freeswitch/libs/silk/src/SKP_Silk_SigProc_FIX.h

609 lines
32 KiB
C
Raw Normal View History

2014-08-08 15:24:42 +00:00
/***********************************************************************
2014-09-22 15:00:19 -05:00
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
2014-08-08 15:24:42 +00:00
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2014-09-22 15:00:19 -05:00
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
2014-08-08 15:24:42 +00:00
documentation and/or other materials provided with the distribution.
2014-09-22 15:00:19 -05:00
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
2014-08-08 15:24:42 +00:00
this software without specific prior written permission.
2014-09-22 15:00:19 -05:00
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
2014-08-08 15:24:42 +00:00
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
2014-09-22 15:00:19 -05:00
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
2014-08-08 15:24:42 +00:00
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2014-09-22 15:00:19 -05:00
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2014-08-08 15:24:42 +00:00
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifndef _SKP_SILK_SIGPROC_FIX_H_
#define _SKP_SILK_SIGPROC_FIX_H_
#ifdef __cplusplus
extern "C"
{
#endif
#define SKP_Silk_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
#define SKP_Silk_MAX_CORRELATION_LENGTH 640 /* max input length to the correlation */
#include "SKP_Silk_typedef.h"
#include <string.h>
#include <stdlib.h> /* for abs() */
#include "SKP_Silk_resampler_structs.h"
# include "SKP_Silk_macros.h"
/********************************************************************/
/* SIGNAL PROCESSING FUNCTIONS */
/********************************************************************/
/*!
2014-09-22 15:00:19 -05:00
* Initialize/reset the resampler state for a given pair of input/output sampling rates
2014-08-08 15:24:42 +00:00
*/
2014-09-22 15:00:19 -05:00
SKP_int SKP_Silk_resampler_init(
2014-08-08 15:24:42 +00:00
SKP_Silk_resampler_state_struct *S, /* I/O: Resampler state */
SKP_int32 Fs_Hz_in, /* I: Input sampling rate (Hz) */
SKP_int32 Fs_Hz_out /* I: Output sampling rate (Hz) */
);
/*!
2014-09-22 15:00:19 -05:00
* Clear the states of all resampling filters, without resetting sampling rate ratio
2014-08-08 15:24:42 +00:00
*/
2014-09-22 15:00:19 -05:00
SKP_int SKP_Silk_resampler_clear(
2014-08-08 15:24:42 +00:00
SKP_Silk_resampler_state_struct *S /* I/O: Resampler state */
);
/*!
* Resampler: convert from one sampling rate to another
*/
2014-09-22 15:00:19 -05:00
SKP_int SKP_Silk_resampler(
2014-08-08 15:24:42 +00:00
SKP_Silk_resampler_state_struct *S, /* I/O: Resampler state */
SKP_int16 out[], /* O: Output signal */
const SKP_int16 in[], /* I: Input signal */
SKP_int32 inLen /* I: Number of input samples */
);
/*!
2014-09-22 15:00:19 -05:00
Upsample 2x, low quality
2014-08-08 15:24:42 +00:00
*/
void SKP_Silk_resampler_up2(
SKP_int32 *S, /* I/O: State vector [ 2 ] */
SKP_int16 *out, /* O: Output signal [ 2 * len ] */
const SKP_int16 *in, /* I: Input signal [ len ] */
SKP_int32 len /* I: Number of input samples */
);
/*!
2014-09-22 15:00:19 -05:00
* Downsample 2x, mediocre quality
2014-08-08 15:24:42 +00:00
*/
void SKP_Silk_resampler_down2(
SKP_int32 *S, /* I/O: State vector [ 2 ] */
SKP_int16 *out, /* O: Output signal [ len ] */
const SKP_int16 *in, /* I: Input signal [ floor(len/2) ] */
SKP_int32 inLen /* I: Number of input samples */
);
/*!
* Downsample by a factor 2/3, low quality
*/
void SKP_Silk_resampler_down2_3(
SKP_int32 *S, /* I/O: State vector [ 6 ] */
SKP_int16 *out, /* O: Output signal [ floor(2*inLen/3) ] */
const SKP_int16 *in, /* I: Input signal [ inLen ] */
SKP_int32 inLen /* I: Number of input samples */
);
/*!
* Downsample by a factor 3, low quality
*/
void SKP_Silk_resampler_down3(
SKP_int32 *S, /* I/O: State vector [ 8 ] */
SKP_int16 *out, /* O: Output signal [ floor(inLen/3) ] */
const SKP_int16 *in, /* I: Input signal [ inLen ] */
SKP_int32 inLen /* I: Number of input samples */
);
2014-09-22 15:00:19 -05:00
/*!
2014-08-08 15:24:42 +00:00
* second order ARMA filter
2014-09-22 15:00:19 -05:00
* can handle (slowly) varying coefficients
2014-08-08 15:24:42 +00:00
*/
void SKP_Silk_biquad(
const SKP_int16 *in, /* I: input signal */
const SKP_int16 *B, /* I: MA coefficients, Q13 [3] */
const SKP_int16 *A, /* I: AR coefficients, Q13 [2] */
SKP_int32 *S, /* I/O: state vector [2] */
SKP_int16 *out, /* O: output signal */
const SKP_int32 len /* I: signal length */
);
/*!
2014-09-22 15:00:19 -05:00
* second order ARMA filter;
2014-08-08 15:24:42 +00:00
* slower than biquad() but uses more precise coefficients
2014-09-22 15:00:19 -05:00
* can handle (slowly) varying coefficients
2014-08-08 15:24:42 +00:00
*/
void SKP_Silk_biquad_alt(
const SKP_int16 *in, /* I: input signal */
const SKP_int32 *B_Q28, /* I: MA coefficients [3] */
const SKP_int32 *A_Q28, /* I: AR coefficients [2] */
SKP_int32 *S, /* I/O: state vector [2] */
SKP_int16 *out, /* O: output signal */
const SKP_int32 len /* I: signal length (must be even) */
);
2014-09-22 15:00:19 -05:00
/*!
2014-08-08 15:24:42 +00:00
* variable order MA filter. Prediction error filter implementation. Coeficients negated and starting with coef to x[n - 1]
*/
void SKP_Silk_MA_Prediction(
const SKP_int16 *in, /* I: Input signal */
const SKP_int16 *B, /* I: MA prediction coefficients, Q12 [order] */
SKP_int32 *S, /* I/O: State vector [order] */
SKP_int16 *out, /* O: Output signal */
const SKP_int32 len, /* I: Signal length */
const SKP_int32 order /* I: Filter order */
);
/*!
* 16th order AR filter for LPC synthesis, coefficients are in Q12
*/
void SKP_Silk_LPC_synthesis_order16(
const SKP_int16 *in, /* I: excitation signal */
const SKP_int16 *A_Q12, /* I: AR coefficients [16], between -8_Q0 and 8_Q0 */
const SKP_int32 Gain_Q26, /* I: gain */
SKP_int32 *S, /* I/O: state vector [16] */
SKP_int16 *out, /* O: output signal */
const SKP_int32 len /* I: signal length, must be multiple of 16 */
);
/* variable order MA prediction error filter. */
/* Inverse filter of SKP_Silk_LPC_synthesis_filter */
void SKP_Silk_LPC_analysis_filter(
const SKP_int16 *in, /* I: Input signal */
const SKP_int16 *B, /* I: MA prediction coefficients, Q12 [order] */
SKP_int16 *S, /* I/O: State vector [order] */
SKP_int16 *out, /* O: Output signal */
const SKP_int32 len, /* I: Signal length */
const SKP_int32 Order /* I: Filter order */
);
/* even order AR filter */
void SKP_Silk_LPC_synthesis_filter(
const SKP_int16 *in, /* I: excitation signal */
const SKP_int16 *A_Q12, /* I: AR coefficients [Order], between -8_Q0 and 8_Q0 */
const SKP_int32 Gain_Q26, /* I: gain */
SKP_int32 *S, /* I/O: state vector [Order] */
SKP_int16 *out, /* O: output signal */
const SKP_int32 len, /* I: signal length */
const SKP_int Order /* I: filter order, must be even */
);
/* Chirp (bandwidth expand) LP AR filter */
2014-09-22 15:00:19 -05:00
void SKP_Silk_bwexpander(
2014-08-08 15:24:42 +00:00
SKP_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
const SKP_int d, /* I Length of ar */
SKP_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
);
/* Chirp (bandwidth expand) LP AR filter */
2014-09-22 15:00:19 -05:00
void SKP_Silk_bwexpander_32(
2014-08-08 15:24:42 +00:00
SKP_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
const SKP_int d, /* I Length of ar */
SKP_int32 chirp_Q16 /* I Chirp factor in Q16 */
);
/* Compute inverse of LPC prediction gain, and */
/* test if LPC coefficients are stable (all poles within unit circle) */
SKP_int SKP_Silk_LPC_inverse_pred_gain( /* O: Returns 1 if unstable, otherwise 0 */
SKP_int32 *invGain_Q30, /* O: Inverse prediction gain, Q30 energy domain */
const SKP_int16 *A_Q12, /* I: Prediction coefficients, Q12 [order] */
const SKP_int order /* I: Prediction order */
);
SKP_int SKP_Silk_LPC_inverse_pred_gain_Q24( /* O: Returns 1 if unstable, otherwise 0 */
SKP_int32 *invGain_Q30, /* O: Inverse prediction gain, Q30 energy domain */
const SKP_int32 *A_Q24, /* I: Prediction coefficients, Q24 [order] */
const SKP_int order /* I: Prediction order */
);
/* split signal in two decimated bands using first-order allpass filters */
void SKP_Silk_ana_filt_bank_1(
const SKP_int16 *in, /* I: Input signal [N] */
SKP_int32 *S, /* I/O: State vector [2] */
SKP_int16 *outL, /* O: Low band [N/2] */
SKP_int16 *outH, /* O: High band [N/2] */
SKP_int32 *scratch, /* I: Scratch memory [3*N/2] */
const SKP_int32 N /* I: Number of input samples */
);
/********************************************************************/
/* SCALAR FUNCTIONS */
/********************************************************************/
/* approximation of 128 * log2() (exact inverse of approx 2^() below) */
/* convert input to a log scale */
SKP_int32 SKP_Silk_lin2log(const SKP_int32 inLin); /* I: input in linear scale */
/* Approximation of a sigmoid function */
SKP_int SKP_Silk_sigm_Q15(SKP_int in_Q5);
/* approximation of 2^() (exact inverse of approx log2() above) */
2014-09-22 15:00:19 -05:00
/* convert input to a linear scale */
SKP_int32 SKP_Silk_log2lin(const SKP_int32 inLog_Q7); /* I: input on log scale */
2014-08-08 15:24:42 +00:00
/* Function that returns the maximum absolut value of the input vector */
SKP_int16 SKP_Silk_int16_array_maxabs( /* O Maximum absolute value, max: 2^15-1 */
2014-09-22 15:00:19 -05:00
const SKP_int16 *vec, /* I Input vector [len] */
2014-08-08 15:24:42 +00:00
const SKP_int32 len /* I Length of input vector */
);
/* Compute number of bits to right shift the sum of squares of a vector */
/* of int16s to make it fit in an int32 */
void SKP_Silk_sum_sqr_shift(
SKP_int32 *energy, /* O Energy of x, after shifting to the right */
SKP_int *shift, /* O Number of bits right shift applied to energy */
const SKP_int16 *x, /* I Input vector */
SKP_int len /* I Length of input vector */
);
/* Calculates the reflection coefficients from the correlation sequence */
/* Faster than schur64(), but much less accurate. */
2014-09-22 15:00:19 -05:00
/* uses SMLAWB(), requiring armv5E and higher. */
2014-08-08 15:24:42 +00:00
SKP_int32 SKP_Silk_schur( /* O: Returns residual energy */
SKP_int16 *rc_Q15, /* O: reflection coefficients [order] Q15 */
const SKP_int32 *c, /* I: correlations [order+1] */
const SKP_int32 order /* I: prediction order */
);;
/* Calculates the reflection coefficients from the correlation sequence */
/* Slower than schur(), but more accurate. */
/* Uses SMULL(), available on armv4 */
SKP_int32 SKP_Silk_schur64( /* O: returns residual energy */
SKP_int32 rc_Q16[], /* O: Reflection coefficients [order] Q16 */
const SKP_int32 c[], /* I: Correlations [order+1] */
SKP_int32 order /* I: Prediction order */
);
/* Step up function, converts reflection coefficients to prediction coefficients */
void SKP_Silk_k2a(
SKP_int32 *A_Q24, /* O: Prediction coefficients [order] Q24 */
const SKP_int16 *rc_Q15, /* I: Reflection coefficients [order] Q15 */
const SKP_int32 order /* I: Prediction order */
);
/* Step up function, converts reflection coefficients to prediction coefficients */
void SKP_Silk_k2a_Q16(
SKP_int32 *A_Q24, /* O: Prediction coefficients [order] Q24 */
const SKP_int32 *rc_Q16, /* I: Reflection coefficients [order] Q16 */
const SKP_int32 order /* I: Prediction order */
);
/* Apply sine window to signal vector. */
/* Window types: */
/* 1 -> sine window from 0 to pi/2 */
/* 2 -> sine window from pi/2 to pi */
/* Every other sample is linearly interpolated, for speed. */
/* Window length must be between 16 and 120 (incl) and a multiple of 4. */
void SKP_Silk_apply_sine_window_new(
SKP_int16 px_win[], /* O Pointer to windowed signal */
const SKP_int16 px[], /* I Pointer to input signal */
const SKP_int win_type, /* I Selects a window type */
const SKP_int length /* I Window length, multiple of 4 */
);
/* Compute autocorrelation */
2014-09-22 15:00:19 -05:00
void SKP_Silk_autocorr(
2014-08-08 15:24:42 +00:00
SKP_int32 *results, /* O Result (length correlationCount) */
SKP_int *scale, /* O Scaling of the correlation vector */
const SKP_int16 *inputData, /* I Input data to correlate */
const SKP_int inputDataSize, /* I Length of input */
const SKP_int correlationCount /* I Number of correlation taps to compute */
);
/* Pitch estimator */
#define SKP_Silk_PITCH_EST_MIN_COMPLEX 0
#define SKP_Silk_PITCH_EST_MID_COMPLEX 1
#define SKP_Silk_PITCH_EST_MAX_COMPLEX 2
void SKP_Silk_decode_pitch(
SKP_int lagIndex, /* I */
SKP_int contourIndex, /* O */
SKP_int pitch_lags[], /* O 4 pitch values */
SKP_int Fs_kHz /* I sampling frequency (kHz) */
);
SKP_int SKP_Silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
const SKP_int16 *signal, /* I Signal of length PITCH_EST_FRAME_LENGTH_MS*Fs_kHz */
SKP_int *pitch_out, /* O 4 pitch lag values */
SKP_int *lagIndex, /* O Lag Index */
SKP_int *contourIndex, /* O Pitch contour Index */
SKP_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
SKP_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
const SKP_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
const SKP_int search_thres2_Q15, /* I Final threshold for lag candidates 0 - 1 */
const SKP_int Fs_kHz, /* I Sample frequency (kHz) */
const SKP_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
const SKP_int forLJC /* I 1 if this function is called from LJC code, 0 otherwise. */
);
/* parameter defining the size and accuracy of the piecewise linear */
/* cosine approximatin table. */
#define LSF_COS_TAB_SZ_FIX 128
/* rom table with cosine values */
extern const SKP_int SKP_Silk_LSFCosTab_FIX_Q12[ LSF_COS_TAB_SZ_FIX + 1 ];
/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
void SKP_Silk_A2NLSF(
SKP_int *NLSF, /* O Normalized Line Spectral Frequencies, Q15 (0 - (2^15-1)), [d] */
SKP_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
const SKP_int d /* I Filter order (must be even) */
);
/* compute whitening filter coefficients from normalized line spectral frequencies */
void SKP_Silk_NLSF2A(
SKP_int16 *a, /* o monic whitening filter coefficients in Q12, [d] */
const SKP_int *NLSF, /* i normalized line spectral frequencies in Q15, [d] */
const SKP_int d /* i filter order (should be even) */
);
void SKP_Silk_insertion_sort_increasing(
SKP_int32 *a, /* I/O Unsorted / Sorted vector */
SKP_int *index, /* O: Index vector for the sorted elements */
const SKP_int L, /* I: Vector length */
const SKP_int K /* I: Number of correctly sorted positions */
);
void SKP_Silk_insertion_sort_decreasing_int16(
SKP_int16 *a, /* I/O: Unsorted / Sorted vector */
SKP_int *index, /* O: Index vector for the sorted elements */
const SKP_int L, /* I: Vector length */
const SKP_int K /* I: Number of correctly sorted positions */
);
void SKP_Silk_insertion_sort_increasing_all_values(
SKP_int *a, /* I/O: Unsorted / Sorted vector */
const SKP_int L /* I: Vector length */
);
/* NLSF stabilizer, for a single input data vector */
void SKP_Silk_NLSF_stabilize(
SKP_int *NLSF_Q15, /* I/O: Unstable/stabilized normalized LSF vector in Q15 [L] */
const SKP_int *NDeltaMin_Q15, /* I: Normalized delta min vector in Q15, NDeltaMin_Q15[L] must be >= 1 [L+1] */
const SKP_int L /* I: Number of NLSF parameters in the input vector */
);
/* Laroia low complexity NLSF weights */
void SKP_Silk_NLSF_VQ_weights_laroia(
SKP_int *pNLSFW_Q6, /* O: Pointer to input vector weights [D x 1] */
const SKP_int *pNLSF_Q15, /* I: Pointer to input vector [D x 1] */
const SKP_int D /* I: Input vector dimension (even) */
);
/* Compute reflection coefficients from input signal */
2014-09-22 15:00:19 -05:00
void SKP_Silk_burg_modified(
2014-08-08 15:24:42 +00:00
SKP_int32 *res_nrg, /* O residual energy */
SKP_int *res_nrgQ, /* O residual energy Q value */
SKP_int32 A_Q16[], /* O prediction coefficients (length order) */
const SKP_int16 x[], /* I input signal, length: nb_subfr * ( D + subfr_length ) */
const SKP_int subfr_length, /* I input signal subframe length (including D preceeding samples) */
const SKP_int nb_subfr, /* I number of subframes stacked in x */
const SKP_int32 WhiteNoiseFrac_Q32, /* I fraction added to zero-lag autocorrelation */
const SKP_int D /* I order */
);
/* Copy and multiply a vector by a constant */
2014-09-22 15:00:19 -05:00
void SKP_Silk_scale_copy_vector16(
SKP_int16 *data_out,
const SKP_int16 *data_in,
2014-08-08 15:24:42 +00:00
SKP_int32 gain_Q16, /* I: gain in Q16 */
const SKP_int dataSize /* I: length */
);
/* Some for the LTP related function requires Q26 to work.*/
2014-09-22 15:00:19 -05:00
void SKP_Silk_scale_vector32_Q26_lshift_18(
2014-08-08 15:24:42 +00:00
SKP_int32 *data1, /* I/O: Q0/Q18 */
SKP_int32 gain_Q26, /* I: Q26 */
SKP_int dataSize /* I: length */
);
/********************************************************************/
/* INLINE ARM MATH */
/********************************************************************/
/* return sum(inVec1[i]*inVec2[i]) */
/* inVec1 and inVec2 should be increasing ordered, and starting address should be 4 byte aligned. (a factor of 4)*/
SKP_int32 SKP_Silk_inner_prod_aligned(
2014-09-22 15:00:19 -05:00
const SKP_int16* const inVec1, /* I input vector 1 */
2014-08-08 15:24:42 +00:00
const SKP_int16* const inVec2, /* I input vector 2 */
const SKP_int len /* I vector lengths */
);
SKP_int64 SKP_Silk_inner_prod16_aligned_64(
const SKP_int16 *inVec1, /* I input vector 1 */
const SKP_int16 *inVec2, /* I input vector 2 */
const SKP_int len /* I vector lengths */
);
/********************************************************************/
/* MACROS */
/********************************************************************/
/* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
left. Output is 32bit int.
Note: contemporary compilers recognize the C expression below and
compile it into a 'ror' instruction if available. No need for inline ASM! */
SKP_INLINE SKP_int32 SKP_ROR32( SKP_int32 a32, SKP_int rot )
{
SKP_uint32 x = (SKP_uint32) a32;
SKP_uint32 r = (SKP_uint32) rot;
SKP_uint32 m = (SKP_uint32) -rot;
if(rot <= 0)
return (SKP_int32) ((x << m) | (x >> (32 - m)));
else
return (SKP_int32) ((x << (32 - r)) | (x >> r));
}
/* Allocate SKP_int16 alligned to 4-byte memory address */
#define SKP_DWORD_ALIGN
/* Useful Macros that can be adjusted to other platforms */
#define SKP_memcpy(a, b, c) memcpy((a), (b), (c)) /* Dest, Src, ByteCount */
#define SKP_memset(a, b, c) memset((a), (b), (c)) /* Dest, value, ByteCount */
#define SKP_memmove(a, b, c) memmove((a), (b), (c)) /* Dest, Src, ByteCount */
/* fixed point macros */
// (a32 * b32) output have to be 32bit int
#define SKP_MUL(a32, b32) ((a32) * (b32))
// (a32 * b32) output have to be 32bit uint
#define SKP_MUL_uint(a32, b32) SKP_MUL(a32, b32)
// a32 + (b32 * c32) output have to be 32bit int
#define SKP_MLA(a32, b32, c32) SKP_ADD32((a32),((b32) * (c32)))
// a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int
#define SKP_SMLATT(a32, b32, c32) SKP_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
#define SKP_SMLALBB(a64, b16, c16) SKP_ADD64((a64),(SKP_int64)((SKP_int32)(b16) * (SKP_int32)(c16)))
// (a32 * b32)
#define SKP_SMULL(a32, b32) ((SKP_int64)(a32) * /*(SKP_int64)*/(b32))
// multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode)
#define SKP_MLA_ovflw(a32, b32, c32) SKP_MLA(a32, b32, c32)
#ifndef SKP_SMLABB_ovflw
# define SKP_SMLABB_ovflw(a32, b32, c32) SKP_SMLABB(a32, b32, c32)
#endif
#define SKP_SMLATT_ovflw(a32, b32, c32) SKP_SMLATT(a32, b32, c32)
#define SKP_SMLAWB_ovflw(a32, b32, c32) SKP_SMLAWB(a32, b32, c32)
#define SKP_SMLAWT_ovflw(a32, b32, c32) SKP_SMLAWT(a32, b32, c32)
#define SKP_DIV32_16(a32, b16) ((SKP_int32)((a32) / (b16)))
#define SKP_DIV32(a32, b32) ((SKP_int32)((a32) / (b32)))
#define SKP_ADD32(a, b) ((a) + (b))
#define SKP_ADD64(a, b) ((a) + (b))
#define SKP_SUB32(a, b) ((a) - (b))
#define SKP_SAT16(a) ((a) > SKP_int16_MAX ? SKP_int16_MAX : \
((a) < SKP_int16_MIN ? SKP_int16_MIN : (a)))
#define SKP_SAT32(a) ((a) > SKP_int32_MAX ? SKP_int32_MAX : \
((a) < SKP_int32_MIN ? SKP_int32_MIN : (a)))
#define SKP_CHECK_FIT16(a) (a)
#define SKP_CHECK_FIT32(a) (a)
#define SKP_ADD_SAT16(a, b) (SKP_int16)SKP_SAT16( SKP_ADD32( (SKP_int32)(a), (b) ) )
2014-09-22 15:00:19 -05:00
/* Add with saturation for positive input values */
2014-08-08 15:24:42 +00:00
#define SKP_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? SKP_int32_MAX : ((a)+(b)))
#define SKP_LSHIFT32(a, shift) ((a)<<(shift)) // shift >= 0, shift < 32
#define SKP_LSHIFT64(a, shift) ((a)<<(shift)) // shift >= 0, shift < 64
#define SKP_LSHIFT(a, shift) SKP_LSHIFT32(a, shift) // shift >= 0, shift < 32
#define SKP_RSHIFT32(a, shift) ((a)>>(shift)) // shift >= 0, shift < 32
#define SKP_RSHIFT64(a, shift) ((a)>>(shift)) // shift >= 0, shift < 64
#define SKP_RSHIFT(a, shift) SKP_RSHIFT32(a, shift) // shift >= 0, shift < 32
/* saturates before shifting */
#define SKP_LSHIFT_SAT32(a, shift) (SKP_LSHIFT32( SKP_LIMIT( (a), SKP_RSHIFT32( SKP_int32_MIN, (shift) ), \
SKP_RSHIFT32( SKP_int32_MAX, (shift) ) ), (shift) ))
#define SKP_LSHIFT_ovflw(a, shift) ((a)<<(shift)) // shift >= 0, allowed to overflow
#define SKP_LSHIFT_uint(a, shift) ((a)<<(shift)) // shift >= 0
#define SKP_RSHIFT_uint(a, shift) ((a)>>(shift)) // shift >= 0
#define SKP_ADD_LSHIFT(a, b, shift) ((a) + SKP_LSHIFT((b), (shift))) // shift >= 0
#define SKP_ADD_LSHIFT32(a, b, shift) SKP_ADD32((a), SKP_LSHIFT32((b), (shift))) // shift >= 0
#define SKP_ADD_RSHIFT(a, b, shift) ((a) + SKP_RSHIFT((b), (shift))) // shift >= 0
#define SKP_ADD_RSHIFT32(a, b, shift) SKP_ADD32((a), SKP_RSHIFT32((b), (shift))) // shift >= 0
#define SKP_ADD_RSHIFT_uint(a, b, shift) ((a) + SKP_RSHIFT_uint((b), (shift))) // shift >= 0
#define SKP_SUB_LSHIFT32(a, b, shift) SKP_SUB32((a), SKP_LSHIFT32((b), (shift))) // shift >= 0
#define SKP_SUB_RSHIFT32(a, b, shift) SKP_SUB32((a), SKP_RSHIFT32((b), (shift))) // shift >= 0
/* Requires that shift > 0 */
#define SKP_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
#define SKP_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
/* Number of rightshift required to fit the multiplication */
#define SKP_NSHIFT_MUL_32_32(a, b) ( -(31- (32-SKP_Silk_CLZ32(SKP_abs(a)) + (32-SKP_Silk_CLZ32(SKP_abs(b))))) )
2014-09-22 15:00:19 -05:00
#define SKP_min(a, b) (((a) < (b)) ? (a) : (b))
2014-08-08 15:24:42 +00:00
#define SKP_max(a, b) (((a) > (b)) ? (a) : (b))
/* Macro to convert floating-point constants to fixed-point */
#define SKP_FIX_CONST( C, Q ) ((SKP_int32)((C) * ((SKP_int64)1 << (Q)) + 0.5))
/* SKP_min() versions with typecast in the function call */
SKP_INLINE SKP_int SKP_min_int(SKP_int a, SKP_int b)
{
return (((a) < (b)) ? (a) : (b));
}
SKP_INLINE SKP_int32 SKP_min_32(SKP_int32 a, SKP_int32 b)
{
return (((a) < (b)) ? (a) : (b));
}
/* SKP_min() versions with typecast in the function call */
SKP_INLINE SKP_int SKP_max_int(SKP_int a, SKP_int b)
{
return (((a) > (b)) ? (a) : (b));
}
SKP_INLINE SKP_int16 SKP_max_16(SKP_int16 a, SKP_int16 b)
{
return (((a) > (b)) ? (a) : (b));
}
SKP_INLINE SKP_int32 SKP_max_32(SKP_int32 a, SKP_int32 b)
{
return (((a) > (b)) ? (a) : (b));
}
#define SKP_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
: ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
#define SKP_LIMIT_int SKP_LIMIT
#define SKP_LIMIT_32 SKP_LIMIT
//#define SKP_non_neg(a) ((a) & ((-(a)) >> (8 * sizeof(a) - 1))) /* doesn't seem faster than SKP_max(0, a);
#define SKP_abs(a) (((a) > 0) ? (a) : -(a)) // Be careful, SKP_abs returns wrong when input equals to SKP_intXX_MIN
#define SKP_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
/* PSEUDO-RANDOM GENERATOR */
/* Make sure to store the result as the seed for the next call (also in between */
/* frames), otherwise result won't be random at all. When only using some of the */
/* bits, take the most significant bits by right-shifting. Do not just mask off */
/* the lowest bits. */
#define SKP_RAND(seed) (SKP_MLA_ovflw(907633515, (seed), 196314165))
// Add some multiplication functions that can be easily mapped to ARM.
2014-09-22 15:00:19 -05:00
// SKP_SMMUL: Signed top word multiply.
// ARMv6 2 instruction cycles.
// ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)
2014-08-08 15:24:42 +00:00
//#define SKP_SMMUL(a32, b32) (SKP_int32)SKP_RSHIFT(SKP_SMLAL(SKP_SMULWB((a32), (b32)), (a32), SKP_RSHIFT_ROUND((b32), 16)), 16)
// the following seems faster on x86
#define SKP_SMMUL(a32, b32) (SKP_int32)SKP_RSHIFT64(SKP_SMULL((a32), (b32)), 32)
#include "SKP_Silk_Inlines.h"
#ifdef __cplusplus
}
#endif
#endif