freeswitch/libs/libvpx/vp8/encoder/encodemb.c

513 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_dsp_rtcd.h"
#include "vpx_config.h"
#include "vp8_rtcd.h"
#include "encodemb.h"
#include "vp8/common/reconinter.h"
#include "vp8/encoder/quantize.h"
#include "tokenize.h"
#include "vp8/common/invtrans.h"
#include "vpx_mem/vpx_mem.h"
#include "rdopt.h"
void vp8_subtract_b(BLOCK *be, BLOCKD *bd, int pitch) {
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
vpx_subtract_block(4, 4, diff_ptr, pitch, src_ptr, src_stride, pred_ptr,
pitch);
}
void vp8_subtract_mbuv(short *diff, unsigned char *usrc, unsigned char *vsrc,
int src_stride, unsigned char *upred,
unsigned char *vpred, int pred_stride) {
short *udiff = diff + 256;
short *vdiff = diff + 320;
vpx_subtract_block(8, 8, udiff, 8, usrc, src_stride, upred, pred_stride);
vpx_subtract_block(8, 8, vdiff, 8, vsrc, src_stride, vpred, pred_stride);
}
void vp8_subtract_mby(short *diff, unsigned char *src, int src_stride,
unsigned char *pred, int pred_stride) {
vpx_subtract_block(16, 16, diff, 16, src, src_stride, pred, pred_stride);
}
static void vp8_subtract_mb(MACROBLOCK *x) {
BLOCK *b = &x->block[0];
vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride,
x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride);
vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->src.uv_stride, x->e_mbd.dst.u_buffer,
x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride);
}
static void build_dcblock(MACROBLOCK *x) {
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; ++i) {
src_diff_ptr[i] = x->coeff[i * 16];
}
}
void vp8_transform_mbuv(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 2) {
x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16);
}
}
void vp8_transform_intra_mby(MACROBLOCK *x) {
int i;
for (i = 0; i < 16; i += 2) {
x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32);
}
/* build dc block from 16 y dc values */
build_dcblock(x);
/* do 2nd order transform on the dc block */
x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8);
}
static void transform_mb(MACROBLOCK *x) {
int i;
for (i = 0; i < 16; i += 2) {
x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32);
}
/* build dc block from 16 y dc values */
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) build_dcblock(x);
for (i = 16; i < 24; i += 2) {
x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16);
}
/* do 2nd order transform on the dc block */
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) {
x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8);
}
}
static void transform_mby(MACROBLOCK *x) {
int i;
for (i = 0; i < 16; i += 2) {
x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32);
}
/* build dc block from 16 y dc values */
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) {
build_dcblock(x);
x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8);
}
}
#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF)
typedef struct vp8_token_state vp8_token_state;
struct vp8_token_state {
int rate;
int error;
signed char next;
signed char token;
short qc;
};
/* TODO: experiments to find optimal multiple numbers */
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
#define Y2_RD_MULT 16
static const int plane_rd_mult[4] = { Y1_RD_MULT, Y2_RD_MULT, UV_RD_MULT,
Y1_RD_MULT };
static void optimize_b(MACROBLOCK *mb, int ib, int type, ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l) {
BLOCK *b;
BLOCKD *d;
vp8_token_state tokens[17][2];
unsigned best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz = 0;
int next;
int rdmult;
int rddiv;
int final_eob;
int rd_cost0;
int rd_cost1;
int rate0;
int rate1;
int error0;
int error1;
int t0;
int t1;
int best;
int band;
int pt;
int i;
int err_mult = plane_rd_mult[type];
b = &mb->block[ib];
d = &mb->e_mbd.block[ib];
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = !type;
eob = *d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
rdmult = (rdmult * 9) >> 4;
}
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 16;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;) {
int base_bits;
int d2;
int dx;
rc = vp8_default_zig_zag1d[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 16) {
band = vp8_coef_bands[i + 1];
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[type][band][pt][tokens[next][0].token];
rate1 += mb->token_costs[type][band][pt][tokens[next][1].token];
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1) {
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x) * dequant_ptr[rc] > abs(coeff_ptr[rc])) &&
(abs(x) * dequant_ptr[rc] < abs(coeff_ptr[rc]) + dequant_ptr[rc])) {
shortcut = 1;
} else {
shortcut = 0;
}
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 =
tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN;
t1 =
tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp8_dct_value_tokens_ptr + x)->Token;
}
if (next < 16) {
band = vp8_coef_bands[i + 1];
if (t0 != DCT_EOB_TOKEN) {
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[type][band][pt][tokens[next][0].token];
}
if (t1 != DCT_EOB_TOKEN) {
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[type][band][pt][tokens[next][1].token];
}
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1) {
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = vp8_coef_bands[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate += mb->token_costs[type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate += mb->token_costs[type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp8_coef_bands[i + 1];
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[type][band][pt][t0];
rate1 += mb->token_costs[type][band][pt][t1];
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1) {
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x) final_eob = i;
rc = vp8_default_zig_zag1d[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = x * dequant_ptr[rc];
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
*a = *l = (final_eob != !type);
*d->eob = (char)final_eob;
}
static void check_reset_2nd_coeffs(MACROBLOCKD *x, int type, ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l) {
int sum = 0;
int i;
BLOCKD *bd = &x->block[24];
if (bd->dequant[0] >= 35 && bd->dequant[1] >= 35) return;
for (i = 0; i < (*bd->eob); ++i) {
int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]];
sum += (coef >= 0) ? coef : -coef;
if (sum >= 35) return;
}
/**************************************************************************
our inverse hadamard transform effectively is weighted sum of all 16 inputs
with weight either 1 or -1. It has a last stage scaling of (sum+3)>>3. And
dc only idct is (dc+4)>>3. So if all the sums are between -35 and 29, the
output after inverse wht and idct will be all zero. A sum of absolute value
smaller than 35 guarantees all 16 different (+1/-1) weighted sums in wht
fall between -35 and +35.
**************************************************************************/
if (sum < 35) {
for (i = 0; i < (*bd->eob); ++i) {
int rc = vp8_default_zig_zag1d[i];
bd->qcoeff[rc] = 0;
bd->dqcoeff[rc] = 0;
}
*bd->eob = 0;
*a = *l = (*bd->eob != !type);
}
}
static void optimize_mb(MACROBLOCK *x) {
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED &&
x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; ++b) {
optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
for (b = 16; b < 24; ++b) {
optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b],
tl + vp8_block2left[b]);
}
if (has_2nd_order) {
b = 24;
optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b],
tl + vp8_block2left[b]);
check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2, ta + vp8_block2above[b],
tl + vp8_block2left[b]);
}
}
void vp8_optimize_mby(MACROBLOCK *x) {
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context) return;
if (!x->e_mbd.left_context) return;
memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED &&
x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; ++b) {
optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
if (has_2nd_order) {
b = 24;
optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b],
tl + vp8_block2left[b]);
check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2, ta + vp8_block2above[b],
tl + vp8_block2left[b]);
}
}
void vp8_optimize_mbuv(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context) return;
if (!x->e_mbd.left_context) return;
memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; ++b) {
optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b],
tl + vp8_block2left[b]);
}
}
void vp8_encode_inter16x16(MACROBLOCK *x) {
vp8_build_inter_predictors_mb(&x->e_mbd);
vp8_subtract_mb(x);
transform_mb(x);
vp8_quantize_mb(x);
if (x->optimize) optimize_mb(x);
}
/* this funciton is used by first pass only */
void vp8_encode_inter16x16y(MACROBLOCK *x) {
BLOCK *b = &x->block[0];
vp8_build_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.dst.y_buffer,
x->e_mbd.dst.y_stride);
vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride,
x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride);
transform_mby(x);
vp8_quantize_mby(x);
vp8_inverse_transform_mby(&x->e_mbd);
}