2008-09-03 19:02:00 +00:00
|
|
|
/*
|
|
|
|
* SpanDSP - a series of DSP components for telephony
|
|
|
|
*
|
|
|
|
* plc.c
|
|
|
|
*
|
|
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
|
|
*
|
|
|
|
* Copyright (C) 2004 Steve Underwood
|
|
|
|
*
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Lesser General Public License version 2.1,
|
|
|
|
* as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*
|
2009-02-03 18:50:18 +00:00
|
|
|
* $Id: plc.c,v 1.26 2009/02/03 16:28:39 steveu Exp $
|
2008-09-03 19:02:00 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*! \file */
|
|
|
|
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
2009-01-28 04:48:03 +00:00
|
|
|
#include "config.h"
|
2008-09-03 19:02:00 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#if defined(HAVE_TGMATH_H)
|
|
|
|
#include <tgmath.h>
|
|
|
|
#endif
|
|
|
|
#if defined(HAVE_MATH_H)
|
|
|
|
#include <math.h>
|
|
|
|
#endif
|
2009-01-28 04:48:03 +00:00
|
|
|
#include "floating_fudge.h"
|
2008-09-03 19:02:00 +00:00
|
|
|
#include <limits.h>
|
|
|
|
|
|
|
|
#include "spandsp/telephony.h"
|
2009-02-03 18:50:18 +00:00
|
|
|
#include "spandsp/fast_convert.h"
|
2008-10-01 03:59:45 +00:00
|
|
|
#include "spandsp/saturated.h"
|
2008-09-03 19:02:00 +00:00
|
|
|
#include "spandsp/plc.h"
|
|
|
|
|
|
|
|
/* We do a straight line fade to zero volume in 50ms when we are filling in for missing data. */
|
|
|
|
#define ATTENUATION_INCREMENT 0.0025f /* Attenuation per sample */
|
|
|
|
|
|
|
|
#define ms_to_samples(t) (((t)*SAMPLE_RATE)/1000)
|
|
|
|
|
|
|
|
static void save_history(plc_state_t *s, int16_t *buf, int len)
|
|
|
|
{
|
|
|
|
if (len >= PLC_HISTORY_LEN)
|
|
|
|
{
|
|
|
|
/* Just keep the last part of the new data, starting at the beginning of the buffer */
|
|
|
|
memcpy(s->history, buf + len - PLC_HISTORY_LEN, sizeof(int16_t)*PLC_HISTORY_LEN);
|
|
|
|
s->buf_ptr = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (s->buf_ptr + len > PLC_HISTORY_LEN)
|
|
|
|
{
|
|
|
|
/* Wraps around - must break into two sections */
|
|
|
|
memcpy(s->history + s->buf_ptr, buf, sizeof(int16_t)*(PLC_HISTORY_LEN - s->buf_ptr));
|
|
|
|
len -= (PLC_HISTORY_LEN - s->buf_ptr);
|
|
|
|
memcpy(s->history, buf + (PLC_HISTORY_LEN - s->buf_ptr), sizeof(int16_t)*len);
|
|
|
|
s->buf_ptr = len;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Can use just one section */
|
|
|
|
memcpy(s->history + s->buf_ptr, buf, sizeof(int16_t)*len);
|
|
|
|
s->buf_ptr += len;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static __inline__ void normalise_history(plc_state_t *s)
|
|
|
|
{
|
|
|
|
int16_t tmp[PLC_HISTORY_LEN];
|
|
|
|
|
|
|
|
if (s->buf_ptr == 0)
|
|
|
|
return;
|
|
|
|
memcpy(tmp, s->history, sizeof(int16_t)*s->buf_ptr);
|
|
|
|
memcpy(s->history, s->history + s->buf_ptr, sizeof(int16_t)*(PLC_HISTORY_LEN - s->buf_ptr));
|
|
|
|
memcpy(s->history + PLC_HISTORY_LEN - s->buf_ptr, tmp, sizeof(int16_t)*s->buf_ptr);
|
|
|
|
s->buf_ptr = 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
|
|
|
static __inline__ int amdf_pitch(int min_pitch, int max_pitch, int16_t amp[], int len)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int j;
|
|
|
|
int acc;
|
|
|
|
int min_acc;
|
|
|
|
int pitch;
|
|
|
|
|
|
|
|
pitch = min_pitch;
|
|
|
|
min_acc = INT_MAX;
|
|
|
|
for (i = max_pitch; i <= min_pitch; i++)
|
|
|
|
{
|
|
|
|
acc = 0;
|
|
|
|
for (j = 0; j < len; j++)
|
|
|
|
acc += abs(amp[i + j] - amp[j]);
|
|
|
|
if (acc < min_acc)
|
|
|
|
{
|
|
|
|
min_acc = acc;
|
|
|
|
pitch = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return pitch;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) plc_rx(plc_state_t *s, int16_t amp[], int len)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int pitch_overlap;
|
|
|
|
float old_step;
|
|
|
|
float new_step;
|
|
|
|
float old_weight;
|
|
|
|
float new_weight;
|
|
|
|
float gain;
|
|
|
|
|
|
|
|
if (s->missing_samples)
|
|
|
|
{
|
|
|
|
/* Although we have a real signal, we need to smooth it to fit well
|
|
|
|
with the synthetic signal we used for the previous block */
|
|
|
|
|
|
|
|
/* The start of the real data is overlapped with the next 1/4 cycle
|
|
|
|
of the synthetic data. */
|
|
|
|
pitch_overlap = s->pitch >> 2;
|
|
|
|
if (pitch_overlap > len)
|
|
|
|
pitch_overlap = len;
|
|
|
|
gain = 1.0f - s->missing_samples*ATTENUATION_INCREMENT;
|
|
|
|
if (gain < 0.0f)
|
|
|
|
gain = 0.0f;
|
|
|
|
new_step = 1.0f/pitch_overlap;
|
|
|
|
old_step = new_step*gain;
|
|
|
|
new_weight = new_step;
|
|
|
|
old_weight = (1.0f - new_step)*gain;
|
|
|
|
for (i = 0; i < pitch_overlap; i++)
|
|
|
|
{
|
|
|
|
amp[i] = fsaturate(old_weight*s->pitchbuf[s->pitch_offset] + new_weight*amp[i]);
|
|
|
|
if (++s->pitch_offset >= s->pitch)
|
|
|
|
s->pitch_offset = 0;
|
|
|
|
new_weight += new_step;
|
|
|
|
old_weight -= old_step;
|
|
|
|
if (old_weight < 0.0f)
|
|
|
|
old_weight = 0.0f;
|
|
|
|
}
|
|
|
|
s->missing_samples = 0;
|
|
|
|
}
|
|
|
|
save_history(s, amp, len);
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) plc_fillin(plc_state_t *s, int16_t amp[], int len)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int pitch_overlap;
|
|
|
|
float old_step;
|
|
|
|
float new_step;
|
|
|
|
float old_weight;
|
|
|
|
float new_weight;
|
|
|
|
float gain;
|
|
|
|
int16_t *orig_amp;
|
|
|
|
int orig_len;
|
|
|
|
|
|
|
|
orig_amp = amp;
|
|
|
|
orig_len = len;
|
|
|
|
if (s->missing_samples == 0)
|
|
|
|
{
|
|
|
|
/* As the gap in real speech starts we need to assess the last known pitch,
|
|
|
|
and prepare the synthetic data we will use for fill-in */
|
|
|
|
normalise_history(s);
|
|
|
|
s->pitch = amdf_pitch(PLC_PITCH_MIN, PLC_PITCH_MAX, s->history + PLC_HISTORY_LEN - CORRELATION_SPAN - PLC_PITCH_MIN, CORRELATION_SPAN);
|
|
|
|
/* We overlap a 1/4 wavelength */
|
|
|
|
pitch_overlap = s->pitch >> 2;
|
|
|
|
/* Cook up a single cycle of pitch, using a single of the real signal with 1/4
|
|
|
|
cycle OLA'ed to make the ends join up nicely */
|
|
|
|
/* The first 3/4 of the cycle is a simple copy */
|
|
|
|
for (i = 0; i < s->pitch - pitch_overlap; i++)
|
|
|
|
s->pitchbuf[i] = s->history[PLC_HISTORY_LEN - s->pitch + i];
|
|
|
|
/* The last 1/4 of the cycle is overlapped with the end of the previous cycle */
|
|
|
|
new_step = 1.0f/pitch_overlap;
|
|
|
|
new_weight = new_step;
|
|
|
|
for ( ; i < s->pitch; i++)
|
|
|
|
{
|
|
|
|
s->pitchbuf[i] = s->history[PLC_HISTORY_LEN - s->pitch + i]*(1.0f - new_weight) + s->history[PLC_HISTORY_LEN - 2*s->pitch + i]*new_weight;
|
|
|
|
new_weight += new_step;
|
|
|
|
}
|
|
|
|
/* We should now be ready to fill in the gap with repeated, decaying cycles
|
|
|
|
of what is in pitchbuf */
|
|
|
|
|
|
|
|
gain = 1.0f;
|
|
|
|
/* We need to OLA the first 1/4 wavelength of the synthetic data, to smooth
|
|
|
|
it into the previous real data. To avoid the need to introduce a delay
|
|
|
|
in the stream, reverse the last 1/4 wavelength, and OLA with that. */
|
|
|
|
new_step = 1.0f/pitch_overlap;
|
|
|
|
old_step = new_step;
|
|
|
|
new_weight = new_step;
|
|
|
|
old_weight = 1.0f - new_step;
|
|
|
|
for (i = 0; i < pitch_overlap; i++)
|
|
|
|
{
|
|
|
|
amp[i] = fsaturate(old_weight*s->history[PLC_HISTORY_LEN - 1 - i] + new_weight*s->pitchbuf[i]);
|
|
|
|
new_weight += new_step;
|
|
|
|
old_weight -= old_step;
|
|
|
|
if (old_weight < 0.0f)
|
|
|
|
old_weight = 0.0f;
|
|
|
|
}
|
|
|
|
s->pitch_offset = i;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
gain = 1.0f - s->missing_samples*ATTENUATION_INCREMENT;
|
|
|
|
i = 0;
|
|
|
|
}
|
|
|
|
for ( ; gain > 0.0f && i < len; i++)
|
|
|
|
{
|
|
|
|
amp[i] = (int16_t) (s->pitchbuf[s->pitch_offset]*gain);
|
|
|
|
gain -= ATTENUATION_INCREMENT;
|
|
|
|
if (++s->pitch_offset >= s->pitch)
|
|
|
|
s->pitch_offset = 0;
|
|
|
|
}
|
|
|
|
for ( ; i < len; i++)
|
|
|
|
amp[i] = 0;
|
|
|
|
s->missing_samples += orig_len;
|
|
|
|
save_history(s, amp, len);
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(plc_state_t *) plc_init(plc_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
if (s == NULL)
|
|
|
|
{
|
|
|
|
if ((s = (plc_state_t *) malloc(sizeof(*s))) == NULL)
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
|
2009-02-02 21:36:29 +00:00
|
|
|
SPAN_DECLARE(int) plc_free(plc_state_t *s)
|
2008-09-03 19:02:00 +00:00
|
|
|
{
|
|
|
|
if (s)
|
|
|
|
free(s);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
/*- End of file ------------------------------------------------------------*/
|