freeswitch/libs/apr/random/unix/sha2.c

1001 lines
37 KiB
C
Raw Normal View History

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford <me@aarongifford.com>
*
* A licence was granted to the ASF by Aaron on 4 November 2003.
*/
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h> /* assert() */
#include "sha2.h"
/*
* ASSERT NOTE:
* Some sanity checking code is included using assert(). On my FreeBSD
* system, this additional code can be removed by compiling with NDEBUG
* defined. Check your own systems manpage on assert() to see how to
* compile WITHOUT the sanity checking code on your system.
*
* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* #define SHA2_UNROLL_TRANSFORM
*
*/
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
typedef apr_byte_t sha2_byte; /* Exactly 1 byte */
typedef apr_uint32_t sha2_word32; /* Exactly 4 bytes */
typedef apr_uint64_t sha2_word64; /* Exactly 8 bytes */
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
/*** ENDIAN REVERSAL MACROS *******************************************/
#if !APR_IS_BIGENDIAN
#define REVERSE32(w,x) { \
sha2_word32 tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x) { \
sha2_word64 tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
(x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)) >> 16) | \
((tmp & APR_UINT64_C(0x0000ffff0000ffff)) << 16); \
}
#endif /* !APR_IS_BIGENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (sha2_word64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*
* Macros for copying blocks of memory and for zeroing out ranges
* of memory. Using these macros makes it easy to switch from
* using memset()/memcpy() and using bzero()/bcopy().
*
* Please define either SHA2_USE_MEMSET_MEMCPY or define
* SHA2_USE_BZERO_BCOPY depending on which function set you
* choose to use:
*/
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define SHA2_USE_MEMSET_MEMCPY 1
#endif
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif
#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p,l) memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p,l) bzero((p), (l))
#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
#endif
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
void apr__SHA512_Last(SHA512_CTX*);
void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*);
void apr__SHA512_Transform(SHA512_CTX*, const sha2_word64*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
const static sha2_word32 K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
const static sha2_word32 sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
const static sha2_word64 K512[80] = {
APR_UINT64_C(0x428a2f98d728ae22), APR_UINT64_C(0x7137449123ef65cd),
APR_UINT64_C(0xb5c0fbcfec4d3b2f), APR_UINT64_C(0xe9b5dba58189dbbc),
APR_UINT64_C(0x3956c25bf348b538), APR_UINT64_C(0x59f111f1b605d019),
APR_UINT64_C(0x923f82a4af194f9b), APR_UINT64_C(0xab1c5ed5da6d8118),
APR_UINT64_C(0xd807aa98a3030242), APR_UINT64_C(0x12835b0145706fbe),
APR_UINT64_C(0x243185be4ee4b28c), APR_UINT64_C(0x550c7dc3d5ffb4e2),
APR_UINT64_C(0x72be5d74f27b896f), APR_UINT64_C(0x80deb1fe3b1696b1),
APR_UINT64_C(0x9bdc06a725c71235), APR_UINT64_C(0xc19bf174cf692694),
APR_UINT64_C(0xe49b69c19ef14ad2), APR_UINT64_C(0xefbe4786384f25e3),
APR_UINT64_C(0x0fc19dc68b8cd5b5), APR_UINT64_C(0x240ca1cc77ac9c65),
APR_UINT64_C(0x2de92c6f592b0275), APR_UINT64_C(0x4a7484aa6ea6e483),
APR_UINT64_C(0x5cb0a9dcbd41fbd4), APR_UINT64_C(0x76f988da831153b5),
APR_UINT64_C(0x983e5152ee66dfab), APR_UINT64_C(0xa831c66d2db43210),
APR_UINT64_C(0xb00327c898fb213f), APR_UINT64_C(0xbf597fc7beef0ee4),
APR_UINT64_C(0xc6e00bf33da88fc2), APR_UINT64_C(0xd5a79147930aa725),
APR_UINT64_C(0x06ca6351e003826f), APR_UINT64_C(0x142929670a0e6e70),
APR_UINT64_C(0x27b70a8546d22ffc), APR_UINT64_C(0x2e1b21385c26c926),
APR_UINT64_C(0x4d2c6dfc5ac42aed), APR_UINT64_C(0x53380d139d95b3df),
APR_UINT64_C(0x650a73548baf63de), APR_UINT64_C(0x766a0abb3c77b2a8),
APR_UINT64_C(0x81c2c92e47edaee6), APR_UINT64_C(0x92722c851482353b),
APR_UINT64_C(0xa2bfe8a14cf10364), APR_UINT64_C(0xa81a664bbc423001),
APR_UINT64_C(0xc24b8b70d0f89791), APR_UINT64_C(0xc76c51a30654be30),
APR_UINT64_C(0xd192e819d6ef5218), APR_UINT64_C(0xd69906245565a910),
APR_UINT64_C(0xf40e35855771202a), APR_UINT64_C(0x106aa07032bbd1b8),
APR_UINT64_C(0x19a4c116b8d2d0c8), APR_UINT64_C(0x1e376c085141ab53),
APR_UINT64_C(0x2748774cdf8eeb99), APR_UINT64_C(0x34b0bcb5e19b48a8),
APR_UINT64_C(0x391c0cb3c5c95a63), APR_UINT64_C(0x4ed8aa4ae3418acb),
APR_UINT64_C(0x5b9cca4f7763e373), APR_UINT64_C(0x682e6ff3d6b2b8a3),
APR_UINT64_C(0x748f82ee5defb2fc), APR_UINT64_C(0x78a5636f43172f60),
APR_UINT64_C(0x84c87814a1f0ab72), APR_UINT64_C(0x8cc702081a6439ec),
APR_UINT64_C(0x90befffa23631e28), APR_UINT64_C(0xa4506cebde82bde9),
APR_UINT64_C(0xbef9a3f7b2c67915), APR_UINT64_C(0xc67178f2e372532b),
APR_UINT64_C(0xca273eceea26619c), APR_UINT64_C(0xd186b8c721c0c207),
APR_UINT64_C(0xeada7dd6cde0eb1e), APR_UINT64_C(0xf57d4f7fee6ed178),
APR_UINT64_C(0x06f067aa72176fba), APR_UINT64_C(0x0a637dc5a2c898a6),
APR_UINT64_C(0x113f9804bef90dae), APR_UINT64_C(0x1b710b35131c471b),
APR_UINT64_C(0x28db77f523047d84), APR_UINT64_C(0x32caab7b40c72493),
APR_UINT64_C(0x3c9ebe0a15c9bebc), APR_UINT64_C(0x431d67c49c100d4c),
APR_UINT64_C(0x4cc5d4becb3e42b6), APR_UINT64_C(0x597f299cfc657e2a),
APR_UINT64_C(0x5fcb6fab3ad6faec), APR_UINT64_C(0x6c44198c4a475817)
};
/* Initial hash value H for SHA-384 */
const static sha2_word64 sha384_initial_hash_value[8] = {
APR_UINT64_C(0xcbbb9d5dc1059ed8),
APR_UINT64_C(0x629a292a367cd507),
APR_UINT64_C(0x9159015a3070dd17),
APR_UINT64_C(0x152fecd8f70e5939),
APR_UINT64_C(0x67332667ffc00b31),
APR_UINT64_C(0x8eb44a8768581511),
APR_UINT64_C(0xdb0c2e0d64f98fa7),
APR_UINT64_C(0x47b5481dbefa4fa4)
};
/* Initial hash value H for SHA-512 */
const static sha2_word64 sha512_initial_hash_value[8] = {
APR_UINT64_C(0x6a09e667f3bcc908),
APR_UINT64_C(0xbb67ae8584caa73b),
APR_UINT64_C(0x3c6ef372fe94f82b),
APR_UINT64_C(0xa54ff53a5f1d36f1),
APR_UINT64_C(0x510e527fade682d1),
APR_UINT64_C(0x9b05688c2b3e6c1f),
APR_UINT64_C(0x1f83d9abfb41bd6b),
APR_UINT64_C(0x5be0cd19137e2179)
};
/*
* Constant used by SHA256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-256: *********************************************************/
void apr__SHA256_Init(SHA256_CTX* context) {
if (context == (SHA256_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#if !APR_IS_BIGENDIAN
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE32(*data++, W256[j]); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#else /* APR_IS_BIGENDIAN */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + (W256[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#endif /* APR_IS_BIGENDIAN */
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, *W256;
int j;
W256 = (sha2_word32*)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, T2, *W256;
int j;
W256 = (sha2_word32*)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if !APR_IS_BIGENDIAN
/* Copy data while converting to host byte order */
REVERSE32(*data++,W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* APR_IS_BIGENDIAN */
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* APR_IS_BIGENDIAN */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void apr__SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
usedspace = (unsigned int)((context->bitcount >> 3)
% SHA256_BLOCK_LENGTH);
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
apr__SHA256_Transform(context, (sha2_word32*)data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void apr__SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
sha2_word32 *d = (sha2_word32*)digest;
unsigned int usedspace;
/* Sanity check: */
assert(context != (SHA256_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
usedspace = (unsigned int)((context->bitcount >> 3)
% SHA256_BLOCK_LENGTH);
#if !APR_IS_BIGENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount,context->bitcount);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA256_BLOCK_LENGTH) {
MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
}
} else {
/* Set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
/* Final transform: */
apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
#if !APR_IS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE32(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
}
/* Clean up state data: */
MEMSET_BZERO(context, sizeof(*context));
usedspace = 0;
}
char *apr__SHA256_End(SHA256_CTX* context, char buffer[]) {
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA256_CTX*)0);
if (buffer != (char*)0) {
apr__SHA256_Final(digest, context);
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(*context));
}
MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
char* apr__SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
SHA256_CTX context;
apr__SHA256_Init(&context);
apr__SHA256_Update(&context, data, len);
return apr__SHA256_End(&context, digest);
}
/*** SHA-512: *********************************************************/
void apr__SHA512_Init(SHA512_CTX* context) {
if (context == (SHA512_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#if !APR_IS_BIGENDIAN
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE64(*data++, W512[j]); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + W512[j]; \
(d) += T1, \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
j++
#else /* APR_IS_BIGENDIAN */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + (W512[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#endif /* APR_IS_BIGENDIAN */
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
void apr__SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void apr__SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if !APR_IS_BIGENDIAN
/* Convert TO host byte order */
REVERSE64(*data++, W512[j]);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* APR_IS_BIGENDIAN */
/* Apply the SHA-512 compression function to update a..h with copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* APR_IS_BIGENDIAN */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void apr__SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
usedspace = (unsigned int)((context->bitcount[0] >> 3)
% SHA512_BLOCK_LENGTH);
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
apr__SHA512_Transform(context, (sha2_word64*)context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
apr__SHA512_Transform(context, (sha2_word64*)data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
void apr__SHA512_Last(SHA512_CTX* context) {
unsigned int usedspace;
usedspace = (unsigned int)((context->bitcount[0] >> 3)
% SHA512_BLOCK_LENGTH);
#if !APR_IS_BIGENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount[0],context->bitcount[0]);
REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA512_BLOCK_LENGTH) {
MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
apr__SHA512_Transform(context, (sha2_word64*)context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
}
} else {
/* Prepare for final transform: */
MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
/* Final transform: */
apr__SHA512_Transform(context, (sha2_word64*)context->buffer);
}
void apr__SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
sha2_word64 *d = (sha2_word64*)digest;
/* Sanity check: */
assert(context != (SHA512_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
apr__SHA512_Last(context);
/* Save the hash data for output: */
#if !APR_IS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else /* APR_IS_BIGENDIAN */
MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
#endif /* APR_IS_BIGENDIAN */
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(*context));
}
char *apr__SHA512_End(SHA512_CTX* context, char buffer[]) {
sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA512_CTX*)0);
if (buffer != (char*)0) {
apr__SHA512_Final(digest, context);
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(*context));
}
MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
char* apr__SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
SHA512_CTX context;
apr__SHA512_Init(&context);
apr__SHA512_Update(&context, data, len);
return apr__SHA512_End(&context, digest);
}
/*** SHA-384: *********************************************************/
void apr__SHA384_Init(SHA384_CTX* context) {
if (context == (SHA384_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
void apr__SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
apr__SHA512_Update((SHA512_CTX*)context, data, len);
}
void apr__SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
sha2_word64 *d = (sha2_word64*)digest;
/* Sanity check: */
assert(context != (SHA384_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
apr__SHA512_Last((SHA512_CTX*)context);
/* Save the hash data for output: */
#if !APR_IS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else /* APR_IS_BIGENDIAN */
MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
#endif /* APR_IS_BIGENDIAN */
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(*context));
}
char *apr__SHA384_End(SHA384_CTX* context, char buffer[]) {
sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA384_CTX*)0);
if (buffer != (char*)0) {
apr__SHA384_Final(digest, context);
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(*context));
}
MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
return buffer;
}
char* apr__SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
SHA384_CTX context;
apr__SHA384_Init(&context);
apr__SHA384_Update(&context, data, len);
return apr__SHA384_End(&context, digest);
}