freeswitch/libs/spandsp/tests/oki_adpcm_tests.c

299 lines
9.5 KiB
C
Raw Normal View History

/*
* SpanDSP - a series of DSP components for telephony
*
* oki_adpcm_tests.c - Test the Oki (Dialogic) ADPCM encode and decode
* software at 24kbps and 32kbps.
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2004 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
/*! \page oki_adpcm_tests_page OKI (Dialogic) ADPCM tests
\section oki_adpcm_tests_page_sec_1 What does it do?
To perform a general audio quality test, oki_adpcm_tests should be run. The test file
../test-data/local/short_nb_voice.wav will be compressed to the specified bit rate,
decompressed, and the resulting audio stored in post_oki_adpcm.wav. A simple SNR test
is automatically performed. Listening tests may be used for a more detailed evaluation
of the degradation in quality caused by the compression. Both 32k bps and 24k bps
compression may be tested.
\section oki_adpcm_tests_page_sec_2 How is it used?
*/
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sndfile.h>
#include "spandsp.h"
#include "spandsp-sim.h"
#define IN_FILE_NAME "../test-data/local/short_nb_voice.wav"
#define OUT_FILE_NAME "post_oki_adpcm.wav"
#define HIST_LEN 1000
int main(int argc, char *argv[])
{
int i;
SNDFILE *inhandle;
SNDFILE *outhandle;
int frames;
int dec_frames;
int oki_bytes;
int bit_rate;
double pre_energy;
double post_energy;
double diff_energy;
int16_t pre_amp[HIST_LEN];
int16_t post_amp[HIST_LEN];
uint8_t oki_data[HIST_LEN];
int16_t history[HIST_LEN];
int hist_in;
int hist_out;
oki_adpcm_state_t *oki_enc_state;
oki_adpcm_state_t *oki_dec_state;
oki_adpcm_state_t *oki_dec_state2;
int xx;
int total_pre_samples;
int total_compressed_bytes;
int total_post_samples;
int successive_08_bytes;
int successive_80_bytes;
int encoded_fd;
const char *encoded_file_name;
const char *in_file_name;
bool log_encoded_data;
int opt;
bit_rate = 32000;
encoded_file_name = NULL;
in_file_name = IN_FILE_NAME;
log_encoded_data = false;
while ((opt = getopt(argc, argv, "2d:i:l")) != -1)
{
switch (opt)
{
case '2':
bit_rate = 24000;
break;
case 'd':
encoded_file_name = optarg;
break;
case 'i':
in_file_name = optarg;
break;
case 'l':
log_encoded_data = true;
break;
default:
//usage();
exit(2);
break;
}
}
encoded_fd = -1;
inhandle = NULL;
oki_enc_state = NULL;
if (encoded_file_name)
{
if ((encoded_fd = open(encoded_file_name, O_RDONLY)) < 0)
{
fprintf(stderr, " Cannot open encoded file '%s'\n", encoded_file_name);
exit(2);
}
}
else
{
if ((inhandle = sf_open_telephony_read(in_file_name, 1)) == NULL)
{
fprintf(stderr, " Cannot open audio file '%s'\n", in_file_name);
exit(2);
}
if ((oki_enc_state = oki_adpcm_init(NULL, bit_rate)) == NULL)
{
fprintf(stderr, " Cannot create encoder\n");
exit(2);
}
}
if ((outhandle = sf_open_telephony_write(OUT_FILE_NAME, 1)) == NULL)
{
fprintf(stderr, " Cannot create audio file '%s'\n", OUT_FILE_NAME);
exit(2);
}
if ((oki_dec_state = oki_adpcm_init(NULL, bit_rate)) == NULL)
{
fprintf(stderr, " Cannot create decoder\n");
exit(2);
}
if ((oki_dec_state2 = oki_adpcm_init(NULL, bit_rate)) == NULL)
{
fprintf(stderr, " Cannot create decoder\n");
exit(2);
}
hist_in = 0;
if (bit_rate == 32000)
hist_out = 0;
else
hist_out = HIST_LEN - 27;
memset(history, 0, sizeof(history));
pre_energy = 0.0;
post_energy = 0.0;
diff_energy = 0.0;
total_pre_samples = 0;
total_compressed_bytes = 0;
total_post_samples = 0;
if (encoded_file_name)
{
/* Decode a file of OKI ADPCM code to a linear wave file */
while ((oki_bytes = read(encoded_fd, oki_data, 80)) > 0)
{
total_compressed_bytes += oki_bytes;
dec_frames = oki_adpcm_decode(oki_dec_state, post_amp, oki_data, oki_bytes);
total_post_samples += dec_frames;
for (i = 0; i < dec_frames; i++)
{
post_energy += (double) post_amp[i] * (double) post_amp[i];
xx = post_amp[i] - history[hist_out++];
if (hist_out >= HIST_LEN)
hist_out = 0;
diff_energy += (double) xx * (double) xx;
}
sf_writef_short(outhandle, post_amp, dec_frames);
}
close(encoded_fd);
}
else
{
/* Perform a linear wave file -> OKI ADPCM -> linear wave file cycle. Along the way
check the decoder resets on the sequence specified for this codec, and the gain
and worst case sample distortion. */
successive_08_bytes = 0;
successive_80_bytes = 0;
while ((frames = sf_readf_short(inhandle, pre_amp, 159)))
{
total_pre_samples += frames;
oki_bytes = oki_adpcm_encode(oki_enc_state, oki_data, pre_amp, frames);
if (log_encoded_data)
write(1, oki_data, oki_bytes);
total_compressed_bytes += oki_bytes;
/* Look for a condition which is defined as something which should cause a reset of
the decoder (48 samples of 0, 8, 0, 8, etc.), and verify that it really does. Use
a second decode, which we feed byte by byte, for this. */
for (i = 0; i < oki_bytes; i++)
{
oki_adpcm_decode(oki_dec_state2, post_amp, &oki_data[i], 1);
if (oki_data[i] == 0x08)
successive_08_bytes++;
else
successive_08_bytes = 0;
if (oki_data[i] == 0x80)
successive_80_bytes++;
else
successive_80_bytes = 0;
if (successive_08_bytes == 24 || successive_80_bytes == 24)
{
if (oki_dec_state2->step_index != 0)
{
fprintf(stderr, "Decoder reset failure\n");
exit(2);
}
}
}
dec_frames = oki_adpcm_decode(oki_dec_state, post_amp, oki_data, oki_bytes);
total_post_samples += dec_frames;
for (i = 0; i < frames; i++)
{
history[hist_in++] = pre_amp[i];
if (hist_in >= HIST_LEN)
hist_in = 0;
pre_energy += (double) pre_amp[i] * (double) pre_amp[i];
}
for (i = 0; i < dec_frames; i++)
{
post_energy += (double) post_amp[i] * (double) post_amp[i];
xx = post_amp[i] - history[hist_out++];
if (hist_out >= HIST_LEN)
hist_out = 0;
diff_energy += (double) xx * (double) xx;
//post_amp[i] = xx;
}
sf_writef_short(outhandle, post_amp, dec_frames);
}
printf("Pre samples: %d\n", total_pre_samples);
printf("Compressed bytes: %d\n", total_compressed_bytes);
printf("Post samples: %d\n", total_post_samples);
printf("Output energy is %f%% of input energy.\n", 100.0*post_energy/pre_energy);
printf("Residual energy is %f%% of the total.\n", 100.0*diff_energy/post_energy);
if (bit_rate == 32000)
{
if (fabs(1.0 - post_energy/pre_energy) > 0.01
||
fabs(diff_energy/post_energy) > 0.01)
{
printf("Tests failed.\n");
exit(2);
}
}
else
{
if (fabs(1.0 - post_energy/pre_energy) > 0.11
||
fabs(diff_energy/post_energy) > 0.05)
{
printf("Tests failed.\n");
exit(2);
}
}
oki_adpcm_release(oki_enc_state);
if (sf_close_telephony(inhandle))
{
fprintf(stderr, " Cannot close audio file '%s'\n", in_file_name);
exit(2);
}
}
oki_adpcm_release(oki_dec_state);
oki_adpcm_release(oki_dec_state2);
if (sf_close_telephony(outhandle))
{
fprintf(stderr, " Cannot close audio file '%s'\n", OUT_FILE_NAME);
exit(2);
}
printf("Tests passed.\n");
return 0;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/