2009-04-20 18:33:33 +00:00
|
|
|
#define IAXMODEM_STUFF
|
2008-09-03 19:02:00 +00:00
|
|
|
/*
|
|
|
|
* SpanDSP - a series of DSP components for telephony
|
|
|
|
*
|
|
|
|
* v27ter_rx.c - ITU V.27ter modem receive part
|
|
|
|
*
|
|
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
|
|
*
|
|
|
|
* Copyright (C) 2003 Steve Underwood
|
|
|
|
*
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Lesser General Public License version 2.1,
|
|
|
|
* as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*
|
2009-04-28 14:42:18 +00:00
|
|
|
* $Id: v27ter_rx.c,v 1.126 2009/04/21 13:59:07 steveu Exp $
|
2008-09-03 19:02:00 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*! \file */
|
|
|
|
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
2009-01-28 04:48:03 +00:00
|
|
|
#include "config.h"
|
2008-09-03 19:02:00 +00:00
|
|
|
#endif
|
|
|
|
|
2008-10-01 03:56:17 +00:00
|
|
|
#include <stdlib.h>
|
2008-09-03 19:02:00 +00:00
|
|
|
#include <inttypes.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#if defined(HAVE_TGMATH_H)
|
|
|
|
#include <tgmath.h>
|
|
|
|
#endif
|
|
|
|
#if defined(HAVE_MATH_H)
|
|
|
|
#include <math.h>
|
|
|
|
#endif
|
2009-01-28 04:48:03 +00:00
|
|
|
#include "floating_fudge.h"
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
#include "spandsp/telephony.h"
|
|
|
|
#include "spandsp/logging.h"
|
|
|
|
#include "spandsp/complex.h"
|
|
|
|
#include "spandsp/vector_float.h"
|
|
|
|
#include "spandsp/complex_vector_float.h"
|
2008-09-09 17:04:42 +00:00
|
|
|
#include "spandsp/vector_int.h"
|
|
|
|
#include "spandsp/complex_vector_int.h"
|
2008-09-03 19:02:00 +00:00
|
|
|
#include "spandsp/async.h"
|
|
|
|
#include "spandsp/power_meter.h"
|
|
|
|
#include "spandsp/arctan2.h"
|
|
|
|
#include "spandsp/dds.h"
|
|
|
|
#include "spandsp/complex_filters.h"
|
|
|
|
|
|
|
|
#include "spandsp/v29rx.h"
|
|
|
|
#include "spandsp/v27ter_rx.h"
|
|
|
|
|
2009-01-28 04:48:03 +00:00
|
|
|
#include "spandsp/private/logging.h"
|
|
|
|
#include "spandsp/private/v27ter_rx.h"
|
|
|
|
|
2008-09-03 19:02:00 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
#include "v27ter_rx_4800_fixed_rrc.h"
|
|
|
|
#include "v27ter_rx_2400_fixed_rrc.h"
|
|
|
|
#else
|
|
|
|
#include "v27ter_rx_4800_floating_rrc.h"
|
|
|
|
#include "v27ter_rx_2400_floating_rrc.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* V.27ter is a DPSK modem, but this code treats it like QAM. It nails down the
|
|
|
|
signal to a static constellation, even though dealing with differences is all
|
|
|
|
that is necessary. */
|
|
|
|
|
2009-04-20 18:33:33 +00:00
|
|
|
/*! The nominal frequency of the carrier, in Hertz */
|
2008-10-01 03:56:17 +00:00
|
|
|
#define CARRIER_NOMINAL_FREQ 1800.0f
|
2009-04-20 18:33:33 +00:00
|
|
|
/*! The nominal baud or symbol rate in 2400bps mode */
|
|
|
|
#define BAUD_RATE_2400 1200
|
|
|
|
/*! The nominal baud or symbol rate in 4800bps mode */
|
|
|
|
#define BAUD_RATE_4800 1600
|
|
|
|
/*! The adaption rate coefficient for the equalizer */
|
2008-10-01 03:56:17 +00:00
|
|
|
#define EQUALIZER_DELTA 0.25f
|
2008-09-03 19:02:00 +00:00
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
2008-10-01 03:56:17 +00:00
|
|
|
#define FP_FACTOR 4096
|
|
|
|
#define FP_SHIFT_FACTOR 12
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
|
|
|
|
2008-09-03 19:02:00 +00:00
|
|
|
/* Segments of the training sequence */
|
|
|
|
/* V.27ter defines a long and a short sequence. FAX doesn't use the
|
|
|
|
short sequence, so it is not implemented here. */
|
2009-04-20 18:33:33 +00:00
|
|
|
/*! The length of training segment 3, in symbols */
|
2008-10-01 03:56:17 +00:00
|
|
|
#define V27TER_TRAINING_SEG_3_LEN 50
|
2009-04-20 18:33:33 +00:00
|
|
|
/*! The length of training segment 5, in symbols */
|
2008-10-01 03:56:17 +00:00
|
|
|
#define V27TER_TRAINING_SEG_5_LEN 1074
|
2009-04-20 18:33:33 +00:00
|
|
|
/*! The length of training segment 6, in symbols */
|
2008-10-01 03:56:17 +00:00
|
|
|
#define V27TER_TRAINING_SEG_6_LEN 8
|
2008-09-03 19:02:00 +00:00
|
|
|
|
2009-04-20 18:33:33 +00:00
|
|
|
/*! The length of the equalizer buffer */
|
2008-10-01 03:59:45 +00:00
|
|
|
#define V27TER_EQUALIZER_LEN (V27TER_EQUALIZER_PRE_LEN + 1 + V27TER_EQUALIZER_POST_LEN)
|
|
|
|
|
2008-09-03 19:02:00 +00:00
|
|
|
enum
|
|
|
|
{
|
|
|
|
TRAINING_STAGE_NORMAL_OPERATION = 0,
|
|
|
|
TRAINING_STAGE_SYMBOL_ACQUISITION,
|
|
|
|
TRAINING_STAGE_LOG_PHASE,
|
|
|
|
TRAINING_STAGE_WAIT_FOR_HOP,
|
|
|
|
TRAINING_STAGE_TRAIN_ON_ABAB,
|
|
|
|
TRAINING_STAGE_TEST_ONES,
|
|
|
|
TRAINING_STAGE_PARKED
|
|
|
|
};
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static const complexi16_t v27ter_constellation[8] =
|
|
|
|
{
|
|
|
|
{((int)(FP_FACTOR* 1.414f), ((int)(FP_FACTOR* 0.0f)}, /* 0deg */
|
|
|
|
{((int)(FP_FACTOR* 1.0f), ((int)(FP_FACTOR* 1.0f)}, /* 45deg */
|
|
|
|
{((int)(FP_FACTOR* 0.0f), ((int)(FP_FACTOR* 1.414f)}, /* 90deg */
|
|
|
|
{((int)(FP_FACTOR*-1.0f), ((int)(FP_FACTOR* 1.0f)}, /* 135deg */
|
|
|
|
{((int)(FP_FACTOR*-1.414f), ((int)(FP_FACTOR* 0.0f)}, /* 180deg */
|
|
|
|
{((int)(FP_FACTOR*-1.0f), ((int)(FP_FACTOR*-1.0f)}, /* 225deg */
|
|
|
|
{((int)(FP_FACTOR* 0.0f), ((int)(FP_FACTOR*-1.414f)}, /* 270deg */
|
|
|
|
{((int)(FP_FACTOR* 1.0f), ((int)(FP_FACTOR*-1.0f)} /* 315deg */
|
|
|
|
};
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
static const complexf_t v27ter_constellation[8] =
|
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
{ 1.414f, 0.0f}, /* 0deg */
|
|
|
|
{ 1.0f, 1.0f}, /* 45deg */
|
|
|
|
{ 0.0f, 1.414f}, /* 90deg */
|
|
|
|
{-1.0f, 1.0f}, /* 135deg */
|
|
|
|
{-1.414f, 0.0f}, /* 180deg */
|
|
|
|
{-1.0f, -1.0f}, /* 225deg */
|
|
|
|
{ 0.0f, -1.414f}, /* 270deg */
|
|
|
|
{ 1.0f, -1.0f} /* 315deg */
|
2008-09-03 19:02:00 +00:00
|
|
|
};
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(float) v27ter_rx_carrier_frequency(v27ter_rx_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
return dds_frequencyf(s->carrier_phase_rate);
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(float) v27ter_rx_symbol_timing_correction(v27ter_rx_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
int steps_per_symbol;
|
|
|
|
|
|
|
|
steps_per_symbol = (s->bit_rate == 4800) ? RX_PULSESHAPER_4800_COEFF_SETS*5 : RX_PULSESHAPER_2400_COEFF_SETS*20/3;
|
|
|
|
return (float) s->total_baud_timing_correction/(float) steps_per_symbol;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(float) v27ter_rx_signal_power(v27ter_rx_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
2009-04-20 18:33:33 +00:00
|
|
|
return power_meter_current_dbm0(&s->power) + 3.98f;
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(void) v27ter_rx_signal_cutoff(v27ter_rx_state_t *s, float cutoff)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
/* The 0.4 factor allows for the gain of the DC blocker */
|
|
|
|
s->carrier_on_power = (int32_t) (power_meter_level_dbm0(cutoff + 2.5f)*0.4f);
|
|
|
|
s->carrier_off_power = (int32_t) (power_meter_level_dbm0(cutoff - 2.5f)*0.4f);
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void report_status_change(v27ter_rx_state_t *s, int status)
|
|
|
|
{
|
|
|
|
if (s->status_handler)
|
|
|
|
s->status_handler(s->status_user_data, status);
|
|
|
|
else if (s->put_bit)
|
|
|
|
s->put_bit(s->put_bit_user_data, status);
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) v27ter_rx_equalizer_state(v27ter_rx_state_t *s, complexi16_t **coeffs)
|
2008-10-01 03:56:17 +00:00
|
|
|
#else
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) v27ter_rx_equalizer_state(v27ter_rx_state_t *s, complexf_t **coeffs)
|
2008-10-01 03:56:17 +00:00
|
|
|
#endif
|
|
|
|
{
|
|
|
|
*coeffs = s->eq_coeff;
|
2008-10-01 03:59:45 +00:00
|
|
|
return V27TER_EQUALIZER_LEN;
|
2008-10-01 03:56:17 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-09-03 19:02:00 +00:00
|
|
|
static void equalizer_save(v27ter_rx_state_t *s)
|
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_copyi16(s->eq_coeff_save, s->eq_coeff, V27TER_EQUALIZER_LEN);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_copyf(s->eq_coeff_save, s->eq_coeff, V27TER_EQUALIZER_LEN);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void equalizer_restore(v27ter_rx_state_t *s)
|
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_copyi16(s->eq_coeff, s->eq_coeff_save, V27TER_EQUALIZER_LEN);
|
|
|
|
cvec_zeroi16(s->eq_buf, V27TER_EQUALIZER_LEN);
|
|
|
|
s->eq_delta = 32768.0f*EQUALIZER_DELTA/V27TER_EQUALIZER_LEN);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_copyf(s->eq_coeff, s->eq_coeff_save, V27TER_EQUALIZER_LEN);
|
|
|
|
cvec_zerof(s->eq_buf, V27TER_EQUALIZER_LEN);
|
|
|
|
s->eq_delta = EQUALIZER_DELTA/V27TER_EQUALIZER_LEN;
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
s->eq_put_step = (s->bit_rate == 4800) ? RX_PULSESHAPER_4800_COEFF_SETS*5/2 : RX_PULSESHAPER_2400_COEFF_SETS*20/(3*2);
|
|
|
|
s->eq_step = 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void equalizer_reset(v27ter_rx_state_t *s)
|
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
/* Start with an equalizer based on everything being perfect. */
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_zeroi16(s->eq_coeff, V27TER_EQUALIZER_LEN);
|
2008-09-09 17:04:42 +00:00
|
|
|
s->eq_coeff[V27TER_EQUALIZER_PRE_LEN] = complex_seti16(1.414f*FP_FACTOR, 0);
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_zeroi16(s->eq_buf, V27TER_EQUALIZER_LEN);
|
|
|
|
s->eq_delta = 32768.0f*EQUALIZER_DELTA/V27TER_EQUALIZER_LEN);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_zerof(s->eq_coeff, V27TER_EQUALIZER_LEN);
|
2008-09-03 19:02:00 +00:00
|
|
|
s->eq_coeff[V27TER_EQUALIZER_PRE_LEN] = complex_setf(1.414f, 0.0f);
|
2008-10-01 03:59:45 +00:00
|
|
|
cvec_zerof(s->eq_buf, V27TER_EQUALIZER_LEN);
|
|
|
|
s->eq_delta = EQUALIZER_DELTA/V27TER_EQUALIZER_LEN;
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
s->eq_put_step = (s->bit_rate == 4800) ? RX_PULSESHAPER_4800_COEFF_SETS*5/2 : RX_PULSESHAPER_2400_COEFF_SETS*20/(3*2);
|
|
|
|
s->eq_step = 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static __inline__ complexi16_t complex_mul_q4_12(const complexi16_t *x, const complexi16_t *y)
|
|
|
|
{
|
|
|
|
complexi16_t z;
|
|
|
|
|
|
|
|
z.re = ((int32_t) x->re*(int32_t) y->re - (int32_t) x->im*(int32_t) y->im) >> 12;
|
|
|
|
z.im = ((int32_t) x->re*(int32_t) y->im + (int32_t) x->im*(int32_t) y->re) >> 12;
|
|
|
|
return z;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static __inline__ complexi16_t equalizer_get(v27ter_rx_state_t *s)
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
static __inline__ complexf_t equalizer_get(v27ter_rx_state_t *s)
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-10-01 03:59:45 +00:00
|
|
|
complexi32_t zz;
|
2008-09-09 17:04:42 +00:00
|
|
|
complexi16_t z;
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
/* Get the next equalized value. */
|
2008-10-01 03:59:45 +00:00
|
|
|
zz = cvec_circular_dot_prodi16(s->eq_buf, s->eq_coeff, V27TER_EQUALIZER_LEN, s->eq_step);
|
|
|
|
z.re = zz.re >> FP_SHIFT_FACTOR;
|
|
|
|
z.im = zz.im >> FP_SHIFT_FACTOR;
|
|
|
|
return z;
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
/* Get the next equalized value. */
|
|
|
|
return cvec_circular_dot_prodf(s->eq_buf, s->eq_coeff, V27TER_EQUALIZER_LEN, s->eq_step);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static void tune_equalizer(v27ter_rx_state_t *s, const complexi16_t *z, const complexi16_t *target)
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
static void tune_equalizer(v27ter_rx_state_t *s, const complexf_t *z, const complexf_t *target)
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-10-01 03:59:45 +00:00
|
|
|
complexi16_t err;
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
/* Find the x and y mismatch from the exact constellation position. */
|
2008-10-01 03:59:45 +00:00
|
|
|
err.re = target->re*FP_FACTOR - z->re;
|
|
|
|
err.im = target->im*FP_FACTOR - z->im;
|
|
|
|
err.re = ((int32_t) err.re*(int32_t) s->eq_delta) >> 15;
|
|
|
|
err.im = ((int32_t) err.im*(int32_t) s->eq_delta) >> 15;
|
|
|
|
cvec_circular_lmsi16(s->eq_buf, s->eq_coeff, V27TER_EQUALIZER_LEN, s->eq_step, &err);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
complexf_t err;
|
2008-09-03 19:02:00 +00:00
|
|
|
|
2008-10-01 03:59:45 +00:00
|
|
|
/* Find the x and y mismatch from the exact constellation position. */
|
|
|
|
err = complex_subf(target, z);
|
|
|
|
err.re *= s->eq_delta;
|
|
|
|
err.im *= s->eq_delta;
|
|
|
|
cvec_circular_lmsf(s->eq_buf, s->eq_coeff, V27TER_EQUALIZER_LEN, s->eq_step, &err);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static __inline__ int find_quadrant(const complexi16_t *z)
|
|
|
|
#else
|
|
|
|
static __inline__ int find_quadrant(const complexf_t *z)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
int b1;
|
|
|
|
int b2;
|
|
|
|
|
|
|
|
/* Split the space along the two diagonals. */
|
|
|
|
b1 = (z->im > z->re);
|
|
|
|
b2 = (z->im < -z->re);
|
|
|
|
return (b2 << 1) | (b1 ^ b2);
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static __inline__ int find_octant(complexi16_t *z)
|
|
|
|
#else
|
|
|
|
static __inline__ int find_octant(complexf_t *z)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
float abs_re;
|
|
|
|
float abs_im;
|
|
|
|
int b1;
|
|
|
|
int b2;
|
|
|
|
int bits;
|
|
|
|
|
|
|
|
/* Are we near an axis or a diagonal? */
|
|
|
|
abs_re = fabsf(z->re);
|
|
|
|
abs_im = fabsf(z->im);
|
|
|
|
if (abs_im > abs_re*0.4142136f && abs_im < abs_re*2.4142136f)
|
|
|
|
{
|
|
|
|
/* Split the space along the two axes. */
|
|
|
|
b1 = (z->re < 0.0f);
|
|
|
|
b2 = (z->im < 0.0f);
|
|
|
|
bits = (b2 << 2) | ((b1 ^ b2) << 1) | 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Split the space along the two diagonals. */
|
|
|
|
b1 = (z->im > z->re);
|
|
|
|
b2 = (z->im < -z->re);
|
|
|
|
bits = (b2 << 2) | ((b1 ^ b2) << 1);
|
|
|
|
}
|
|
|
|
return bits;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static __inline__ void track_carrier(v27ter_rx_state_t *s, const complexi16_t *z, const complexi16_t *target)
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
static __inline__ void track_carrier(v27ter_rx_state_t *s, const complexf_t *z, const complexf_t *target)
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
int32_t error;
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
float error;
|
2008-10-01 03:56:17 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
/* For small errors the imaginary part of the difference between the actual and the target
|
|
|
|
positions is proportional to the phase error, for any particular target. However, the
|
|
|
|
different amplitudes of the various target positions scale things. */
|
2008-09-09 17:04:42 +00:00
|
|
|
error = z->im*target->re - z->re*target->im;
|
2008-10-01 03:54:17 +00:00
|
|
|
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-09-09 17:04:42 +00:00
|
|
|
error /= (float) FP_FACTOR;
|
2008-10-01 03:54:17 +00:00
|
|
|
s->carrier_phase_rate += (int32_t) (s->carrier_track_i*error);
|
|
|
|
s->carrier_phase += (int32_t) (s->carrier_track_p*error);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->carrier_phase_rate += (int32_t) (s->carrier_track_i*error);
|
|
|
|
s->carrier_phase += (int32_t) (s->carrier_track_p*error);
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Im = %15.5f f = %15.5f\n", error, dds_frequencyf(s->carrier_phase_rate));
|
2008-10-01 03:54:17 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static __inline__ int descramble(v27ter_rx_state_t *s, int in_bit)
|
|
|
|
{
|
|
|
|
int out_bit;
|
|
|
|
|
|
|
|
out_bit = (in_bit ^ (s->scramble_reg >> 5) ^ (s->scramble_reg >> 6)) & 1;
|
|
|
|
if (s->scrambler_pattern_count >= 33)
|
|
|
|
{
|
|
|
|
out_bit ^= 1;
|
|
|
|
s->scrambler_pattern_count = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (s->training_stage > TRAINING_STAGE_NORMAL_OPERATION && s->training_stage < TRAINING_STAGE_TEST_ONES)
|
|
|
|
{
|
|
|
|
s->scrambler_pattern_count = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if ((((s->scramble_reg >> 7) ^ in_bit) & ((s->scramble_reg >> 8) ^ in_bit) & ((s->scramble_reg >> 11) ^ in_bit) & 1))
|
|
|
|
s->scrambler_pattern_count = 0;
|
|
|
|
else
|
|
|
|
s->scrambler_pattern_count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s->scramble_reg <<= 1;
|
|
|
|
if (s->training_stage > TRAINING_STAGE_NORMAL_OPERATION && s->training_stage < TRAINING_STAGE_TEST_ONES)
|
|
|
|
s->scramble_reg |= out_bit;
|
|
|
|
else
|
|
|
|
s->scramble_reg |= in_bit;
|
|
|
|
return out_bit;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static __inline__ void put_bit(v27ter_rx_state_t *s, int bit)
|
|
|
|
{
|
|
|
|
int out_bit;
|
|
|
|
|
|
|
|
bit &= 1;
|
|
|
|
|
|
|
|
out_bit = descramble(s, bit);
|
|
|
|
|
|
|
|
/* We need to strip the last part of the training before we let data
|
|
|
|
go to the application. */
|
|
|
|
if (s->training_stage == TRAINING_STAGE_NORMAL_OPERATION)
|
|
|
|
{
|
|
|
|
s->put_bit(s->put_bit_user_data, out_bit);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Test bit %d\n", out_bit);
|
|
|
|
/* The bits during the final stage of training should be all ones. However,
|
|
|
|
buggy modems mean you cannot rely on this. Therefore we don't bother
|
|
|
|
testing for ones, but just rely on a constellation mismatch measurement. */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
static void decode_baud(v27ter_rx_state_t *s, complexi16_t *z)
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
static void decode_baud(v27ter_rx_state_t *s, complexf_t *z)
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
static const uint8_t phase_steps_4800[8] =
|
|
|
|
{
|
|
|
|
4, 0, 2, 6, 7, 3, 1, 5
|
|
|
|
};
|
|
|
|
static const uint8_t phase_steps_2400[4] =
|
|
|
|
{
|
|
|
|
0, 2, 3, 1
|
|
|
|
};
|
|
|
|
int nearest;
|
|
|
|
int raw_bits;
|
|
|
|
|
2008-10-01 03:56:17 +00:00
|
|
|
if (s->bit_rate == 2400)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
nearest = find_quadrant(z);
|
|
|
|
raw_bits = phase_steps_2400[(nearest - s->constellation_state) & 3];
|
|
|
|
put_bit(s, raw_bits);
|
|
|
|
put_bit(s, raw_bits >> 1);
|
|
|
|
s->constellation_state = nearest;
|
|
|
|
nearest <<= 1;
|
2008-10-01 03:56:17 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
nearest = find_octant(z);
|
|
|
|
raw_bits = phase_steps_4800[(nearest - s->constellation_state) & 7];
|
|
|
|
put_bit(s, raw_bits);
|
|
|
|
put_bit(s, raw_bits >> 1);
|
|
|
|
put_bit(s, raw_bits >> 2);
|
|
|
|
s->constellation_state = nearest;
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
track_carrier(s, z, &v27ter_constellation[nearest]);
|
|
|
|
if (--s->eq_skip <= 0)
|
|
|
|
{
|
|
|
|
/* Once we are in the data the equalization should not need updating.
|
|
|
|
However, the line characteristics may slowly drift. We, therefore,
|
|
|
|
tune up on the occassional sample, keeping the compute down. */
|
|
|
|
s->eq_skip = 100;
|
|
|
|
tune_equalizer(s, z, &v27ter_constellation[nearest]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
static __inline__ void symbol_sync(v27ter_rx_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
float p;
|
|
|
|
float q;
|
|
|
|
|
2008-09-09 17:04:42 +00:00
|
|
|
/* This routine adapts the position of the half baud samples entering the equalizer. */
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
/* Perform a Gardner test for baud alignment */
|
2008-10-01 03:59:45 +00:00
|
|
|
p = s->eq_buf[(s->eq_step - 3) & V27TER_EQUALIZER_LEN].re
|
|
|
|
- s->eq_buf[(s->eq_step - 1) & V27TER_EQUALIZER_LEN].re;
|
|
|
|
p *= s->eq_buf[(s->eq_step - 2) & V27TER_EQUALIZER_LEN].re;
|
2008-09-03 19:02:00 +00:00
|
|
|
|
2008-10-01 03:59:45 +00:00
|
|
|
q = s->eq_buf[(s->eq_step - 3) & V27TER_EQUALIZER_LEN].im
|
|
|
|
- s->eq_buf[(s->eq_step - 1) & V27TER_EQUALIZER_LEN].im;
|
|
|
|
q *= s->eq_buf[(s->eq_step - 2) & V27TER_EQUALIZER_LEN].im;
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
s->gardner_integrate += (p + q > 0.0f) ? s->gardner_step : -s->gardner_step;
|
|
|
|
|
|
|
|
if (abs(s->gardner_integrate) >= 256)
|
|
|
|
{
|
|
|
|
/* This integrate and dump approach avoids rapid changes of the equalizer put step.
|
|
|
|
Rapid changes, without hysteresis, are bad. They degrade the equalizer performance
|
|
|
|
when the true symbol boundary is close to a sample boundary. */
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Hop %d\n", s->gardner_integrate);
|
|
|
|
s->eq_put_step += (s->gardner_integrate/256);
|
|
|
|
s->total_baud_timing_correction += (s->gardner_integrate/256);
|
|
|
|
if (s->qam_report)
|
|
|
|
s->qam_report(s->qam_user_data, NULL, NULL, s->gardner_integrate);
|
|
|
|
s->gardner_integrate = 0;
|
|
|
|
}
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Gardner=%10.5f 0x%X\n", p, s->eq_put_step);
|
2008-09-09 17:04:42 +00:00
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
2008-09-09 17:04:42 +00:00
|
|
|
static __inline__ void process_half_baud(v27ter_rx_state_t *s, const complexi16_t *sample)
|
|
|
|
#else
|
|
|
|
static __inline__ void process_half_baud(v27ter_rx_state_t *s, const complexf_t *sample)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
static const int abab_pos[2] =
|
|
|
|
{
|
|
|
|
0, 4
|
|
|
|
};
|
|
|
|
complexf_t z;
|
|
|
|
complexf_t zz;
|
|
|
|
float p;
|
|
|
|
int i;
|
|
|
|
int j;
|
|
|
|
int32_t angle;
|
|
|
|
int32_t ang;
|
|
|
|
|
|
|
|
/* Add a sample to the equalizer's circular buffer, but don't calculate anything
|
|
|
|
at this time. */
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
s->eq_buf[s->eq_step].re = sample->re/(float) FP_FACTOR;
|
|
|
|
s->eq_buf[s->eq_step].im = sample->im/(float) FP_FACTOR;
|
|
|
|
#else
|
2008-09-09 17:04:42 +00:00
|
|
|
s->eq_buf[s->eq_step] = *sample;
|
2008-10-01 03:56:17 +00:00
|
|
|
#endif
|
2008-10-01 03:59:45 +00:00
|
|
|
if (++s->eq_step >= V27TER_EQUALIZER_LEN)
|
|
|
|
s->eq_step = 0;
|
2008-09-09 17:04:42 +00:00
|
|
|
|
|
|
|
/* On alternate insertions we have a whole baud, and must process it. */
|
|
|
|
if ((s->baud_half ^= 1))
|
|
|
|
return;
|
|
|
|
|
|
|
|
symbol_sync(s);
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
z = equalizer_get(s);
|
|
|
|
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Equalized symbol - %15.5f %15.5f\n", z.re, z.im);
|
|
|
|
switch (s->training_stage)
|
|
|
|
{
|
|
|
|
case TRAINING_STAGE_NORMAL_OPERATION:
|
|
|
|
decode_baud(s, &z);
|
|
|
|
break;
|
|
|
|
case TRAINING_STAGE_SYMBOL_ACQUISITION:
|
|
|
|
/* Allow time for the Gardner algorithm to settle the baud timing */
|
|
|
|
/* Don't start narrowing the bandwidth of the Gardner algorithm too early.
|
|
|
|
Some modems are a bit wobbly when they start sending the signal. Also, we start
|
|
|
|
this analysis before our filter buffers have completely filled. */
|
|
|
|
if (++s->training_count >= 30)
|
|
|
|
{
|
|
|
|
s->gardner_step = 32;
|
|
|
|
s->training_stage = TRAINING_STAGE_LOG_PHASE;
|
|
|
|
s->angles[0] =
|
|
|
|
s->start_angles[0] = arctan2(z.im, z.re);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case TRAINING_STAGE_LOG_PHASE:
|
|
|
|
/* Record the current alternate phase angle */
|
|
|
|
angle = arctan2(z.im, z.re);
|
|
|
|
s->angles[1] =
|
|
|
|
s->start_angles[1] = angle;
|
|
|
|
s->training_count = 1;
|
|
|
|
s->training_stage = TRAINING_STAGE_WAIT_FOR_HOP;
|
|
|
|
break;
|
|
|
|
case TRAINING_STAGE_WAIT_FOR_HOP:
|
|
|
|
angle = arctan2(z.im, z.re);
|
|
|
|
/* Look for the initial ABAB sequence to display a phase reversal, which will
|
|
|
|
signal the start of the scrambled ABAB segment */
|
|
|
|
ang = angle - s->angles[(s->training_count - 1) & 0xF];
|
|
|
|
s->angles[(s->training_count + 1) & 0xF] = angle;
|
|
|
|
if ((ang > 0x20000000 || ang < -0x20000000) && s->training_count >= 3)
|
|
|
|
{
|
|
|
|
/* We seem to have a phase reversal */
|
|
|
|
/* Slam the carrier frequency into line, based on the total phase drift over the last
|
|
|
|
section. Use the shift from the odd bits and the shift from the even bits to get
|
|
|
|
better jitter suppression. We need to scale here, or at the maximum specified
|
|
|
|
frequency deviation we could overflow, and get a silly answer. */
|
|
|
|
/* Step back a few symbols so we don't get ISI distorting things. */
|
|
|
|
i = (s->training_count - 8) & ~1;
|
|
|
|
/* Avoid the possibility of a divide by zero */
|
|
|
|
if (i)
|
|
|
|
{
|
|
|
|
j = i & 0xF;
|
|
|
|
ang = (s->angles[j] - s->start_angles[0])/i
|
|
|
|
+ (s->angles[j | 0x1] - s->start_angles[1])/i;
|
|
|
|
if (s->bit_rate == 4800)
|
|
|
|
s->carrier_phase_rate += ang/10;
|
|
|
|
else
|
|
|
|
s->carrier_phase_rate += 3*(ang/40);
|
|
|
|
}
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Coarse carrier frequency %7.2f (%d)\n", dds_frequencyf(s->carrier_phase_rate), s->training_count);
|
|
|
|
/* Check if the carrier frequency is plausible */
|
|
|
|
if (s->carrier_phase_rate < dds_phase_ratef(CARRIER_NOMINAL_FREQ - 20.0f)
|
|
|
|
||
|
|
|
|
s->carrier_phase_rate > dds_phase_ratef(CARRIER_NOMINAL_FREQ + 20.0f))
|
|
|
|
{
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (sequence failed)\n");
|
|
|
|
/* Park this modem */
|
|
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
2008-09-03 19:02:00 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make a step shift in the phase, to pull it into line. We need to rotate the equalizer
|
|
|
|
buffer, as well as the carrier phase, for this to play out nicely. */
|
|
|
|
angle += 0x80000000;
|
|
|
|
p = angle*2.0f*3.14159f/(65536.0f*65536.0f);
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
zz = complex_setf(cosf(p), -sinf(p));
|
2008-10-01 03:59:45 +00:00
|
|
|
for (i = 0; i < V27TER_EQUALIZER_LEN; i++)
|
2008-09-09 17:04:42 +00:00
|
|
|
{
|
|
|
|
z1 = complex_setf(s->eq_buf[i].re, s->eq_buf[i].im);
|
|
|
|
z1 = complex_mulf(&z1, &zz);
|
|
|
|
s->eq_buf[i].re = z1.re;
|
|
|
|
s->eq_buf[i].im = z1.im;
|
|
|
|
}
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
zz = complex_setf(cosf(p), -sinf(p));
|
2008-10-01 03:59:45 +00:00
|
|
|
for (i = 0; i < V27TER_EQUALIZER_LEN; i++)
|
2008-09-03 19:02:00 +00:00
|
|
|
s->eq_buf[i] = complex_mulf(&s->eq_buf[i], &zz);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
s->carrier_phase += angle;
|
|
|
|
|
|
|
|
s->gardner_step = 2;
|
|
|
|
/* We have just seen the first element of the scrambled sequence so skip it. */
|
|
|
|
s->training_bc = 1;
|
|
|
|
s->training_bc ^= descramble(s, 1);
|
|
|
|
descramble(s, 1);
|
|
|
|
descramble(s, 1);
|
2009-04-20 18:33:33 +00:00
|
|
|
s->constellation_state = abab_pos[s->training_bc];
|
2008-09-03 19:02:00 +00:00
|
|
|
s->training_count = 1;
|
|
|
|
s->training_stage = TRAINING_STAGE_TRAIN_ON_ABAB;
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_TRAINING_IN_PROGRESS);
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
else if (++s->training_count > V27TER_TRAINING_SEG_3_LEN)
|
|
|
|
{
|
|
|
|
/* This is bogus. There are not this many bits in this section
|
|
|
|
of a real training sequence. */
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (sequence failed)\n");
|
|
|
|
/* Park this modem */
|
|
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case TRAINING_STAGE_TRAIN_ON_ABAB:
|
|
|
|
/* Train on the scrambled ABAB section */
|
|
|
|
s->training_bc ^= descramble(s, 1);
|
|
|
|
descramble(s, 1);
|
|
|
|
descramble(s, 1);
|
|
|
|
s->constellation_state = abab_pos[s->training_bc];
|
|
|
|
track_carrier(s, &z, &v27ter_constellation[s->constellation_state]);
|
|
|
|
tune_equalizer(s, &z, &v27ter_constellation[s->constellation_state]);
|
|
|
|
|
|
|
|
if (++s->training_count >= V27TER_TRAINING_SEG_5_LEN)
|
|
|
|
{
|
|
|
|
s->constellation_state = (s->bit_rate == 4800) ? 4 : 2;
|
|
|
|
s->training_count = 0;
|
|
|
|
s->training_stage = TRAINING_STAGE_TEST_ONES;
|
2008-10-01 03:54:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
s->carrier_track_i = 400;
|
|
|
|
s->carrier_track_p = 1000000;
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->carrier_track_i = 400.0f;
|
|
|
|
s->carrier_track_p = 1000000.0f;
|
2008-10-01 03:54:17 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case TRAINING_STAGE_TEST_ONES:
|
|
|
|
decode_baud(s, &z);
|
|
|
|
/* Measure the training error */
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
z1.re = z.re/(float) FP_FACTOR;
|
|
|
|
z1.im = z.im/(float) FP_FACTOR;
|
2008-09-03 19:02:00 +00:00
|
|
|
if (s->bit_rate == 4800)
|
|
|
|
zz = complex_subf(&z, &v27ter_constellation[s->constellation_state]);
|
|
|
|
else
|
|
|
|
zz = complex_subf(&z, &v27ter_constellation[s->constellation_state << 1]);
|
2008-09-09 17:04:42 +00:00
|
|
|
zz = complex_subf(&z1, &zz);
|
2008-09-03 19:02:00 +00:00
|
|
|
s->training_error += powerf(&zz);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
|
|
|
if (s->bit_rate == 4800)
|
|
|
|
zz = complex_subf(&z, &v27ter_constellation[s->constellation_state]);
|
|
|
|
else
|
|
|
|
zz = complex_subf(&z, &v27ter_constellation[s->constellation_state << 1]);
|
|
|
|
s->training_error += powerf(&zz);
|
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
if (++s->training_count >= V27TER_TRAINING_SEG_6_LEN)
|
|
|
|
{
|
2009-01-28 04:48:03 +00:00
|
|
|
/* At 4800bps the symbols are 1.08238 (Euclidian) apart.
|
|
|
|
At 2400bps the symbols are 2.0 (Euclidian) apart. */
|
|
|
|
if ((s->bit_rate == 4800 && s->training_error < V27TER_TRAINING_SEG_6_LEN*0.25f)
|
2008-09-03 19:02:00 +00:00
|
|
|
||
|
2009-01-28 04:48:03 +00:00
|
|
|
(s->bit_rate == 2400 && s->training_error < V27TER_TRAINING_SEG_6_LEN*0.5f))
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
/* We are up and running */
|
2009-01-28 04:48:03 +00:00
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training succeeded at %dbps (constellation mismatch %f)\n", s->bit_rate, s->training_error);
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_TRAINING_SUCCEEDED);
|
2008-09-03 19:02:00 +00:00
|
|
|
/* Apply some lag to the carrier off condition, to ensure the last few bits get pushed through
|
|
|
|
the processing. */
|
|
|
|
s->signal_present = (s->bit_rate == 4800) ? 90 : 120;
|
|
|
|
s->training_stage = TRAINING_STAGE_NORMAL_OPERATION;
|
|
|
|
equalizer_save(s);
|
|
|
|
s->carrier_phase_rate_save = s->carrier_phase_rate;
|
|
|
|
s->agc_scaling_save = s->agc_scaling;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Training has failed */
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (constellation mismatch %f)\n", s->training_error);
|
|
|
|
/* Park this modem */
|
|
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case TRAINING_STAGE_PARKED:
|
|
|
|
/* We failed to train! */
|
|
|
|
/* Park here until the carrier drops. */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (s->qam_report)
|
|
|
|
{
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
z1.re = z.re/(float) FP_FACTOR;
|
|
|
|
z1.im = z.im/(float) FP_FACTOR;
|
|
|
|
zz.re = v27ter_constellation[s->constellation_state].re;
|
|
|
|
zz.im = v27ter_constellation[s->constellation_state].im;
|
|
|
|
s->qam_report(s->qam_user_data,
|
|
|
|
&z1,
|
|
|
|
&zz,
|
|
|
|
s->constellation_state);
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->qam_report(s->qam_user_data,
|
|
|
|
&z,
|
|
|
|
&v27ter_constellation[s->constellation_state],
|
|
|
|
s->constellation_state);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-05-29 18:59:44 +00:00
|
|
|
SPAN_DECLARE_NONSTD(int) v27ter_rx(v27ter_rx_state_t *s, const int16_t amp[], int len)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int step;
|
|
|
|
int16_t x;
|
2009-01-30 17:00:50 +00:00
|
|
|
int16_t diff;
|
2008-09-03 19:02:00 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
2008-10-01 03:56:17 +00:00
|
|
|
complexi16_t z;
|
2008-09-09 17:04:42 +00:00
|
|
|
complexi16_t zz;
|
2008-10-01 03:56:17 +00:00
|
|
|
complexi16_t sample;
|
2008-10-01 03:59:45 +00:00
|
|
|
int32_t v;
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-10-01 03:56:17 +00:00
|
|
|
complexf_t z;
|
2008-09-09 17:04:42 +00:00
|
|
|
complexf_t zz;
|
2008-10-01 03:56:17 +00:00
|
|
|
complexf_t sample;
|
2008-10-01 03:59:45 +00:00
|
|
|
float v;
|
2008-09-03 19:02:00 +00:00
|
|
|
#endif
|
|
|
|
int32_t power;
|
|
|
|
|
|
|
|
if (s->bit_rate == 4800)
|
|
|
|
{
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
{
|
2008-10-01 03:59:45 +00:00
|
|
|
s->rrc_filter[s->rrc_filter_step] = amp[i];
|
2008-09-03 19:02:00 +00:00
|
|
|
if (++s->rrc_filter_step >= V27TER_RX_4800_FILTER_STEPS)
|
|
|
|
s->rrc_filter_step = 0;
|
|
|
|
|
|
|
|
/* There should be no DC in the signal, but sometimes there is.
|
|
|
|
We need to measure the power with the DC blocked, but not using
|
|
|
|
a slow to respond DC blocker. Use the most elementary HPF. */
|
|
|
|
x = amp[i] >> 1;
|
2009-04-20 18:33:33 +00:00
|
|
|
/* There could be overflow here, but it isn't a problem in practice */
|
2009-01-30 17:00:50 +00:00
|
|
|
diff = x - s->last_sample;
|
2008-09-03 19:02:00 +00:00
|
|
|
power = power_meter_update(&(s->power), diff);
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
/* Quick power drop fudge */
|
|
|
|
diff = abs(diff);
|
|
|
|
if (10*diff < s->high_sample)
|
|
|
|
{
|
|
|
|
if (++s->low_samples > 120)
|
|
|
|
{
|
|
|
|
power_meter_init(&(s->power), 4);
|
|
|
|
s->high_sample = 0;
|
|
|
|
s->low_samples = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
s->low_samples = 0;
|
|
|
|
if (diff > s->high_sample)
|
|
|
|
s->high_sample = diff;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
s->last_sample = x;
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Power = %f\n", power_meter_current_dbm0(&(s->power)));
|
|
|
|
if (s->signal_present)
|
|
|
|
{
|
|
|
|
/* Look for power below turnoff threshold to turn the carrier off */
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
if (s->carrier_drop_pending || power < s->carrier_off_power)
|
|
|
|
#else
|
|
|
|
if (power < s->carrier_off_power)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
if (--s->signal_present <= 0)
|
|
|
|
{
|
|
|
|
/* Count down a short delay, to ensure we push the last
|
|
|
|
few bits through the filters before stopping. */
|
|
|
|
v27ter_rx_restart(s, s->bit_rate, FALSE);
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_CARRIER_DOWN);
|
2008-09-03 19:02:00 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
2008-10-01 03:56:17 +00:00
|
|
|
/* Carrier has dropped, but the put_bit is pending the signal_present delay. */
|
2008-09-03 19:02:00 +00:00
|
|
|
s->carrier_drop_pending = TRUE;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Look for power exceeding turnon threshold to turn the carrier on */
|
|
|
|
if (power < s->carrier_on_power)
|
|
|
|
continue;
|
|
|
|
s->signal_present = 1;
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
s->carrier_drop_pending = FALSE;
|
|
|
|
#endif
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_CARRIER_UP);
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/* Only spend effort processing this data if the modem is not
|
|
|
|
parked, after training failure. */
|
|
|
|
if (s->training_stage == TRAINING_STAGE_PARKED)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Put things into the equalization buffer at T/2 rate. The Gardner algorithm
|
|
|
|
will fiddle the step to align this with the symbols. */
|
|
|
|
if ((s->eq_put_step -= RX_PULSESHAPER_4800_COEFF_SETS) <= 0)
|
|
|
|
{
|
|
|
|
if (s->training_stage == TRAINING_STAGE_SYMBOL_ACQUISITION)
|
|
|
|
{
|
|
|
|
/* Only AGC during the initial training */
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
s->agc_scaling = (float) FP_FACTOR*32768.0f*(1.0f/RX_PULSESHAPER_4800_GAIN)*1.414f/sqrtf(power);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->agc_scaling = (1.0f/RX_PULSESHAPER_4800_GAIN)*1.414f/sqrtf(power);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/* Pulse shape while still at the carrier frequency, using a quadrature
|
|
|
|
pair of filters. This results in a properly bandpass filtered complex
|
|
|
|
signal, which can be brought directly to baseband by complex mixing.
|
|
|
|
No further filtering, to remove mixer harmonics, is needed. */
|
|
|
|
step = -s->eq_put_step;
|
|
|
|
if (step > RX_PULSESHAPER_4800_COEFF_SETS - 1)
|
|
|
|
step = RX_PULSESHAPER_4800_COEFF_SETS - 1;
|
|
|
|
s->eq_put_step += RX_PULSESHAPER_4800_COEFF_SETS*5/2;
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
2008-10-01 03:59:45 +00:00
|
|
|
v = vec_circular_dot_prodi16(s->rrc_filter, rx_pulseshaper_4800_re[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.re = (v*(int32_t) s->agc_scaling) >> 15;
|
|
|
|
v = vec_circular_dot_prodi16(s->rrc_filter, rx_pulseshaper_4800_im[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.im = (v*(int32_t) s->agc_scaling) >> 15;
|
2008-10-01 03:56:17 +00:00
|
|
|
z = dds_lookup_complexi16(s->carrier_phase);
|
|
|
|
zz.re = ((int32_t) sample.re*(int32_t) z.re - (int32_t) sample.im*(int32_t) z.im) >> 15;
|
|
|
|
zz.im = ((int32_t) -sample.re*(int32_t) z.im - (int32_t) sample.im*(int32_t) z.re) >> 15;
|
2008-09-03 19:02:00 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
v = vec_circular_dot_prodf(s->rrc_filter, rx_pulseshaper_4800_re[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.re = v*s->agc_scaling;
|
|
|
|
v = vec_circular_dot_prodf(s->rrc_filter, rx_pulseshaper_4800_im[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.im = v*s->agc_scaling;
|
2008-09-03 19:02:00 +00:00
|
|
|
z = dds_lookup_complexf(s->carrier_phase);
|
|
|
|
zz.re = sample.re*z.re - sample.im*z.im;
|
|
|
|
zz.im = -sample.re*z.im - sample.im*z.re;
|
2008-10-01 03:56:17 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
process_half_baud(s, &zz);
|
|
|
|
}
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
dds_advance(&s->carrier_phase, s->carrier_phase_rate);
|
|
|
|
#else
|
|
|
|
dds_advancef(&s->carrier_phase, s->carrier_phase_rate);
|
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
{
|
2008-10-01 03:59:45 +00:00
|
|
|
s->rrc_filter[s->rrc_filter_step] = amp[i];
|
2008-09-03 19:02:00 +00:00
|
|
|
if (++s->rrc_filter_step >= V27TER_RX_2400_FILTER_STEPS)
|
|
|
|
s->rrc_filter_step = 0;
|
|
|
|
|
|
|
|
/* There should be no DC in the signal, but sometimes there is.
|
|
|
|
We need to measure the power with the DC blocked, but not using
|
|
|
|
a slow to respond DC blocker. Use the most elementary HPF. */
|
|
|
|
x = amp[i] >> 1;
|
2009-04-20 18:33:33 +00:00
|
|
|
/* There could be overflow here, but it isn't a problem in practice */
|
2008-09-03 19:02:00 +00:00
|
|
|
diff = x - s->last_sample;
|
|
|
|
power = power_meter_update(&(s->power), diff);
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
/* Quick power drop fudge */
|
|
|
|
diff = abs(diff);
|
|
|
|
if (10*diff < s->high_sample)
|
|
|
|
{
|
|
|
|
if (++s->low_samples > 120)
|
|
|
|
{
|
|
|
|
power_meter_init(&(s->power), 4);
|
|
|
|
s->high_sample = 0;
|
|
|
|
s->low_samples = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
s->low_samples = 0;
|
|
|
|
if (diff > s->high_sample)
|
|
|
|
s->high_sample = diff;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
s->last_sample = x;
|
|
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Power = %f\n", power_meter_current_dbm0(&(s->power)));
|
|
|
|
if (s->signal_present)
|
|
|
|
{
|
|
|
|
/* Look for power below turnoff threshold to turn the carrier off */
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
if (s->carrier_drop_pending || power < s->carrier_off_power)
|
|
|
|
#else
|
|
|
|
if (power < s->carrier_off_power)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
if (--s->signal_present <= 0)
|
|
|
|
{
|
|
|
|
/* Count down a short delay, to ensure we push the last
|
|
|
|
few bits through the filters before stopping. */
|
|
|
|
v27ter_rx_restart(s, s->bit_rate, FALSE);
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_CARRIER_DOWN);
|
2008-09-03 19:02:00 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
/* Carrier has dropped, but the put_bit is
|
|
|
|
pending the signal_present delay. */
|
|
|
|
s->carrier_drop_pending = TRUE;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Look for power exceeding turnon threshold to turn the carrier on */
|
|
|
|
if (power < s->carrier_on_power)
|
|
|
|
continue;
|
|
|
|
s->signal_present = 1;
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
s->carrier_drop_pending = FALSE;
|
|
|
|
#endif
|
2008-09-09 17:04:42 +00:00
|
|
|
report_status_change(s, SIG_STATUS_CARRIER_UP);
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/* Only spend effort processing this data if the modem is not
|
|
|
|
parked, after training failure. */
|
|
|
|
if (s->training_stage == TRAINING_STAGE_PARKED)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Put things into the equalization buffer at T/2 rate. The Gardner algorithm
|
|
|
|
will fiddle the step to align this with the symbols. */
|
|
|
|
if ((s->eq_put_step -= RX_PULSESHAPER_2400_COEFF_SETS) <= 0)
|
|
|
|
{
|
|
|
|
if (s->training_stage == TRAINING_STAGE_SYMBOL_ACQUISITION)
|
|
|
|
{
|
|
|
|
/* Only AGC during the initial training */
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
s->agc_scaling = (float) FP_FACTOR*32768.0f*(1.0f/RX_PULSESHAPER_2400_GAIN)*1.414f/sqrtf(power);
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->agc_scaling = (1.0f/RX_PULSESHAPER_2400_GAIN)*1.414f/sqrtf(power);
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
/* Pulse shape while still at the carrier frequency, using a quadrature
|
|
|
|
pair of filters. This results in a properly bandpass filtered complex
|
|
|
|
signal, which can be brought directly to bandband by complex mixing.
|
|
|
|
No further filtering, to remove mixer harmonics, is needed. */
|
|
|
|
step = -s->eq_put_step;
|
|
|
|
if (step > RX_PULSESHAPER_2400_COEFF_SETS - 1)
|
|
|
|
step = RX_PULSESHAPER_2400_COEFF_SETS - 1;
|
|
|
|
s->eq_put_step += RX_PULSESHAPER_2400_COEFF_SETS*20/(3*2);
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
2008-10-01 03:59:45 +00:00
|
|
|
v = vec_circular_dot_prodi16(s->rrc_filter, rx_pulseshaper_2400_re[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.re = (v*(int32_t) s->agc_scaling) >> 15;
|
|
|
|
v = vec_circular_dot_prodi16(s->rrc_filter, rx_pulseshaper_2400_im[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.im = (v*(int32_t) s->agc_scaling) >> 15;
|
2008-10-01 03:56:17 +00:00
|
|
|
z = dds_lookup_complexi16(s->carrier_phase);
|
|
|
|
zz.re = ((int32_t) sample.re*(int32_t) z.re - (int32_t) sample.im*(int32_t) z.im) >> 15;
|
|
|
|
zz.im = ((int32_t) -sample.re*(int32_t) z.im - (int32_t) sample.im*(int32_t) z.re) >> 15;
|
2008-09-03 19:02:00 +00:00
|
|
|
#else
|
2008-10-01 03:59:45 +00:00
|
|
|
v = vec_circular_dot_prodf(s->rrc_filter, rx_pulseshaper_2400_re[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.re = v*s->agc_scaling;
|
|
|
|
v = vec_circular_dot_prodf(s->rrc_filter, rx_pulseshaper_2400_im[step], V27TER_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
|
|
sample.im = v*s->agc_scaling;
|
2008-09-03 19:02:00 +00:00
|
|
|
z = dds_lookup_complexf(s->carrier_phase);
|
|
|
|
zz.re = sample.re*z.re - sample.im*z.im;
|
|
|
|
zz.im = -sample.re*z.im - sample.im*z.re;
|
2008-10-01 03:56:17 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
process_half_baud(s, &zz);
|
|
|
|
}
|
2008-10-01 03:56:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
dds_advance(&s->carrier_phase, s->carrier_phase_rate);
|
|
|
|
#else
|
|
|
|
dds_advancef(&s->carrier_phase, s->carrier_phase_rate);
|
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-04-20 18:33:33 +00:00
|
|
|
SPAN_DECLARE(int) v27ter_rx_fillin(v27ter_rx_state_t *s, int len)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* We want to sustain the current state (i.e carrier on<->carrier off), and
|
|
|
|
try to sustain the carrier phase. We should probably push the filters, as well */
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Fill-in %d samples\n", len);
|
|
|
|
if (!s->signal_present)
|
|
|
|
return 0;
|
|
|
|
if (s->training_stage == TRAINING_STAGE_PARKED)
|
|
|
|
return 0;
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
{
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
|
|
dds_advance(&s->carrier_phase, s->carrier_phase_rate);
|
|
|
|
#else
|
|
|
|
dds_advancef(&s->carrier_phase, s->carrier_phase_rate);
|
|
|
|
#endif
|
|
|
|
/* Advance the symbol phase the appropriate amount */
|
|
|
|
if (s->bit_rate == 4800)
|
|
|
|
{
|
|
|
|
if ((s->eq_put_step -= RX_PULSESHAPER_4800_COEFF_SETS) <= 0)
|
|
|
|
s->eq_put_step += RX_PULSESHAPER_4800_COEFF_SETS*5/2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if ((s->eq_put_step -= RX_PULSESHAPER_2400_COEFF_SETS) <= 0)
|
|
|
|
s->eq_put_step += RX_PULSESHAPER_2400_COEFF_SETS*20/(3*2);
|
|
|
|
}
|
|
|
|
/* TODO: Should we rotate any buffers */
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(void) v27ter_rx_set_put_bit(v27ter_rx_state_t *s, put_bit_func_t put_bit, void *user_data)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
s->put_bit = put_bit;
|
|
|
|
s->put_bit_user_data = user_data;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(void) v27ter_rx_set_modem_status_handler(v27ter_rx_state_t *s, modem_tx_status_func_t handler, void *user_data)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
s->status_handler = handler;
|
|
|
|
s->status_user_data = user_data;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(logging_state_t *) v27ter_rx_get_logging_state(v27ter_rx_state_t *s)
|
2009-01-28 04:48:03 +00:00
|
|
|
{
|
|
|
|
return &s->logging;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) v27ter_rx_restart(v27ter_rx_state_t *s, int bit_rate, int old_train)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Restarting V.27ter\n");
|
|
|
|
if (bit_rate != 4800 && bit_rate != 2400)
|
|
|
|
return -1;
|
|
|
|
s->bit_rate = bit_rate;
|
|
|
|
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
2008-09-09 17:04:42 +00:00
|
|
|
vec_zeroi16(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0]));
|
2008-09-03 19:02:00 +00:00
|
|
|
#else
|
|
|
|
vec_zerof(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0]));
|
|
|
|
#endif
|
|
|
|
s->rrc_filter_step = 0;
|
|
|
|
|
|
|
|
s->scramble_reg = 0x3C;
|
|
|
|
s->scrambler_pattern_count = 0;
|
|
|
|
s->training_stage = TRAINING_STAGE_SYMBOL_ACQUISITION;
|
|
|
|
s->training_bc = 0;
|
|
|
|
s->training_count = 0;
|
|
|
|
s->training_error = 0.0f;
|
|
|
|
s->signal_present = 0;
|
|
|
|
#if defined(IAXMODEM_STUFF)
|
|
|
|
s->high_sample = 0;
|
|
|
|
s->low_samples = 0;
|
|
|
|
s->carrier_drop_pending = FALSE;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
s->carrier_phase = 0;
|
2008-10-01 03:54:17 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
|
|
s->carrier_track_i = 200000;
|
|
|
|
s->carrier_track_p = 10000000;
|
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->carrier_track_i = 200000.0f;
|
|
|
|
s->carrier_track_p = 10000000.0f;
|
2008-10-01 03:54:17 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
power_meter_init(&(s->power), 4);
|
|
|
|
|
|
|
|
s->constellation_state = 0;
|
|
|
|
|
|
|
|
if (s->old_train)
|
|
|
|
{
|
|
|
|
s->carrier_phase_rate = s->carrier_phase_rate_save;
|
|
|
|
s->agc_scaling = s->agc_scaling_save;
|
|
|
|
equalizer_restore(s);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
s->carrier_phase_rate = dds_phase_ratef(CARRIER_NOMINAL_FREQ);
|
2008-09-09 17:04:42 +00:00
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
2008-10-01 03:56:17 +00:00
|
|
|
s->agc_scaling = (float) FP_FACTOR*32768.0f*0.005f/RX_PULSESHAPER_4800_GAIN;
|
2008-09-09 17:04:42 +00:00
|
|
|
#else
|
2008-09-03 19:02:00 +00:00
|
|
|
s->agc_scaling = 0.005f/RX_PULSESHAPER_4800_GAIN;
|
2008-09-09 17:04:42 +00:00
|
|
|
#endif
|
2008-09-03 19:02:00 +00:00
|
|
|
equalizer_reset(s);
|
|
|
|
}
|
|
|
|
s->eq_skip = 0;
|
|
|
|
s->last_sample = 0;
|
|
|
|
|
|
|
|
s->gardner_integrate = 0;
|
|
|
|
s->total_baud_timing_correction = 0;
|
|
|
|
s->gardner_step = 512;
|
2008-09-09 17:04:42 +00:00
|
|
|
s->baud_half = 0;
|
2008-09-03 19:02:00 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(v27ter_rx_state_t *) v27ter_rx_init(v27ter_rx_state_t *s, int bit_rate, put_bit_func_t put_bit, void *user_data)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
2009-04-28 14:42:18 +00:00
|
|
|
switch (bit_rate)
|
|
|
|
{
|
|
|
|
case 4800:
|
|
|
|
case 2400:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return NULL;
|
|
|
|
}
|
2008-09-03 19:02:00 +00:00
|
|
|
if (s == NULL)
|
|
|
|
{
|
|
|
|
if ((s = (v27ter_rx_state_t *) malloc(sizeof(*s))) == NULL)
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
span_log_init(&s->logging, SPAN_LOG_NONE, NULL);
|
|
|
|
span_log_set_protocol(&s->logging, "V.27ter RX");
|
|
|
|
v27ter_rx_signal_cutoff(s, -45.5f);
|
|
|
|
s->put_bit = put_bit;
|
|
|
|
s->put_bit_user_data = user_data;
|
|
|
|
|
|
|
|
v27ter_rx_restart(s, bit_rate, FALSE);
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-20 18:22:32 +00:00
|
|
|
SPAN_DECLARE(int) v27ter_rx_release(v27ter_rx_state_t *s)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) v27ter_rx_free(v27ter_rx_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
free(s);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(void) v27ter_rx_set_qam_report_handler(v27ter_rx_state_t *s, qam_report_handler_t handler, void *user_data)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
s->qam_report = handler;
|
|
|
|
s->qam_user_data = user_data;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
/*- End of file ------------------------------------------------------------*/
|