 256
#define B_DEPTH 5 /* # bits/pixel to use */
#define B_LEN (1L<<B_DEPTH)
#define C_DEPTH 2
#define C_LEN (1L<<C_DEPTH) /* # cells/color to use */
#define COLOR_SHIFT (COLOR_DEPTH-B_DEPTH)
typedef struct colorbox {
struct colorbox *next, *prev;
int rmin, rmax;
int gmin, gmax;
int bmin, bmax;
uint32 total;
} Colorbox;
typedef struct {
int num_ents;
int entries[MAX_CMAP_SIZE][2];
} C_cell;
uint16 rm[MAX_CMAP_SIZE], gm[MAX_CMAP_SIZE], bm[MAX_CMAP_SIZE];
int num_colors;
uint32 histogram[B_LEN][B_LEN][B_LEN];
Colorbox *freeboxes;
Colorbox *usedboxes;
C_cell **ColorCells;
TIFF *in, *out;
uint32 rowsperstrip = (uint32) -1;
uint16 compression = (uint16) -1;
uint16 bitspersample = 1;
uint16 samplesperpixel;
uint32 imagewidth;
uint32 imagelength;
uint16 predictor = 0;
static void get_histogram(TIFF*, Colorbox*);
static void splitbox(Colorbox*);
static void shrinkbox(Colorbox*);
static void map_colortable(void);
static void quant(TIFF*, TIFF*);
static void quant_fsdither(TIFF*, TIFF*);
static Colorbox* largest_box(void);
static void usage(void);
static int processCompressOptions(char*);
#define CopyField(tag, v) \
if (TIFFGetField(in, tag, &v)) TIFFSetField(out, tag, v)
int
main(int argc, char* argv[])
{
int i, dither = 0;
uint16 shortv, config, photometric;
Colorbox *box_list, *ptr;
float floatv;
uint32 longv;
int c;
extern int optind;
extern char* optarg;
num_colors = MAX_CMAP_SIZE;
while ((c = getopt(argc, argv, "c:C:r:f")) != -1)
switch (c) {
case 'c': /* compression scheme */
if (!processCompressOptions(optarg))
usage();
break;
case 'C': /* set colormap size */
num_colors = atoi(optarg);
if (num_colors > MAX_CMAP_SIZE) {
fprintf(stderr,
"-c: colormap too big, max %d\n",
MAX_CMAP_SIZE);
usage();
}
break;
case 'f': /* dither */
dither = 1;
break;
case 'r': /* rows/strip */
rowsperstrip = atoi(optarg);
break;
case '?':
usage();
/*NOTREACHED*/
}
if (argc - optind != 2)
usage();
in = TIFFOpen(argv[optind], "r");
if (in == NULL)
return (-1);
TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &imagewidth);
TIFFGetField(in, TIFFTAG_IMAGELENGTH, &imagelength);
TIFFGetField(in, TIFFTAG_BITSPERSAMPLE, &bitspersample);
TIFFGetField(in, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel);
if (bitspersample != 8 && bitspersample != 16) {
fprintf(stderr, "%s: Image must have at least 8-bits/sample\n",
argv[optind]);
return (-3);
}
if (!TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &photometric) ||
photometric != PHOTOMETRIC_RGB || samplesperpixel < 3) {
fprintf(stderr, "%s: Image must have RGB data\n", argv[optind]);
return (-4);
}
TIFFGetField(in, TIFFTAG_PLANARCONFIG, &config);
if (config != PLANARCONFIG_CONTIG) {
fprintf(stderr, "%s: Can only handle contiguous data packing\n",
argv[optind]);
return (-5);
}
/*
* STEP 1: create empty boxes
*/
usedboxes = NULL;
box_list = freeboxes = (Colorbox *)_TIFFmalloc(num_colors*sizeof (Colorbox));
freeboxes[0].next = &freeboxes[1];
freeboxes[0].prev = NULL;
for (i = 1; i < num_colors-1; ++i) {
freeboxes[i].next = &freeboxes[i+1];
freeboxes[i].prev = &freeboxes[i-1];
}
freeboxes[num_colors-1].next = NULL;
freeboxes[num_colors-1].prev = &freeboxes[num_colors-2];
/*
* STEP 2: get histogram, initialize first box
*/
ptr = freeboxes;
freeboxes = ptr->next;
if (freeboxes)
freeboxes->prev = NULL;
ptr->next = usedboxes;
usedboxes = ptr;
if (ptr->next)
ptr->next->prev = ptr;
get_histogram(in, ptr);
/*
* STEP 3: continually subdivide boxes until no more free
* boxes remain or until all colors assigned.
*/
while (freeboxes != NULL) {
ptr = largest_box();
if (ptr != NULL)
splitbox(ptr);
else
freeboxes = NULL;
}
/*
* STEP 4: assign colors to all boxes
*/
for (i = 0, ptr = usedboxes; ptr != NULL; ++i, ptr = ptr->next) {
rm[i] = ((ptr->rmin + ptr->rmax) << COLOR_SHIFT) / 2;
gm[i] = ((ptr->gmin + ptr->gmax) << COLOR_SHIFT) / 2;
bm[i] = ((ptr->bmin + ptr->bmax) << COLOR_SHIFT) / 2;
}
/* We're done with the boxes now */
_TIFFfree(box_list);
freeboxes = usedboxes = NULL;
/*
* STEP 5: scan histogram and map all values to closest color
*/
/* 5a: create cell list as described in Heckbert[2] */
ColorCells = (C_cell **)_TIFFmalloc(C_LEN*C_LEN*C_LEN*sizeof (C_cell*));
_TIFFmemset(ColorCells, 0, C_LEN*C_LEN*C_LEN*sizeof (C_cell*));
/* 5b: create mapping from truncated pixel space to color
table entries */
map_colortable();
/*
* STEP 6: scan image, match input values to table entries
*/
out = TIFFOpen(argv[optind+1], "w");
if (out == NULL)
return (-2);
CopyField(TIFFTAG_SUBFILETYPE, longv);
CopyField(TIFFTAG_IMAGEWIDTH, longv);
TIFFSetField(out, TIFFTAG_BITSPERSAMPLE, (short)COLOR_DEPTH);
if (compression != (uint16)-1) {
TIFFSetField(out, TIFFTAG_COMPRESSION, compression);
switch (compression) {
case COMPRESSION_LZW:
case COMPRESSION_DEFLATE:
if (predictor != 0)
TIFFSetField(out, TIFFTAG_PREDICTOR, predictor);
break;
}
} else
CopyField(TIFFTAG_COMPRESSION, compression);
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, (short)PHOTOMETRIC_PALETTE);
CopyField(TIFFTAG_ORIENTATION, shortv);
TIFFSetField(out, TIFFTAG_SAMPLESPERPIXEL, (short)1);
CopyField(TIFFTAG_PLANARCONFIG, shortv);
TIFFSetField(out, TIFFTAG_ROWSPERSTRIP,
TIFFDefaultStripSize(out, rowsperstrip));
CopyField(TIFFTAG_MINSAMPLEVALUE, shortv);
CopyField(TIFFTAG_MAXSAMPLEVALUE, shortv);
CopyField(TIFFTAG_RESOLUTIONUNIT, shortv);
CopyField(TIFFTAG_XRESOLUTION, floatv);
CopyField(TIFFTAG_YRESOLUTION, floatv);
CopyField(TIFFTAG_XPOSITION, floatv);
CopyField(TIFFTAG_YPOSITION, floatv);
if (dither)
quant_fsdither(in, out);
else
quant(in, out);
/*
* Scale colormap to TIFF-required 16-bit values.
*/
#define SCALE(x) (((x)*((1L<<16)-1))/255)
for (i = 0; i < MAX_CMAP_SIZE; ++i) {
rm[i] = SCALE(rm[i]);
gm[i] = SCALE(gm[i]);
bm[i] = SCALE(bm[i]);
}
TIFFSetField(out, TIFFTAG_COLORMAP, rm, gm, bm);
(void) TIFFClose(out);
return (0);
}
static int
processCompressOptions(char* opt)
{
if (streq(opt, "none"))
compression = COMPRESSION_NONE;
else if (streq(opt, "packbits"))
compression = COMPRESSION_PACKBITS;
else if (strneq(opt, "lzw", 3)) {
char* cp = strchr(opt, ':');
if (cp)
predictor = atoi(cp+1);
compression = COMPRESSION_LZW;
} else if (strneq(opt, "zip", 3)) {
char* cp = strchr(opt, ':');
if (cp)
predictor = atoi(cp+1);
compression = COMPRESSION_DEFLATE;
} else
return (0);
return (1);
}
char* stuff[] = {
"usage: tiffmedian [options] input.tif output.tif",
"where options are:",
" -r # make each strip have no more than # rows",
" -C # create a colormap with # entries",
" -f use Floyd-Steinberg dithering",
" -c lzw[:opts] compress output with Lempel-Ziv & Welch encoding",
" -c zip[:opts] compress output with deflate encoding",
" -c packbits compress output with packbits encoding",
" -c none use no compression algorithm on output",
"",
"LZW and deflate options:",
" # set predictor value",
"For example, -c lzw:2 to get LZW-encoded data with horizontal differencing",
NULL
};
static void
usage(void)
{
char buf[BUFSIZ];
int i;
setbuf(stderr, buf);
fprintf(stderr, "%s\n\n", TIFFGetVersion());
for (i = 0; stuff[i] != NULL; i++)
fprintf(stderr, "%s\n", stuff[i]);
exit(-1);
}
static void
get_histogram(TIFF* in, Colorbox* box)
{
register unsigned char *inptr;
register int red, green, blue;
register uint32 j, i;
unsigned char *inputline;
inputline = (unsigned char *)_TIFFmalloc(TIFFScanlineSize(in));
if (inputline == NULL) {
fprintf(stderr, "No space for scanline buffer\n");
exit(-1);
}
box->rmin = box->gmin = box->bmin = 999;
box->rmax = box->gmax = box->bmax = -1;
box->total = imagewidth * imagelength;
{ register uint32 *ptr = &histogram[0][0][0];
for (i = B_LEN*B_LEN*B_LEN; i-- > 0;)
*ptr++ = 0;
}
for (i = 0; i < imagelength; i++) {
if (TIFFReadScanline(in, inputline, i, 0) <= 0)
break;
inptr = inputline;
for (j = imagewidth; j-- > 0;) {
red = *inptr++ >> COLOR_SHIFT;
green = *inptr++ >> COLOR_SHIFT;
blue = *inptr++ >> COLOR_SHIFT;
if (red < box->rmin)
box->rmin = red;
if (red > box->rmax)
box->rmax = red;
if (green < box->gmin)
box->gmin = green;
if (green > box->gmax)
box->gmax = green;
if (blue < box->bmin)
box->bmin = blue;
if (blue > box->bmax)
box->bmax = blue;
histogram[red][green][blue]++;
}
}
_TIFFfree(inputline);
}
static Colorbox *
largest_box(void)
{
register Colorbox *p, *b;
register uint32 size;
b = NULL;
size = 0;
for (p = usedboxes; p != NULL; p = p->next)
if ((p->rmax > p->rmin || p->gmax > p->gmin ||
p->bmax > p->bmin) && p->total > size)
size = (b = p)->total;
return (b);
}
static void
splitbox(Colorbox* ptr)
{
uint32 hist2[B_LEN];
int first=0, last=0;
register Colorbox *new;
register uint32 *iptr, *histp;
register int i, j;
register int ir,ig,ib;
register uint32 sum, sum1, sum2;
enum { RED, GREEN, BLUE } axis;
/*
* See which axis is the largest, do a histogram along that
* axis. Split at median point. Contract both new boxes to
* fit points and return
*/
i = ptr->rmax - ptr->rmin;
if (i >= ptr->gmax - ptr->gmin && i >= ptr->bmax - ptr->bmin)
axis = RED;
else if (ptr->gmax - ptr->gmin >= ptr->bmax - ptr->bmin)
axis = GREEN;
else
axis = BLUE;
/* get histogram along longest axis */
switch (axis) {
case RED:
histp = &hist2[ptr->rmin];
for (ir = ptr->rmin; ir <= ptr->rmax; ++ir) {
*histp = 0;
for (ig = ptr->gmin; ig <= ptr->gmax; ++ig) {
iptr = &histogram[ir][ig][ptr->bmin];
for (ib = ptr->bmin; ib <= ptr->bmax; ++ib)
*histp += *iptr++;
}
histp++;
}
first = ptr->rmin;
last = ptr->rmax;
break;
case GREEN:
histp = &hist2[ptr->gmin];
for (ig = ptr->gmin; ig <= ptr->gmax; ++ig) {
*histp = 0;
for (ir = ptr->rmin; ir <= ptr->rmax; ++ir) {
iptr = &histogram[ir][ig][ptr->bmin];
for (ib = ptr->bmin; ib <= ptr->bmax; ++ib)
*histp += *iptr++;
}
histp++;
}
first = ptr->gmin;
last = ptr->gmax;
break;
case BLUE:
histp = &hist2[ptr->bmin];
for (ib = ptr->bmin; ib <= ptr->bmax; ++ib) {
*histp = 0;
for (ir = ptr->rmin; ir <= ptr->rmax; ++ir) {
iptr = &histogram[ir][ptr->gmin][ib];
for (ig = ptr->gmin; ig <= ptr->gmax; ++ig) {
*histp += *iptr;
iptr += B_LEN;
}
}
histp++;
}
first = ptr->bmin;
last = ptr->bmax;
break;
}
/* find median point */
sum2 = ptr->total / 2;
histp = &hist2[first];
sum = 0;
for (i = first; i <= last && (sum += *histp++) < sum2; ++i)
;
if (i == first)
i++;
/* Create new box, re-allocate points */
new = freeboxes;
freeboxes = new->next;
if (freeboxes)
freeboxes->prev = NULL;
if (usedboxes)
usedboxes->prev = new;
new->next = usedboxes;
usedboxes = new;
histp = &hist2[first];
for (sum1 = 0, j = first; j < i; j++)
sum1 += *histp++;
for (sum2 = 0, j = i; j <= last; j++)
sum2 += *histp++;
new->total = sum1;
ptr->total = sum2;
new->rmin = ptr->rmin;
new->rmax = ptr->rmax;
new->gmin = ptr->gmin;
new->gmax = ptr->gmax;
new->bmin = ptr->bmin;
new->bmax = ptr->bmax;
switch (axis) {
case RED:
new->rmax = i-1;
ptr->rmin = i;
break;
case GREEN:
new->gmax = i-1;
ptr->gmin = i;
break;
case BLUE:
new->bmax = i-1;
ptr->bmin = i;
break;
}
shrinkbox(new);
shrinkbox(ptr);
}
static void
shrinkbox(Colorbox* box)
{
register uint32 *histp;
register int ir, ig, ib;
if (box->rmax > box->rmin) {
for (ir = box->rmin; ir <= box->rmax; ++ir)
for (ig = box->gmin; ig <= box->gmax; ++ig) {
histp = &histogram[ir][ig][box->bmin];
for (ib = box->bmin; ib <= box->bmax; ++ib)
if (*histp++ != 0) {
box->rmin = ir;
goto have_rmin;
}
}
have_rmin:
if (box->rmax > box->rmin)
for (ir = box->rmax; ir >= box->rmin; --ir)
for (ig = box->gmin; ig <= box->gmax; ++ig) {
histp = &histogram[ir][ig][box->bmin];
ib = box->bmin;
for (; ib <= box->bmax; ++ib)
if (*histp++ != 0) {
box->rmax = ir;
goto have_rmax;
}
}
}
have_rmax:
if (box->gmax > box->gmin) {
for (ig = box->gmin; ig <= box->gmax; ++ig)
for (ir = box->rmin; ir <= box->rmax; ++ir) {
histp = &histogram[ir][ig][box->bmin];
for (ib = box->bmin; ib <= box->bmax; ++ib)
if (*histp++ != 0) {
box->gmin = ig;
goto have_gmin;
}
}
have_gmin:
if (box->gmax > box->gmin)
for (ig = box->gmax; ig >= box->gmin; --ig)
for (ir = box->rmin; ir <= box->rmax; ++ir) {
histp = &histogram[ir][ig][box->bmin];
ib = box->bmin;
for (; ib <= box->bmax; ++ib)
if (*histp++ != 0) {
box->gmax = ig;
goto have_gmax;
}
}
}
have_gmax:
if (box->bmax > box->bmin) {
for (ib = box->bmin; ib <= box->bmax; ++ib)
for (ir = box->rmin; ir <= box->rmax; ++ir) {
histp = &histogram[ir][box->gmin][ib];
for (ig = box->gmin; ig <= box->gmax; ++ig) {
if (*histp != 0) {
box->bmin = ib;
goto have_bmin;
}
histp += B_LEN;
}
}
have_bmin:
if (box->bmax > box->bmin)
for (ib = box->bmax; ib >= box->bmin; --ib)
for (ir = box->rmin; ir <= box->rmax; ++ir) {
histp = &histogram[ir][box->gmin][ib];
ig = box->gmin;
for (; ig <= box->gmax; ++ig) {
if (*histp != 0) {
box->bmax = ib;
goto have_bmax;
}
histp += B_LEN;
}
}
}
have_bmax:
;
}
static C_cell *
create_colorcell(int red, int green, int blue)
{
register int ir, ig, ib, i;
register C_cell *ptr;
int mindist, next_n;
register int tmp, dist, n;
ir = red >> (COLOR_DEPTH-C_DEPTH);
ig = green >> (COLOR_DEPTH-C_DEPTH);
ib = blue >> (COLOR_DEPTH-C_DEPTH);
ptr = (C_cell *)_TIFFmalloc(sizeof (C_cell));
*(ColorCells + ir*C_LEN*C_LEN + ig*C_LEN + ib) = ptr;
ptr->num_ents = 0;
/*
* Step 1: find all colors inside this cell, while we're at
* it, find distance of centermost point to furthest corner
*/
mindist = 99999999;
for (i = 0; i < num_colors; ++i) {
if (rm[i]>>(COLOR_DEPTH-C_DEPTH) != ir ||
gm[i]>>(COLOR_DEPTH-C_DEPTH) != ig ||
bm[i]>>(COLOR_DEPTH-C_DEPTH) != ib)
continue;
ptr->entries[ptr->num_ents][0] = i;
ptr->entries[ptr->num_ents][1] = 0;
++ptr->num_ents;
tmp = rm[i] - red;
if (tmp < (MAX_COLOR/C_LEN/2))
tmp = MAX_COLOR/C_LEN-1 - tmp;
dist = tmp*tmp;
tmp = gm[i] - green;
if (tmp < (MAX_COLOR/C_LEN/2))
tmp = MAX_COLOR/C_LEN-1 - tmp;
dist += tmp*tmp;
tmp = bm[i] - blue;
if (tmp < (MAX_COLOR/C_LEN/2))
tmp = MAX_COLOR/C_LEN-1 - tmp;
dist += tmp*tmp;
if (dist < mindist)
mindist = dist;
}
/*
* Step 3: find all points within that distance to cell.
*/
for (i = 0; i < num_colors; ++i) {
if (rm[i] >> (COLOR_DEPTH-C_DEPTH) == ir &&
gm[i] >> (COLOR_DEPTH-C_DEPTH) == ig &&
bm[i] >> (COLOR_DEPTH-C_DEPTH) == ib)
continue;
dist = 0;
if ((tmp = red - rm[i]) > 0 ||
(tmp = rm[i] - (red + MAX_COLOR/C_LEN-1)) > 0 )
dist += tmp*tmp;
if ((tmp = green - gm[i]) > 0 ||
(tmp = gm[i] - (green + MAX_COLOR/C_LEN-1)) > 0 )
dist += tmp*tmp;
if ((tmp = blue - bm[i]) > 0 ||
(tmp = bm[i] - (blue + MAX_COLOR/C_LEN-1)) > 0 )
dist += tmp*tmp;
if (dist < mindist) {
ptr->entries[ptr->num_ents][0] = i;
ptr->entries[ptr->num_ents][1] = dist;
++ptr->num_ents;
}
}
/*
* Sort color cells by distance, use cheap exchange sort
*/
for (n = ptr->num_ents - 1; n > 0; n = next_n) {
next_n = 0;
for (i = 0; i < n; ++i)
if (ptr->entries[i][1] > ptr->entries[i+1][1]) {
tmp = ptr->entries[i][0];
ptr->entries[i][0] = ptr->entries[i+1][0];
ptr->entries[i+1][0] = tmp;
tmp = ptr->entries[i][1];
ptr->entries[i][1] = ptr->entries[i+1][1];
ptr->entries[i+1][1] = tmp;
next_n = i;
}
}
return (ptr);
}
static void
map_colortable(void)
{
register uint32 *histp = &histogram[0][0][0];
register C_cell *cell;
register int j, tmp, d2, dist;
int ir, ig, ib, i;
for (ir = 0; ir < B_LEN; ++ir)
for (ig = 0; ig < B_LEN; ++ig)
for (ib = 0; ib < B_LEN; ++ib, histp++) {
if (*histp == 0) {
*histp = -1;
continue;
}
cell = *(ColorCells +
(((ir>>(B_DEPTH-C_DEPTH)) << C_DEPTH*2) +
((ig>>(B_DEPTH-C_DEPTH)) << C_DEPTH) +
(ib>>(B_DEPTH-C_DEPTH))));
if (cell == NULL )
cell = create_colorcell(
ir << COLOR_SHIFT,
ig << COLOR_SHIFT,
ib << COLOR_SHIFT);
dist = 9999999;
for (i = 0; i < cell->num_ents &&
dist > cell->entries[i][1]; ++i) {
j = cell->entries[i][0];
d2 = rm[j] - (ir << COLOR_SHIFT);
d2 *= d2;
tmp = gm[j] - (ig << COLOR_SHIFT);
d2 += tmp*tmp;
tmp = bm[j] - (ib << COLOR_SHIFT);
d2 += tmp*tmp;
if (d2 < dist) {
dist = d2;
*histp = j;
}
}
}
}
/*
* straight quantization. Each pixel is mapped to the colors
* closest to it. Color values are rounded to the nearest color
* table entry.
*/
static void
quant(TIFF* in, TIFF* out)
{
unsigned char *outline, *inputline;
register unsigned char *outptr, *inptr;
register uint32 i, j;
register int red, green, blue;
inputline = (unsigned char *)_TIFFmalloc(TIFFScanlineSize(in));
outline = (unsigned char *)_TIFFmalloc(imagewidth);
for (i = 0; i < imagelength; i++) {
if (TIFFReadScanline(in, inputline, i, 0) <= 0)
break;
inptr = inputline;
outptr = outline;
for (j = 0; j < imagewidth; j++) {
red = *inptr++ >> COLOR_SHIFT;
green = *inptr++ >> COLOR_SHIFT;
blue = *inptr++ >> COLOR_SHIFT;
*outptr++ = (unsigned char)histogram[red][green][blue];
}
if (TIFFWriteScanline(out, outline, i, 0) < 0)
break;
}
_TIFFfree(inputline);
_TIFFfree(outline);
}
#define SWAP(type,a,b) { type p; p = a; a = b; b = p; }
#define GetInputLine(tif, row, bad) \
if (TIFFReadScanline(tif, inputline, row, 0) <= 0) \
bad; \
inptr = inputline; \
nextptr = nextline; \
for (j = 0; j < imagewidth; ++j) { \
*nextptr++ = *inptr++; \
*nextptr++ = *inptr++; \
*nextptr++ = *inptr++; \
}
#define GetComponent(raw, cshift, c) \
cshift = raw; \
if (cshift < 0) \
cshift = 0; \
else if (cshift >= MAX_COLOR) \
cshift = MAX_COLOR-1; \
c = cshift; \
cshift >>= COLOR_SHIFT;
static void
quant_fsdither(TIFF* in, TIFF* out)
{
unsigned char *outline, *inputline, *inptr;
short *thisline, *nextline;
register unsigned char *outptr;
register short *thisptr, *nextptr;
register uint32 i, j;
uint32 imax, jmax;
int lastline, lastpixel;
imax = imagelength - 1;
jmax = imagewidth - 1;
inputline = (unsigned char *)_TIFFmalloc(TIFFScanlineSize(in));
thisline = (short *)_TIFFmalloc(imagewidth * 3 * sizeof (short));
nextline = (short *)_TIFFmalloc(imagewidth * 3 * sizeof (short));
outline = (unsigned char *) _TIFFmalloc(TIFFScanlineSize(out));
GetInputLine(in, 0, goto bad); /* get first line */
for (i = 1; i <= imagelength; ++i) {
SWAP(short *, thisline, nextline);
lastline = (i >= imax);
if (i <= imax)
GetInputLine(in, i, break);
thisptr = thisline;
nextptr = nextline;
outptr = outline;
for (j = 0; j < imagewidth; ++j) {
int red, green, blue;
register int oval, r2, g2, b2;
lastpixel = (j == jmax);
GetComponent(*thisptr++, r2, red);
GetComponent(*thisptr++, g2, green);
GetComponent(*thisptr++, b2, blue);
oval = histogram[r2][g2][b2];
if (oval == -1) {
int ci;
register int cj, tmp, d2, dist;
register C_cell *cell;
cell = *(ColorCells +
(((r2>>(B_DEPTH-C_DEPTH)) << C_DEPTH*2) +
((g2>>(B_DEPTH-C_DEPTH)) << C_DEPTH ) +
(b2>>(B_DEPTH-C_DEPTH))));
if (cell == NULL)
cell = create_colorcell(red,
green, blue);
dist = 9999999;
for (ci = 0; ci < cell->num_ents && dist > cell->entries[ci][1]; ++ci) {
cj = cell->entries[ci][0];
d2 = (rm[cj] >> COLOR_SHIFT) - r2;
d2 *= d2;
tmp = (gm[cj] >> COLOR_SHIFT) - g2;
d2 += tmp*tmp;
tmp = (bm[cj] >> COLOR_SHIFT) - b2;
d2 += tmp*tmp;
if (d2 < dist) {
dist = d2;
oval = cj;
}
}
histogram[r2][g2][b2] = oval;
}
*outptr++ = oval;
red -= rm[oval];
green -= gm[oval];
blue -= bm[oval];
if (!lastpixel) {
thisptr[0] += blue * 7 / 16;
thisptr[1] += green * 7 / 16;
thisptr[2] += red * 7 / 16;
}
if (!lastline) {
if (j != 0) {
nextptr[-3] += blue * 3 / 16;
nextptr[-2] += green * 3 / 16;
nextptr[-1] += red * 3 / 16;
}
nextptr[0] += blue * 5 / 16;
nextptr[1] += green * 5 / 16;
nextptr[2] += red * 5 / 16;
if (!lastpixel) {
nextptr[3] += blue / 16;
nextptr[4] += green / 16;
nextptr[5] += red / 16;
}
nextptr += 3;
}
}
if (TIFFWriteScanline(out, outline, i-1, 0) < 0)
break;
}
bad:
_TIFFfree(inputline);
_TIFFfree(thisline);
_TIFFfree(nextline);
_TIFFfree(outline);
}
/*
* Local Variables:
* mode: c
* c-basic-offset: 8
* fill-column: 78
* End:
*/