408 lines
12 KiB
C
408 lines
12 KiB
C
|
/*
|
||
|
* cipher.c
|
||
|
*
|
||
|
* cipher meta-functions
|
||
|
*
|
||
|
* David A. McGrew
|
||
|
* Cisco Systems, Inc.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Copyright (c) 2001-2005, Cisco Systems, Inc.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials provided
|
||
|
* with the distribution.
|
||
|
*
|
||
|
* Neither the name of the Cisco Systems, Inc. nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "cipher.h"
|
||
|
#include "rand_source.h" /* used in invertibiltiy tests */
|
||
|
#include "alloc.h" /* for crypto_alloc(), crypto_free() */
|
||
|
|
||
|
debug_module_t mod_cipher = {
|
||
|
0, /* debugging is off by default */
|
||
|
"cipher" /* printable module name */
|
||
|
};
|
||
|
|
||
|
err_status_t
|
||
|
cipher_output(cipher_t *c, uint8_t *buffer, int num_octets_to_output) {
|
||
|
|
||
|
/* zeroize the buffer */
|
||
|
octet_string_set_to_zero(buffer, num_octets_to_output);
|
||
|
|
||
|
/* exor keystream into buffer */
|
||
|
return cipher_encrypt(c, buffer, (unsigned int *) &num_octets_to_output);
|
||
|
}
|
||
|
|
||
|
/* some bookkeeping functions */
|
||
|
|
||
|
int
|
||
|
cipher_get_key_length(const cipher_t *c) {
|
||
|
return c->key_len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* cipher_type_self_test(ct) tests a cipher of type ct against test cases
|
||
|
* provided in an array of values of key, salt, xtd_seq_num_t,
|
||
|
* plaintext, and ciphertext that is known to be good
|
||
|
*/
|
||
|
|
||
|
#define SELF_TEST_BUF_OCTETS 128
|
||
|
#define NUM_RAND_TESTS 128
|
||
|
#define MAX_KEY_LEN 64
|
||
|
|
||
|
err_status_t
|
||
|
cipher_type_self_test(const cipher_type_t *ct) {
|
||
|
const cipher_test_case_t *test_case = ct->test_data;
|
||
|
cipher_t *c;
|
||
|
err_status_t status;
|
||
|
uint8_t buffer[SELF_TEST_BUF_OCTETS];
|
||
|
uint8_t buffer2[SELF_TEST_BUF_OCTETS];
|
||
|
unsigned int len;
|
||
|
int i, j, case_num = 0;
|
||
|
|
||
|
debug_print(mod_cipher, "running self-test for cipher %s",
|
||
|
ct->description);
|
||
|
|
||
|
/*
|
||
|
* check to make sure that we have at least one test case, and
|
||
|
* return an error if we don't - we need to be paranoid here
|
||
|
*/
|
||
|
if (test_case == NULL)
|
||
|
return err_status_cant_check;
|
||
|
|
||
|
/*
|
||
|
* loop over all test cases, perform known-answer tests of both the
|
||
|
* encryption and decryption functions
|
||
|
*/
|
||
|
while (test_case != NULL) {
|
||
|
|
||
|
/* allocate cipher */
|
||
|
status = cipher_type_alloc(ct, &c, test_case->key_length_octets);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/*
|
||
|
* test the encrypt function
|
||
|
*/
|
||
|
debug_print(mod_cipher, "testing encryption", NULL);
|
||
|
|
||
|
/* initialize cipher */
|
||
|
status = cipher_init(c, test_case->key, direction_encrypt);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* copy plaintext into test buffer */
|
||
|
if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) {
|
||
|
cipher_dealloc(c);
|
||
|
return err_status_bad_param;
|
||
|
}
|
||
|
for (i=0; i < test_case->plaintext_length_octets; i++)
|
||
|
buffer[i] = test_case->plaintext[i];
|
||
|
|
||
|
debug_print(mod_cipher, "plaintext: %s",
|
||
|
octet_string_hex_string(buffer,
|
||
|
test_case->plaintext_length_octets));
|
||
|
|
||
|
/* set the initialization vector */
|
||
|
status = cipher_set_iv(c, test_case->idx);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* encrypt */
|
||
|
len = test_case->plaintext_length_octets;
|
||
|
status = cipher_encrypt(c, buffer, &len);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
debug_print(mod_cipher, "ciphertext: %s",
|
||
|
octet_string_hex_string(buffer,
|
||
|
test_case->ciphertext_length_octets));
|
||
|
|
||
|
/* compare the resulting ciphertext with that in the test case */
|
||
|
if (len != test_case->ciphertext_length_octets)
|
||
|
return err_status_algo_fail;
|
||
|
status = err_status_ok;
|
||
|
for (i=0; i < test_case->ciphertext_length_octets; i++)
|
||
|
if (buffer[i] != test_case->ciphertext[i]) {
|
||
|
status = err_status_algo_fail;
|
||
|
debug_print(mod_cipher, "test case %d failed", case_num);
|
||
|
debug_print(mod_cipher, "(failure at byte %d)", i);
|
||
|
break;
|
||
|
}
|
||
|
if (status) {
|
||
|
|
||
|
debug_print(mod_cipher, "c computed: %s",
|
||
|
octet_string_hex_string(buffer,
|
||
|
2*test_case->plaintext_length_octets));
|
||
|
debug_print(mod_cipher, "c expected: %s",
|
||
|
octet_string_hex_string(test_case->ciphertext,
|
||
|
2*test_case->plaintext_length_octets));
|
||
|
|
||
|
cipher_dealloc(c);
|
||
|
return err_status_algo_fail;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test the decrypt function
|
||
|
*/
|
||
|
debug_print(mod_cipher, "testing decryption", NULL);
|
||
|
|
||
|
/* re-initialize cipher for decryption */
|
||
|
status = cipher_init(c, test_case->key, direction_decrypt);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* copy ciphertext into test buffer */
|
||
|
if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) {
|
||
|
cipher_dealloc(c);
|
||
|
return err_status_bad_param;
|
||
|
}
|
||
|
for (i=0; i < test_case->ciphertext_length_octets; i++)
|
||
|
buffer[i] = test_case->ciphertext[i];
|
||
|
|
||
|
debug_print(mod_cipher, "ciphertext: %s",
|
||
|
octet_string_hex_string(buffer,
|
||
|
test_case->plaintext_length_octets));
|
||
|
|
||
|
/* set the initialization vector */
|
||
|
status = cipher_set_iv(c, test_case->idx);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* decrypt */
|
||
|
len = test_case->ciphertext_length_octets;
|
||
|
status = cipher_decrypt(c, buffer, &len);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
debug_print(mod_cipher, "plaintext: %s",
|
||
|
octet_string_hex_string(buffer,
|
||
|
test_case->plaintext_length_octets));
|
||
|
|
||
|
/* compare the resulting plaintext with that in the test case */
|
||
|
if (len != test_case->plaintext_length_octets)
|
||
|
return err_status_algo_fail;
|
||
|
status = err_status_ok;
|
||
|
for (i=0; i < test_case->plaintext_length_octets; i++)
|
||
|
if (buffer[i] != test_case->plaintext[i]) {
|
||
|
status = err_status_algo_fail;
|
||
|
debug_print(mod_cipher, "test case %d failed", case_num);
|
||
|
debug_print(mod_cipher, "(failure at byte %d)", i);
|
||
|
}
|
||
|
if (status) {
|
||
|
|
||
|
debug_print(mod_cipher, "p computed: %s",
|
||
|
octet_string_hex_string(buffer,
|
||
|
2*test_case->plaintext_length_octets));
|
||
|
debug_print(mod_cipher, "p expected: %s",
|
||
|
octet_string_hex_string(test_case->plaintext,
|
||
|
2*test_case->plaintext_length_octets));
|
||
|
|
||
|
cipher_dealloc(c);
|
||
|
return err_status_algo_fail;
|
||
|
}
|
||
|
|
||
|
/* deallocate the cipher */
|
||
|
status = cipher_dealloc(c);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/*
|
||
|
* the cipher passed the test case, so move on to the next test
|
||
|
* case in the list; if NULL, we'l proceed to the next test
|
||
|
*/
|
||
|
test_case = test_case->next_test_case;
|
||
|
++case_num;
|
||
|
}
|
||
|
|
||
|
/* now run some random invertibility tests */
|
||
|
|
||
|
/* allocate cipher, using paramaters from the first test case */
|
||
|
test_case = ct->test_data;
|
||
|
status = cipher_type_alloc(ct, &c, test_case->key_length_octets);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
rand_source_init();
|
||
|
|
||
|
for (j=0; j < NUM_RAND_TESTS; j++) {
|
||
|
unsigned length;
|
||
|
int plaintext_len;
|
||
|
uint8_t key[MAX_KEY_LEN];
|
||
|
uint8_t iv[MAX_KEY_LEN];
|
||
|
|
||
|
/* choose a length at random (leaving room for IV and padding) */
|
||
|
length = rand() % (SELF_TEST_BUF_OCTETS - 64);
|
||
|
debug_print(mod_cipher, "random plaintext length %d\n", length);
|
||
|
status = rand_source_get_octet_string(buffer, length);
|
||
|
if (status) return status;
|
||
|
|
||
|
debug_print(mod_cipher, "plaintext: %s",
|
||
|
octet_string_hex_string(buffer, length));
|
||
|
|
||
|
/* copy plaintext into second buffer */
|
||
|
for (i=0; i < length; i++)
|
||
|
buffer2[i] = buffer[i];
|
||
|
|
||
|
/* choose a key at random */
|
||
|
if (test_case->key_length_octets > MAX_KEY_LEN)
|
||
|
return err_status_cant_check;
|
||
|
status = rand_source_get_octet_string(key, test_case->key_length_octets);
|
||
|
if (status) return status;
|
||
|
|
||
|
/* chose a random initialization vector */
|
||
|
status = rand_source_get_octet_string(iv, MAX_KEY_LEN);
|
||
|
if (status) return status;
|
||
|
|
||
|
/* initialize cipher */
|
||
|
status = cipher_init(c, key, direction_encrypt);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* set initialization vector */
|
||
|
status = cipher_set_iv(c, test_case->idx);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* encrypt buffer with cipher */
|
||
|
plaintext_len = length;
|
||
|
status = cipher_encrypt(c, buffer, &length);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
debug_print(mod_cipher, "ciphertext: %s",
|
||
|
octet_string_hex_string(buffer, length));
|
||
|
|
||
|
/*
|
||
|
* re-initialize cipher for decryption, re-set the iv, then
|
||
|
* decrypt the ciphertext
|
||
|
*/
|
||
|
status = cipher_init(c, key, direction_decrypt);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
status = cipher_set_iv(c, test_case->idx);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
status = cipher_decrypt(c, buffer, &length);
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
debug_print(mod_cipher, "plaintext[2]: %s",
|
||
|
octet_string_hex_string(buffer, length));
|
||
|
|
||
|
/* compare the resulting plaintext with the original one */
|
||
|
if (length != plaintext_len)
|
||
|
return err_status_algo_fail;
|
||
|
status = err_status_ok;
|
||
|
for (i=0; i < plaintext_len; i++)
|
||
|
if (buffer[i] != buffer2[i]) {
|
||
|
status = err_status_algo_fail;
|
||
|
debug_print(mod_cipher, "random test case %d failed", case_num);
|
||
|
debug_print(mod_cipher, "(failure at byte %d)", i);
|
||
|
}
|
||
|
if (status) {
|
||
|
cipher_dealloc(c);
|
||
|
return err_status_algo_fail;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return err_status_ok;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cipher_bits_per_second(c, l, t) computes (an estimate of) the
|
||
|
* number of bits that a cipher implementation can encrypt in a second
|
||
|
*
|
||
|
* c is a cipher (which MUST be allocated and initialized already), l
|
||
|
* is the length in octets of the test data to be encrypted, and t is
|
||
|
* the number of trials
|
||
|
*
|
||
|
* if an error is encountered, the value 0 is returned
|
||
|
*/
|
||
|
|
||
|
uint64_t
|
||
|
cipher_bits_per_second(cipher_t *c, int octets_in_buffer, int num_trials) {
|
||
|
int i;
|
||
|
v128_t nonce;
|
||
|
clock_t timer;
|
||
|
unsigned char *enc_buf;
|
||
|
unsigned int len = octets_in_buffer;
|
||
|
|
||
|
enc_buf = crypto_alloc(octets_in_buffer);
|
||
|
if (enc_buf == NULL)
|
||
|
return 0; /* indicate bad parameters by returning null */
|
||
|
|
||
|
/* time repeated trials */
|
||
|
v128_set_to_zero(&nonce);
|
||
|
timer = clock();
|
||
|
for(i=0; i < num_trials; i++, nonce.v32[3] = i) {
|
||
|
cipher_set_iv(c, &nonce);
|
||
|
cipher_encrypt(c, enc_buf, &len);
|
||
|
}
|
||
|
timer = clock() - timer;
|
||
|
|
||
|
crypto_free(enc_buf);
|
||
|
|
||
|
if (timer == 0) {
|
||
|
/* Too fast! */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return (uint64_t)CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer;
|
||
|
}
|