FS-9775: Major cleanup around allocations, more work on search functionality, adjusted polling to reduce timeout when outgoing messages are pending

This commit is contained in:
Shane Bryldt 2016-12-15 05:27:54 +00:00 committed by Mike Jerris
parent d7222718aa
commit 4517a511d5
10 changed files with 659 additions and 1038 deletions

View File

@ -220,7 +220,6 @@ KS_DECLARE(ks_status_t) ks_dht_send_findnode(ks_dht_t *dht, ks_dht_endpoint_t *e
KS_DECLARE(ks_status_t) ks_dht_send_get(ks_dht_t *dht, ks_dht_endpoint_t *ep, ks_sockaddr_t *raddr, ks_dht_nodeid_t *targetid); KS_DECLARE(ks_status_t) ks_dht_send_get(ks_dht_t *dht, ks_dht_endpoint_t *ep, ks_sockaddr_t *raddr, ks_dht_nodeid_t *targetid);
KS_DECLARE(void *)ks_dht_process(ks_thread_t *thread, void *data); KS_DECLARE(void *)ks_dht_process(ks_thread_t *thread, void *data);
KS_DECLARE(ks_status_t) ks_dht_process_(ks_dht_t *dht, ks_dht_endpoint_t *ep, ks_sockaddr_t *raddr);
KS_DECLARE(ks_status_t) ks_dht_process_query(ks_dht_t *dht, ks_dht_message_t *message); KS_DECLARE(ks_status_t) ks_dht_process_query(ks_dht_t *dht, ks_dht_message_t *message);
KS_DECLARE(ks_status_t) ks_dht_process_response(ks_dht_t *dht, ks_dht_message_t *message); KS_DECLARE(ks_status_t) ks_dht_process_response(ks_dht_t *dht, ks_dht_message_t *message);
@ -242,80 +241,60 @@ KS_DECLARE(ks_status_t) ks_dht_process_response_put(ks_dht_t *dht, ks_dht_messag
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_datagram_alloc(ks_dht_datagram_t **datagram, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_datagram_create(ks_dht_datagram_t **datagram,
KS_DECLARE(void) ks_dht_datagram_prealloc(ks_dht_datagram_t *datagram, ks_pool_t *pool); ks_pool_t *pool,
KS_DECLARE(ks_status_t) ks_dht_datagram_free(ks_dht_datagram_t **datagram); ks_dht_t *dht,
ks_dht_endpoint_t *endpoint,
const ks_sockaddr_t *raddr);
KS_DECLARE(void) ks_dht_datagram_destroy(ks_dht_datagram_t **datagram);
KS_DECLARE(ks_status_t) ks_dht_datagram_init(ks_dht_datagram_t *datagram,
ks_dht_t *dht,
ks_dht_endpoint_t *endpoint,
const ks_sockaddr_t *raddr);
KS_DECLARE(ks_status_t) ks_dht_datagram_deinit(ks_dht_datagram_t *datagram);
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_endpoint_alloc(ks_dht_endpoint_t **endpoint, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_endpoint_create(ks_dht_endpoint_t **endpoint,
KS_DECLARE(ks_status_t) ks_dht_endpoint_prealloc(ks_dht_endpoint_t *endpoint, ks_pool_t *pool); ks_pool_t *pool,
KS_DECLARE(ks_status_t) ks_dht_endpoint_free(ks_dht_endpoint_t **endpoint); const ks_dht_nodeid_t *nodeid,
const ks_sockaddr_t *addr,
ks_socket_t sock);
KS_DECLARE(void) ks_dht_endpoint_destroy(ks_dht_endpoint_t **endpoint);
KS_DECLARE(ks_status_t) ks_dht_endpoint_init(ks_dht_endpoint_t *endpoint,
const ks_dht_nodeid_t *nodeid,
const ks_sockaddr_t *addr,
ks_socket_t sock);
KS_DECLARE(ks_status_t) ks_dht_endpoint_deinit(ks_dht_endpoint_t *endpoint);
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_search_alloc(ks_dht_search_t **search, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_search_create(ks_dht_search_t **search, ks_pool_t *pool, const ks_dht_nodeid_t *target);
KS_DECLARE(void) ks_dht_search_prealloc(ks_dht_search_t *search, ks_pool_t *pool); KS_DECLARE(void) ks_dht_search_destroy(ks_dht_search_t **search);
KS_DECLARE(ks_status_t) ks_dht_search_free(ks_dht_search_t **search);
KS_DECLARE(ks_status_t) ks_dht_search_init(ks_dht_search_t *search, const ks_dht_nodeid_t *target);
KS_DECLARE(ks_status_t) ks_dht_search_deinit(ks_dht_search_t *search);
KS_DECLARE(ks_status_t) ks_dht_search_callback_add(ks_dht_search_t *search, ks_dht_search_callback_t callback); KS_DECLARE(ks_status_t) ks_dht_search_callback_add(ks_dht_search_t *search, ks_dht_search_callback_t callback);
KS_DECLARE(ks_status_t) ks_dht_search_pending_alloc(ks_dht_search_pending_t **pending, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_search_pending_create(ks_dht_search_pending_t **pending, ks_pool_t *pool, const ks_dht_nodeid_t *nodeid);
KS_DECLARE(void) ks_dht_search_pending_prealloc(ks_dht_search_pending_t *pending, ks_pool_t *pool); KS_DECLARE(void) ks_dht_search_pending_destroy(ks_dht_search_pending_t **pending);
KS_DECLARE(ks_status_t) ks_dht_search_pending_free(ks_dht_search_pending_t **pending);
KS_DECLARE(ks_status_t) ks_dht_search_pending_init(ks_dht_search_pending_t *pending, ks_dht_node_t *node);
KS_DECLARE(ks_status_t) ks_dht_search_pending_deinit(ks_dht_search_pending_t *pending);
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_storageitem_alloc(ks_dht_storageitem_t **item, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_storageitem_create_immutable(ks_dht_storageitem_t **item, ks_pool_t *pool, struct bencode *v);
KS_DECLARE(ks_status_t) ks_dht_storageitem_prealloc(ks_dht_storageitem_t *item, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_storageitem_create_mutable(ks_dht_storageitem_t **item,
KS_DECLARE(ks_status_t) ks_dht_storageitem_free(ks_dht_storageitem_t **item); ks_pool_t *pool,
struct bencode *v,
ks_dht_storageitem_key_t *k,
uint8_t *salt,
ks_size_t salt_length,
int64_t sequence,
ks_dht_storageitem_signature_t *signature);
KS_DECLARE(void) ks_dht_storageitem_destroy(ks_dht_storageitem_t **item);
KS_DECLARE(ks_status_t) ks_dht_storageitem_init(ks_dht_storageitem_t *item, struct bencode *v);
KS_DECLARE(ks_status_t) ks_dht_storageitem_deinit(ks_dht_storageitem_t *item);
KS_DECLARE(ks_status_t) ks_dht_storageitem_create(ks_dht_storageitem_t *item, ks_bool_t mutable);
KS_DECLARE(ks_status_t) ks_dht_storageitem_immutable(ks_dht_storageitem_t *item);
KS_DECLARE(ks_status_t) ks_dht_storageitem_mutable(ks_dht_storageitem_t *item,
ks_dht_storageitem_key_t *k,
uint8_t *salt,
ks_size_t salt_length,
int64_t sequence,
ks_dht_storageitem_signature_t *signature);
/** /**
* *
*/ */
//KS_DECLARE(ks_status_t) ks_dht_node_alloc(ks_dht_node_t **node, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_transaction_create(ks_dht_transaction_t **transaction,
//KS_DECLARE(ks_status_t) ks_dht_node_prealloc(ks_dht_node_t *node, ks_pool_t *pool); ks_pool_t *pool,
//KS_DECLARE(ks_status_t) ks_dht_node_free(ks_dht_node_t *node); ks_sockaddr_t *raddr,
uint32_t transactionid,
//KS_DECLARE(ks_status_t) ks_dht_node_init(ks_dht_node_t *node, const ks_dht_nodeid_t *id, const ks_sockaddr_t *addr); ks_dht_message_callback_t callback);
//KS_DECLARE(ks_status_t) ks_dht_node_deinit(ks_dht_node_t *node); KS_DECLARE(void) ks_dht_transaction_destroy(ks_dht_transaction_t **transaction);
//KS_DECLARE(ks_status_t) ks_dht_node_address_check(ks_dht_node_t *node, const ks_sockaddr_t *addr);
//KS_DECLARE(ks_bool_t) ks_dht_node_address_exists(ks_dht_node_t *node, const ks_sockaddr_t *addr);
//KS_DECLARE(ks_status_t) ks_dht_node_address_add(ks_dht_node_t *node, const ks_sockaddr_t *addr);
KS_END_EXTERN_C KS_END_EXTERN_C

View File

@ -2,24 +2,29 @@
#include "ks_dht-int.h" #include "ks_dht-int.h"
#include "sodium.h" #include "sodium.h"
KS_DECLARE(ks_status_t) ks_dht_alloc(ks_dht_t **dht, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_create(ks_dht_t **dht, ks_pool_t *pool, ks_thread_pool_t *tpool)
{ {
ks_bool_t pool_alloc = !pool; ks_bool_t pool_alloc = !pool;
ks_dht_t *d; ks_dht_t *d = NULL;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(dht); ks_assert(dht);
*dht = NULL;
/** /**
* Create a new internally managed pool if one wasn't provided, and returns KS_STATUS_NO_MEM if pool was not created. * Create a new internally managed pool if one wasn't provided, and returns KS_STATUS_NO_MEM if pool was not created.
*/ */
if (pool_alloc) ks_pool_open(&pool); if (pool_alloc && (ret = ks_pool_open(&pool)) != KS_STATUS_SUCCESS) goto done;
if (!pool) return KS_STATUS_NO_MEM;
/** /**
* Allocate the dht instance from the pool, and returns KS_STATUS_NO_MEM if the dht was not created. * Allocate the dht instance from the pool, and returns KS_STATUS_NO_MEM if the dht was not created.
*/ */
*dht = d = ks_pool_alloc(pool, sizeof(ks_dht_t)); *dht = d = ks_pool_alloc(pool, sizeof(ks_dht_t));
if (!d) return KS_STATUS_NO_MEM; if (!d) {
ret = KS_STATUS_NO_MEM;
goto done;
}
/** /**
* Keep track of the pool used for future allocations and cleanup. * Keep track of the pool used for future allocations and cleanup.
@ -28,350 +33,339 @@ KS_DECLARE(ks_status_t) ks_dht_alloc(ks_dht_t **dht, ks_pool_t *pool)
d->pool = pool; d->pool = pool;
d->pool_alloc = pool_alloc; d->pool_alloc = pool_alloc;
return KS_STATUS_SUCCESS;
}
KS_DECLARE(void) ks_dht_prealloc(ks_dht_t *dht, ks_pool_t *pool)
{
ks_assert(dht);
ks_assert(pool);
/**
* Treat preallocate function like allocate, zero the memory like pool allocations do.
*/
memset(dht, 0, sizeof(ks_dht_t));
/**
* Keep track of the pool used for future allocations, pool must
*/
dht->pool = pool;
dht->pool_alloc = KS_FALSE;
}
KS_DECLARE(ks_status_t) ks_dht_free(ks_dht_t **dht)
{
ks_pool_t *pool = NULL;
ks_bool_t pool_alloc = KS_FALSE;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(dht);
ks_assert(*dht);
/**
* Call ks_dht_deinit to ensure everything has been cleaned up internally.
* The pool member variables must not be messed with in deinit, they are managed at the allocator layer.
*/
if ((ret = ks_dht_deinit(*dht)) != KS_STATUS_SUCCESS) return ret;
/**
* Temporarily store the allocator level variables because freeing the dht instance will invalidate it.
*/
pool = (*dht)->pool;
pool_alloc = (*dht)->pool_alloc;
/**
* Free the dht instance from the pool, after this the dht instance memory is invalid.
*/
if ((ret = ks_pool_free((*dht)->pool, *dht)) != KS_STATUS_SUCCESS) return ret;
/**
* At this point dht instance is invalidated so NULL the pointer.
*/
*dht = NULL;
/**
* If the pool was allocated internally, destroy it using the temporary variables stored earlier.
* If this fails, something catastrophically bad happened like memory corruption.
*/
if (pool_alloc && (ret = ks_pool_close(&pool)) != KS_STATUS_SUCCESS) return ret;
return KS_STATUS_SUCCESS;
}
KS_DECLARE(ks_status_t) ks_dht_init(ks_dht_t *dht, ks_thread_pool_t *tpool)
{
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(dht);
ks_assert(dht->pool);
/** /**
* Create a new internally managed thread pool if one wasn't provided. * Create a new internally managed thread pool if one wasn't provided.
*/ */
d->tpool = tpool;
if (!tpool) { if (!tpool) {
if ((ret = ks_thread_pool_create(&tpool, d->tpool_alloc = KS_TRUE;
if ((ret = ks_thread_pool_create(&d->tpool,
KS_DHT_TPOOL_MIN, KS_DHT_TPOOL_MIN,
KS_DHT_TPOOL_MAX, KS_DHT_TPOOL_MAX,
KS_DHT_TPOOL_STACK, KS_DHT_TPOOL_STACK,
KS_PRI_NORMAL, KS_PRI_NORMAL,
KS_DHT_TPOOL_IDLE)) != KS_STATUS_SUCCESS) return ret; KS_DHT_TPOOL_IDLE)) != KS_STATUS_SUCCESS) goto done;
dht->tpool_alloc = KS_TRUE;
} }
dht->tpool = tpool;
/** /**
* Default autorouting to disabled. * Default autorouting to disabled.
*/ */
dht->autoroute = KS_FALSE; d->autoroute = KS_FALSE;
dht->autoroute_port = 0; d->autoroute_port = 0;
/** /**
* Create the message type registry. * Create the message type registry.
*/ */
if ((ret = ks_hash_create(&dht->registry_type, if ((ret = ks_hash_create(&d->registry_type,
KS_HASH_MODE_DEFAULT, KS_HASH_MODE_DEFAULT,
KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK, KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK,
dht->pool)) != KS_STATUS_SUCCESS) return ret; d->pool)) != KS_STATUS_SUCCESS) goto done;
/** /**
* Register the message type callbacks for query (q), response (r), and error (e) * Register the message type callbacks for query (q), response (r), and error (e)
*/ */
ks_dht_register_type(dht, "q", ks_dht_process_query); ks_dht_register_type(d, "q", ks_dht_process_query);
ks_dht_register_type(dht, "r", ks_dht_process_response); ks_dht_register_type(d, "r", ks_dht_process_response);
ks_dht_register_type(dht, "e", ks_dht_process_error); ks_dht_register_type(d, "e", ks_dht_process_error);
/** /**
* Create the message query registry. * Create the message query registry.
*/ */
if ((ret = ks_hash_create(&dht->registry_query, if ((ret = ks_hash_create(&d->registry_query,
KS_HASH_MODE_DEFAULT, KS_HASH_MODE_DEFAULT,
KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK, KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK,
dht->pool)) != KS_STATUS_SUCCESS) return ret; d->pool)) != KS_STATUS_SUCCESS) goto done;
/** /**
* Register the message query callbacks for ping, find_node, etc. * Register the message query callbacks for ping, find_node, etc.
*/ */
ks_dht_register_query(dht, "ping", ks_dht_process_query_ping); ks_dht_register_query(d, "ping", ks_dht_process_query_ping);
ks_dht_register_query(dht, "find_node", ks_dht_process_query_findnode); ks_dht_register_query(d, "find_node", ks_dht_process_query_findnode);
ks_dht_register_query(dht, "get", ks_dht_process_query_get); ks_dht_register_query(d, "get", ks_dht_process_query_get);
ks_dht_register_query(dht, "put", ks_dht_process_query_put); ks_dht_register_query(d, "put", ks_dht_process_query_put);
/** /**
* Create the message error registry. * Create the message error registry.
*/ */
if ((ret = ks_hash_create(&dht->registry_error, if ((ret = ks_hash_create(&d->registry_error,
KS_HASH_MODE_DEFAULT, KS_HASH_MODE_DEFAULT,
KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK, KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK,
dht->pool)) != KS_STATUS_SUCCESS) return ret; d->pool)) != KS_STATUS_SUCCESS) goto done;
// @todo register 301 error for internal get/put CAS hash mismatch retry handler // @todo register 301 error for internal get/put CAS hash mismatch retry handler
/** /**
* Default these to FALSE, binding will set them TRUE when a respective address is bound. * Default these to FALSE, binding will set them TRUE when a respective address is bound.
* @todo these may not be useful anymore they are from legacy code * @todo these may not be useful anymore they are from legacy code
*/ */
dht->bind_ipv4 = KS_FALSE; d->bind_ipv4 = KS_FALSE;
dht->bind_ipv6 = KS_FALSE; d->bind_ipv6 = KS_FALSE;
/** /**
* Initialize the data used to track endpoints to NULL, binding will handle latent allocations. * Initialize the data used to track endpoints to NULL, binding will handle latent allocations.
* The endpoints and endpoints_poll arrays are maintained in parallel to optimize polling. * The endpoints and endpoints_poll arrays are maintained in parallel to optimize polling.
*/ */
dht->endpoints = NULL; d->endpoints = NULL;
dht->endpoints_size = 0; d->endpoints_size = 0;
dht->endpoints_poll = NULL; d->endpoints_poll = NULL;
/** /**
* Create the endpoints hash for fast lookup, this is used to route externally provided remote addresses when the local endpoint is unknown. * Create the endpoints hash for fast lookup, this is used to route externally provided remote addresses when the local endpoint is unknown.
* This also provides the basis for autorouting to find unbound interfaces and bind them at runtime. * This also provides the basis for autorouting to find unbound interfaces and bind them at runtime.
* This hash uses the host ip string concatenated with a colon and the port, ie: "123.123.123.123:123" or ipv6 equivilent * This hash uses the host ip string concatenated with a colon and the port, ie: "123.123.123.123:123" or ipv6 equivilent
*/ */
if ((ret = ks_hash_create(&dht->endpoints_hash, if ((ret = ks_hash_create(&d->endpoints_hash,
KS_HASH_MODE_DEFAULT, KS_HASH_MODE_DEFAULT,
KS_HASH_FLAG_RWLOCK, KS_HASH_FLAG_RWLOCK,
dht->pool)) != KS_STATUS_SUCCESS) return ret; d->pool)) != KS_STATUS_SUCCESS) goto done;
/** /**
* Default expirations to not be checked for one pulse. * Default expirations to not be checked for one pulse.
*/ */
dht->pulse_expirations = ks_time_now_sec() + KS_DHT_PULSE_EXPIRATIONS; d->pulse_expirations = ks_time_now_sec() + KS_DHT_PULSE_EXPIRATIONS;
/** /**
* Create the queue for outgoing messages, this ensures sending remains async and can be throttled when system buffers are full. * Create the queue for outgoing messages, this ensures sending remains async and can be throttled when system buffers are full.
*/ */
if ((ret = ks_q_create(&dht->send_q, dht->pool, 0)) != KS_STATUS_SUCCESS) return ret; if ((ret = ks_q_create(&d->send_q, d->pool, 0)) != KS_STATUS_SUCCESS) goto done;
/** /**
* If a message is popped from the queue for sending but the system buffers are too full, this is used to temporarily store the message. * If a message is popped from the queue for sending but the system buffers are too full, this is used to temporarily store the message.
*/ */
dht->send_q_unsent = NULL; d->send_q_unsent = NULL;
/** /**
* The dht uses a single internal large receive buffer for receiving all frames, this may change in the future to offload processing to a threadpool. * The dht uses a single internal large receive buffer for receiving all frames, this may change in the future to offload processing to a threadpool.
*/ */
dht->recv_buffer_length = 0; d->recv_buffer_length = 0;
/**
* Initialize the transaction id mutex, should use atomic increment instead
*/
if ((ret = ks_mutex_create(&d->tid_mutex, KS_MUTEX_FLAG_DEFAULT, d->pool)) != KS_STATUS_SUCCESS) goto done;
/** /**
* Initialize the first transaction id randomly, this doesn't really matter. * Initialize the first transaction id randomly, this doesn't really matter.
*/ */
dht->transactionid_next = 1; //rand(); d->transactionid_next = 1; //rand();
/** /**
* Create the hash to track pending transactions on queries that are pending responses. * Create the hash to track pending transactions on queries that are pending responses.
* It should be impossible to receive a duplicate transaction id in the hash before it expires, but if it does an error is preferred. * It should be impossible to receive a duplicate transaction id in the hash before it expires, but if it does an error is preferred.
*/ */
if ((ret = ks_hash_create(&dht->transactions_hash, if ((ret = ks_hash_create(&d->transactions_hash,
KS_HASH_MODE_INT, KS_HASH_MODE_INT,
KS_HASH_FLAG_RWLOCK, KS_HASH_FLAG_RWLOCK,
dht->pool)) != KS_STATUS_SUCCESS) return ret; d->pool)) != KS_STATUS_SUCCESS) goto done;
/** /**
* The internal route tables will be latent allocated when binding. * The internal route tables will be latent allocated when binding.
*/ */
dht->rt_ipv4 = NULL; d->rt_ipv4 = NULL;
dht->rt_ipv6 = NULL; d->rt_ipv6 = NULL;
/**
* Create the hash to store searches.
*/
if ((ret = ks_hash_create(&d->search_hash,
KS_HASH_MODE_ARBITRARY,
KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK,
d->pool)) != KS_STATUS_SUCCESS) goto done;
/**
* The search hash uses arbitrary key size, which requires the key size be provided.
*/
ks_hash_set_keysize(d->search_hash, KS_DHT_NODEID_SIZE);
/** /**
* The opaque write tokens require some entropy for generating which needs to change periodically but accept tokens using the last two secrets. * The opaque write tokens require some entropy for generating which needs to change periodically but accept tokens using the last two secrets.
*/ */
dht->token_secret_current = dht->token_secret_previous = rand(); d->token_secret_current = d->token_secret_previous = rand();
dht->token_secret_expiration = ks_time_now_sec() + KS_DHT_TOKENSECRET_EXPIRATION; d->token_secret_expiration = ks_time_now_sec() + KS_DHT_TOKENSECRET_EXPIRATION;
/** /**
* Create the hash to store arbitrary data for BEP44. * Create the hash to store arbitrary data for BEP44.
*/ */
if ((ret = ks_hash_create(&dht->storage_hash, if ((ret = ks_hash_create(&d->storage_hash,
KS_HASH_MODE_ARBITRARY, KS_HASH_MODE_ARBITRARY,
KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK, KS_HASH_FLAG_RWLOCK | KS_HASH_FLAG_DUP_CHECK,
dht->pool)) != KS_STATUS_SUCCESS) return ret; d->pool)) != KS_STATUS_SUCCESS) goto done;
/** /**
* The storage hash uses arbitrary key size, which requires the key size be provided, they are the same size as nodeid's. * The storage hash uses arbitrary key size, which requires the key size be provided, they are the same size as nodeid's.
*/ */
ks_hash_set_keysize(dht->storage_hash, KS_DHT_NODEID_SIZE); ks_hash_set_keysize(d->storage_hash, KS_DHT_NODEID_SIZE);
return KS_STATUS_SUCCESS; done:
if (ret != KS_STATUS_SUCCESS) {
if (d) ks_dht_destroy(&d);
else if (pool_alloc && pool) ks_pool_close(&pool);
*dht = NULL;
}
return ret;
} }
KS_DECLARE(ks_status_t) ks_dht_deinit(ks_dht_t *dht) KS_DECLARE(void) ks_dht_destroy(ks_dht_t **dht)
{ {
ks_hash_iterator_t *it; ks_dht_t *d = NULL;
ks_status_t ret = KS_STATUS_SUCCESS; ks_pool_t *pool = NULL;
ks_bool_t pool_alloc = KS_FALSE;
ks_hash_iterator_t *it = NULL;
ks_assert(dht); ks_assert(dht);
ks_assert(*dht);
d = *dht;
/** /**
* Cleanup the storage hash and it's contents if it is allocated. * Cleanup the storage hash and it's contents if it is allocated.
*/ */
if (dht->storage_hash) { if (d->storage_hash) {
for (it = ks_hash_first(dht->storage_hash, KS_UNLOCKED); it; it = ks_hash_next(&it)) { for (it = ks_hash_first(d->storage_hash, KS_UNLOCKED); it; it = ks_hash_next(&it)) {
const void *key;
ks_dht_storageitem_t *val; ks_dht_storageitem_t *val;
ks_hash_this(it, &key, NULL, (void **)&val);
if ((ret = ks_dht_storageitem_deinit(val)) != KS_STATUS_SUCCESS) return ret; ks_hash_this_val(it, (void **)&val);
if ((ret = ks_dht_storageitem_free(&val)) != KS_STATUS_SUCCESS) return ret;
ks_dht_storageitem_destroy(&val);
} }
ks_hash_destroy(&dht->storage_hash); ks_hash_destroy(&d->storage_hash);
} }
/** /**
* Zero out the opaque write token variables. * Zero out the opaque write token variables.
*/ */
dht->token_secret_current = 0; d->token_secret_current = 0;
dht->token_secret_previous = 0; d->token_secret_previous = 0;
dht->token_secret_expiration = 0; d->token_secret_expiration = 0;
/**
* Cleanup the search hash and it's contents if it is allocated.
*/
if (d->search_hash) {
for (it = ks_hash_first(d->search_hash, KS_UNLOCKED); it; it = ks_hash_next(&it)) {
ks_dht_search_t *val;
ks_hash_this_val(it, (void **)&val);
ks_dht_search_destroy(&val);
}
ks_hash_destroy(&d->search_hash);
}
/** /**
* Cleanup the route tables if they are allocated. * Cleanup the route tables if they are allocated.
* @todo check if endpoints need to be destroyed first to release the readlock on their node
*/ */
if (dht->rt_ipv4) ks_dhtrt_deinitroute(&dht->rt_ipv4); if (d->rt_ipv4) ks_dhtrt_deinitroute(&d->rt_ipv4);
if (dht->rt_ipv6) ks_dhtrt_deinitroute(&dht->rt_ipv6); if (d->rt_ipv6) ks_dhtrt_deinitroute(&d->rt_ipv6);
/** /**
* Cleanup the transactions hash if it is allocated. * Cleanup the transactions mutex and hash if they are allocated.
*/ */
dht->transactionid_next = 0; d->transactionid_next = 0;
if (dht->transactions_hash) ks_hash_destroy(&dht->transactions_hash); if (d->tid_mutex) ks_mutex_destroy(&d->tid_mutex);
if (d->transactions_hash) ks_hash_destroy(&d->transactions_hash);
/** /**
* Probably don't need this, recv_buffer_length is temporary and may change * Probably don't need this, recv_buffer_length is temporary and may change
*/ */
dht->recv_buffer_length = 0; d->recv_buffer_length = 0;
/** /**
* Cleanup the send queue and it's contents if it is allocated. * Cleanup the send queue and it's contents if it is allocated.
*/ */
if (dht->send_q) { if (d->send_q) {
ks_dht_message_t *msg; ks_dht_message_t *msg;
while (ks_q_pop_timeout(dht->send_q, (void **)&msg, 1) == KS_STATUS_SUCCESS && msg) { while (ks_q_pop_timeout(d->send_q, (void **)&msg, 1) == KS_STATUS_SUCCESS && msg) ks_dht_message_destroy(&msg);
if ((ret = ks_dht_message_deinit(msg)) != KS_STATUS_SUCCESS) return ret; ks_q_destroy(&d->send_q);
if ((ret = ks_dht_message_free(&msg)) != KS_STATUS_SUCCESS) return ret;
}
if ((ret = ks_q_destroy(&dht->send_q)) != KS_STATUS_SUCCESS) return ret;
} }
/** /**
* Cleanup the cached popped message if it is set. * Cleanup the cached popped message if it is set.
*/ */
if (dht->send_q_unsent) { if (d->send_q_unsent) ks_dht_message_destroy(&d->send_q_unsent);
if ((ret = ks_dht_message_deinit(dht->send_q_unsent)) != KS_STATUS_SUCCESS) return ret;
if ((ret = ks_dht_message_free(&dht->send_q_unsent)) != KS_STATUS_SUCCESS) return ret;
}
/** /**
* Probably don't need this * Probably don't need this
*/ */
dht->pulse_expirations = 0; d->pulse_expirations = 0;
/** /**
* Cleanup any endpoints that have been allocated. * Cleanup any endpoints that have been allocated.
*/ */
for (int32_t i = 0; i < dht->endpoints_size; ++i) { for (int32_t i = 0; i < d->endpoints_size; ++i) {
ks_dht_endpoint_t *ep = dht->endpoints[i]; ks_dht_endpoint_t *ep = d->endpoints[i];
if ((ret = ks_dht_endpoint_deinit(ep)) != KS_STATUS_SUCCESS) return ret; ks_dht_endpoint_destroy(&ep);
if ((ret = ks_dht_endpoint_free(&ep)) != KS_STATUS_SUCCESS) return ret;
} }
dht->endpoints_size = 0; d->endpoints_size = 0;
/** /**
* Cleanup the array of endpoint pointers if it is allocated. * Cleanup the array of endpoint pointers if it is allocated.
*/ */
if (dht->endpoints) { if (d->endpoints) {
if ((ret = ks_pool_free(dht->pool, dht->endpoints)) != KS_STATUS_SUCCESS) return ret; ks_pool_free(d->pool, d->endpoints);
dht->endpoints = NULL; d->endpoints = NULL;
} }
/** /**
* Cleanup the array of endpoint polling data if it is allocated. * Cleanup the array of endpoint polling data if it is allocated.
*/ */
if (dht->endpoints_poll) { if (d->endpoints_poll) {
if ((ret = ks_pool_free(dht->pool, dht->endpoints_poll)) != KS_STATUS_SUCCESS) return ret; ks_pool_free(d->pool, d->endpoints_poll);
dht->endpoints_poll = NULL; d->endpoints_poll = NULL;
} }
/** /**
* Cleanup the endpoints hash if it is allocated. * Cleanup the endpoints hash if it is allocated.
*/ */
if (dht->endpoints_hash) ks_hash_destroy(&dht->endpoints_hash); if (d->endpoints_hash) ks_hash_destroy(&d->endpoints_hash);
/** /**
* Probably don't need this * Probably don't need this
*/ */
dht->bind_ipv4 = KS_FALSE; d->bind_ipv4 = KS_FALSE;
dht->bind_ipv6 = KS_FALSE; d->bind_ipv6 = KS_FALSE;
/** /**
* Cleanup the type, query, and error registries if they have been allocated. * Cleanup the type, query, and error registries if they have been allocated.
*/ */
if (dht->registry_type) ks_hash_destroy(&dht->registry_type); if (d->registry_type) ks_hash_destroy(&d->registry_type);
if (dht->registry_query) ks_hash_destroy(&dht->registry_query); if (d->registry_query) ks_hash_destroy(&d->registry_query);
if (dht->registry_error) ks_hash_destroy(&dht->registry_error); if (d->registry_error) ks_hash_destroy(&d->registry_error);
/** /**
* Probably don't need this * Probably don't need this
*/ */
dht->autoroute = KS_FALSE; d->autoroute = KS_FALSE;
dht->autoroute_port = 0; d->autoroute_port = 0;
/** /**
* If the thread pool was allocated internally, destroy it. * If the thread pool was allocated internally, destroy it.
* If this fails, something catastrophically bad happened like memory corruption. * If this fails, something catastrophically bad happened like memory corruption.
*/ */
if (dht->tpool_alloc && (ret = ks_thread_pool_destroy(&dht->tpool)) != KS_STATUS_SUCCESS) return ret; if (d->tpool_alloc) ks_thread_pool_destroy(&d->tpool);
dht->tpool_alloc = KS_FALSE; d->tpool_alloc = KS_FALSE;
return KS_STATUS_SUCCESS; /**
* Temporarily store the allocator level variables because freeing the dht instance will invalidate it.
*/
pool = d->pool;
pool_alloc = d->pool_alloc;
/**
* Free the dht instance from the pool, after this the dht instance memory is invalid.
*/
ks_pool_free(d->pool, d);
/**
* At this point dht instance is invalidated so NULL the pointer.
*/
*dht = d = NULL;
/**
* If the pool was allocated internally, destroy it using the temporary variables stored earlier.
* If this fails, something catastrophically bad happened like memory corruption.
*/
if (pool_alloc) ks_pool_close(&pool);
} }
KS_DECLARE(void) ks_dht_autoroute(ks_dht_t *dht, ks_bool_t autoroute, ks_port_t port) KS_DECLARE(void) ks_dht_autoroute(ks_dht_t *dht, ks_bool_t autoroute, ks_port_t port)
{ {
@ -520,12 +514,7 @@ KS_DECLARE(ks_status_t) ks_dht_bind(ks_dht_t *dht, const ks_dht_nodeid_t *nodeid
/** /**
* Allocate the endpoint to track the local socket. * Allocate the endpoint to track the local socket.
*/ */
if ((ret = ks_dht_endpoint_alloc(&ep, dht->pool)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_endpoint_create(&ep, dht->pool, nodeid, addr, sock)) != KS_STATUS_SUCCESS) goto done;
/**
* Initialize the node, may provide NULL nodeid to have one generated internally.
*/
if ((ret = ks_dht_endpoint_init(ep, nodeid, addr, sock)) != KS_STATUS_SUCCESS) goto done;
/** /**
* Resize the endpoints array to take another endpoint pointer. * Resize the endpoints array to take another endpoint pointer.
@ -591,14 +580,13 @@ KS_DECLARE(ks_status_t) ks_dht_bind(ks_dht_t *dht, const ks_dht_nodeid_t *nodeid
if (ret != KS_STATUS_SUCCESS) { if (ret != KS_STATUS_SUCCESS) {
/** /**
* If any failures occur, we need to make sure the socket is properly closed. * If any failures occur, we need to make sure the socket is properly closed.
* This will be done in ks_dht_endpoint_deinit only if the socket was assigned during a successful ks_dht_endpoint_init. * This will be done in ks_dht_endpoint_destroy only if the socket was assigned during a successful ks_dht_endpoint_create.
* Then return whatever failure condition resulted in landed here. * Then return whatever failure condition resulted in landed here.
*/ */
if (sock != KS_SOCK_INVALID && ep && ep->sock == KS_SOCK_INVALID) ks_socket_close(&sock); if (ep) ks_dht_endpoint_destroy(&ep);
if (ep) { else if (sock != KS_SOCK_INVALID) ks_socket_close(&sock);
ks_dht_endpoint_deinit(ep);
ks_dht_endpoint_free(&ep); if (endpoint) *endpoint = NULL;
}
} }
return ret; return ret;
} }
@ -607,49 +595,37 @@ KS_DECLARE(void) ks_dht_pulse(ks_dht_t *dht, int32_t timeout)
{ {
ks_dht_datagram_t *datagram = NULL; ks_dht_datagram_t *datagram = NULL;
int32_t result; int32_t result;
ks_sockaddr_t raddr;
ks_assert(dht); ks_assert(dht);
ks_assert (timeout >= 0); ks_assert (timeout > 0);
// @todo why was old DHT code checking for poll descriptor resizing here? if (dht->send_q_unsent || ks_q_size(dht->send_q) > 0) timeout = 0;
if (timeout == 0) {
// @todo deal with default timeout, should return quickly but not hog the CPU polling
}
result = ks_poll(dht->endpoints_poll, dht->endpoints_size, timeout); result = ks_poll(dht->endpoints_poll, dht->endpoints_size, timeout);
if (result > 0) { if (result > 0) {
for (int32_t i = 0; i < dht->endpoints_size; ++i) { for (int32_t i = 0; i < dht->endpoints_size; ++i) {
if (dht->endpoints_poll[i].revents & POLLIN) { if (!(dht->endpoints_poll[i].revents & POLLIN)) continue;
ks_sockaddr_t raddr = KS_SA_INIT;
dht->recv_buffer_length = sizeof(dht->recv_buffer); raddr = (const ks_sockaddr_t){ 0 };
dht->recv_buffer_length = sizeof(dht->recv_buffer);
raddr.family = dht->endpoints[i]->addr.family; raddr.family = dht->endpoints[i]->addr.family;
if (ks_socket_recvfrom(dht->endpoints_poll[i].fd, dht->recv_buffer, &dht->recv_buffer_length, &raddr) == KS_STATUS_SUCCESS) { if (ks_socket_recvfrom(dht->endpoints_poll[i].fd, dht->recv_buffer, &dht->recv_buffer_length, &raddr) != KS_STATUS_SUCCESS) continue;
if (dht->recv_buffer_length == sizeof(dht->recv_buffer)) {
ks_log(KS_LOG_DEBUG, "Dropped oversize datagram from %s %d\n", raddr.host, raddr.port); if (dht->recv_buffer_length == sizeof(dht->recv_buffer)) {
} else { ks_log(KS_LOG_DEBUG, "Dropped oversize datagram from %s %d\n", raddr.host, raddr.port);
// @todo check for recycled datagrams continue;
if (ks_dht_datagram_alloc(&datagram, dht->pool) == KS_STATUS_SUCCESS) {
if (ks_dht_datagram_init(datagram, dht, dht->endpoints[i], &raddr) != KS_STATUS_SUCCESS) {
// @todo add to recycled datagrams
ks_dht_datagram_free(&datagram);
} else if (ks_thread_pool_add_job(dht->tpool, ks_dht_process, datagram) != KS_STATUS_SUCCESS) {
// @todo add to recycled datagrams
ks_dht_datagram_deinit(datagram);
ks_dht_datagram_free(&datagram);
}
}
}
}
} }
if (ks_dht_datagram_create(&datagram, dht->pool, dht, dht->endpoints[i], &raddr) == KS_STATUS_SUCCESS &&
ks_thread_pool_add_job(dht->tpool, ks_dht_process, datagram) != KS_STATUS_SUCCESS) ks_dht_datagram_destroy(&datagram);
} }
} }
ks_dht_pulse_expirations(dht);
ks_dht_pulse_send(dht); ks_dht_pulse_send(dht);
ks_dht_pulse_expirations(dht);
if (dht->rt_ipv4) ks_dhtrt_process_table(dht->rt_ipv4); if (dht->rt_ipv4) ks_dhtrt_process_table(dht->rt_ipv4);
if (dht->rt_ipv6) ks_dhtrt_process_table(dht->rt_ipv6); if (dht->rt_ipv6) ks_dhtrt_process_table(dht->rt_ipv6);
} }
@ -678,8 +654,8 @@ KS_DECLARE(void) ks_dht_pulse_expirations(ks_dht_t *dht)
remove = KS_TRUE; remove = KS_TRUE;
} }
if (remove) { if (remove) {
ks_hash_remove(dht->transactions_hash, (char *)key); ks_hash_remove(dht->transactions_hash, (void *)key);
ks_pool_free(value->pool, value); ks_dht_transaction_destroy(&value);
} }
} }
ks_hash_write_unlock(dht->transactions_hash); ks_hash_write_unlock(dht->transactions_hash);
@ -709,10 +685,7 @@ KS_DECLARE(void) ks_dht_pulse_send(ks_dht_t *dht)
if (!bail) { if (!bail) {
bail = (ret = ks_dht_send(dht, message)) != KS_STATUS_SUCCESS; bail = (ret = ks_dht_send(dht, message)) != KS_STATUS_SUCCESS;
if (ret == KS_STATUS_BREAK) dht->send_q_unsent = message; if (ret == KS_STATUS_BREAK) dht->send_q_unsent = message;
else if (ret == KS_STATUS_SUCCESS) { else ks_dht_message_destroy(&message);
ks_dht_message_deinit(message);
ks_dht_message_free(&message);
}
} }
} }
} }
@ -731,6 +704,15 @@ KS_DECLARE(char *) ks_dht_hexid(ks_dht_nodeid_t *id, char *buffer)
return buffer; return buffer;
} }
KS_DECLARE(void) ks_dht_utility_nodeid_xor(ks_dht_nodeid_t *dest, ks_dht_nodeid_t *src1, ks_dht_nodeid_t *src2)
{
ks_assert(dest);
ks_assert(src1);
ks_assert(src2);
for (int32_t i = 0; i < KS_DHT_NODEID_SIZE; ++i) dest->id[i] = src1->id[i] ^ src2->id[i];
}
KS_DECLARE(ks_status_t) ks_dht_utility_compact_addressinfo(const ks_sockaddr_t *address, KS_DECLARE(ks_status_t) ks_dht_utility_compact_addressinfo(const ks_sockaddr_t *address,
uint8_t *buffer, uint8_t *buffer,
ks_size_t *buffer_length, ks_size_t *buffer_length,
@ -992,16 +974,14 @@ KS_DECLARE(ks_status_t) ks_dht_setup_query(ks_dht_t *dht,
if (!ep && (ret = ks_dht_autoroute_check(dht, raddr, &ep)) != KS_STATUS_SUCCESS) return ret; if (!ep && (ret = ks_dht_autoroute_check(dht, raddr, &ep)) != KS_STATUS_SUCCESS) return ret;
// @todo atomic increment or mutex // @todo atomic increment
ks_mutex_lock(dht->tid_mutex);
transactionid = dht->transactionid_next++; transactionid = dht->transactionid_next++;
ks_mutex_unlock(dht->tid_mutex);
if ((ret = ks_dht_transaction_alloc(&trans, dht->pool)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_transaction_create(&trans, dht->pool, raddr, transactionid, callback)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_transaction_init(trans, raddr, transactionid, callback)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_message_create(&msg, dht->pool, ep, raddr, KS_TRUE)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_message_alloc(&msg, dht->pool)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_message_init(msg, ep, raddr, KS_TRUE)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_message_query(msg, transactionid, query, args)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_message_query(msg, transactionid, query, args)) != KS_STATUS_SUCCESS) goto done;
@ -1018,14 +998,8 @@ KS_DECLARE(ks_status_t) ks_dht_setup_query(ks_dht_t *dht,
done: done:
if (ret != KS_STATUS_SUCCESS) { if (ret != KS_STATUS_SUCCESS) {
if (trans) { if (trans) ks_dht_transaction_destroy(&trans);
ks_dht_transaction_deinit(trans); if (msg) ks_dht_message_destroy(&msg);
ks_dht_transaction_free(&trans);
}
if (msg) {
ks_dht_message_deinit(msg);
ks_dht_message_free(&msg);
}
*message = NULL; *message = NULL;
} }
return ret; return ret;
@ -1051,9 +1025,7 @@ KS_DECLARE(ks_status_t) ks_dht_setup_response(ks_dht_t *dht,
if (!ep && (ret = ks_dht_autoroute_check(dht, raddr, &ep)) != KS_STATUS_SUCCESS) return ret; if (!ep && (ret = ks_dht_autoroute_check(dht, raddr, &ep)) != KS_STATUS_SUCCESS) return ret;
if ((ret = ks_dht_message_alloc(&msg, dht->pool)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_message_create(&msg, dht->pool, ep, raddr, KS_TRUE)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_message_init(msg, ep, raddr, KS_TRUE)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_message_response(msg, transactionid, transactionid_length, args)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_message_response(msg, transactionid, transactionid_length, args)) != KS_STATUS_SUCCESS) goto done;
@ -1062,9 +1034,8 @@ KS_DECLARE(ks_status_t) ks_dht_setup_response(ks_dht_t *dht,
ret = KS_STATUS_SUCCESS; ret = KS_STATUS_SUCCESS;
done: done:
if (ret != KS_STATUS_SUCCESS && msg) { if (ret != KS_STATUS_SUCCESS) {
ks_dht_message_deinit(msg); if (msg) ks_dht_message_destroy(&msg);
ks_dht_message_free(&msg);
*message = NULL; *message = NULL;
} }
return ret; return ret;
@ -1074,7 +1045,7 @@ KS_DECLARE(ks_status_t) ks_dht_setup_response(ks_dht_t *dht,
KS_DECLARE(void *) ks_dht_process(ks_thread_t *thread, void *data) KS_DECLARE(void *) ks_dht_process(ks_thread_t *thread, void *data)
{ {
ks_dht_datagram_t *datagram = (ks_dht_datagram_t *)data; ks_dht_datagram_t *datagram = (ks_dht_datagram_t *)data;
ks_dht_message_t message; ks_dht_message_t *message = NULL;
ks_dht_message_callback_t callback; ks_dht_message_callback_t callback;
ks_assert(thread); ks_assert(thread);
@ -1083,67 +1054,27 @@ KS_DECLARE(void *) ks_dht_process(ks_thread_t *thread, void *data)
ks_log(KS_LOG_DEBUG, "Received message from %s %d\n", datagram->raddr.host, datagram->raddr.port); ks_log(KS_LOG_DEBUG, "Received message from %s %d\n", datagram->raddr.host, datagram->raddr.port);
if (datagram->raddr.family != AF_INET && datagram->raddr.family != AF_INET6) { if (datagram->raddr.family != AF_INET && datagram->raddr.family != AF_INET6) {
ks_log(KS_LOG_DEBUG, "Message from unsupported address family\n"); ks_log(KS_LOG_DEBUG, "Message from unsupported address family\n");
return NULL; goto done;
} }
// @todo blacklist check for bad actor nodes // @todo blacklist check for bad actor nodes
if (ks_dht_message_prealloc(&message, datagram->dht->pool) != KS_STATUS_SUCCESS) return NULL; if (ks_dht_message_create(&message, datagram->dht->pool, datagram->endpoint, &datagram->raddr, KS_FALSE) != KS_STATUS_SUCCESS) goto done;
if (ks_dht_message_init(&message, datagram->endpoint, &datagram->raddr, KS_FALSE) != KS_STATUS_SUCCESS) return NULL; if (ks_dht_message_parse(message, datagram->buffer, datagram->buffer_length) != KS_STATUS_SUCCESS) goto done;
if (ks_dht_message_parse(&message, datagram->buffer, datagram->buffer_length) != KS_STATUS_SUCCESS) goto done; callback = (ks_dht_message_callback_t)(intptr_t)ks_hash_search(datagram->dht->registry_type, message->type, KS_READLOCKED);
callback = (ks_dht_message_callback_t)(intptr_t)ks_hash_search(datagram->dht->registry_type, message.type, KS_READLOCKED);
ks_hash_read_unlock(datagram->dht->registry_type); ks_hash_read_unlock(datagram->dht->registry_type);
if (!callback) ks_log(KS_LOG_DEBUG, "Message type '%s' is not registered\n", message.type); if (!callback) ks_log(KS_LOG_DEBUG, "Message type '%s' is not registered\n", message->type);
else callback(datagram->dht, &message); else callback(datagram->dht, message);
done: done:
ks_dht_message_deinit(&message); if (message) ks_dht_message_destroy(&message);
if (datagram) ks_dht_datagram_destroy(&datagram);
// @todo recycle datagram
ks_dht_datagram_deinit(datagram);
ks_dht_datagram_free(&datagram);
return NULL; return NULL;
} }
KS_DECLARE(ks_status_t) ks_dht_process_(ks_dht_t *dht, ks_dht_endpoint_t *ep, ks_sockaddr_t *raddr)
{
ks_dht_message_t message;
ks_dht_message_callback_t callback;
ks_status_t ret = KS_STATUS_FAIL;
ks_assert(dht);
ks_assert(raddr);
ks_log(KS_LOG_DEBUG, "Received message from %s %d\n", raddr->host, raddr->port);
if (raddr->family != AF_INET && raddr->family != AF_INET6) {
ks_log(KS_LOG_DEBUG, "Message from unsupported address family\n");
return KS_STATUS_FAIL;
}
// @todo blacklist check for bad actor nodes
if (ks_dht_message_prealloc(&message, dht->pool) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
if (ks_dht_message_init(&message, ep, raddr, KS_FALSE) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
if (ks_dht_message_parse(&message, dht->recv_buffer, dht->recv_buffer_length) != KS_STATUS_SUCCESS) goto done;
callback = (ks_dht_message_callback_t)(intptr_t)ks_hash_search(dht->registry_type, message.type, KS_READLOCKED);
ks_hash_read_unlock(dht->registry_type);
if (!callback) ks_log(KS_LOG_DEBUG, "Message type '%s' is not registered\n", message.type);
else ret = callback(dht, &message);
done:
ks_dht_message_deinit(&message);
return ret;
}
KS_DECLARE(ks_status_t) ks_dht_process_query(ks_dht_t *dht, ks_dht_message_t *message) KS_DECLARE(ks_status_t) ks_dht_process_query(ks_dht_t *dht, ks_dht_message_t *message)
{ {
@ -1230,6 +1161,7 @@ KS_DECLARE(ks_status_t) ks_dht_process_response(ks_dht_t *dht, ks_dht_message_t
transaction->raddr.host, transaction->raddr.host,
transaction->raddr.port); transaction->raddr.port);
} else { } else {
message->transaction = transaction;
ret = transaction->callback(dht, message); ret = transaction->callback(dht, message);
transaction->finished = KS_TRUE; transaction->finished = KS_TRUE;
} }
@ -1258,12 +1190,11 @@ KS_DECLARE(ks_status_t) ks_dht_search(ks_dht_t *dht,
// check hash for target to see if search already exists // check hash for target to see if search already exists
s = ks_hash_search(dht->search_hash, target->id, KS_READLOCKED); s = ks_hash_search(dht->search_hash, target->id, KS_READLOCKED);
ks_hash_read_unlock(dht->search_hash); ks_hash_read_unlock(dht->search_hash); // @todo hold lock until finished adding new entry?
// if search does not exist, create new search and store in hash by target // if search does not exist, create new search and store in hash by target
if (!s) { if (!s) {
if ((ret = ks_dht_search_alloc(&s, dht->pool)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_search_create(&s, dht->pool, target)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_search_init(s, target)) != KS_STATUS_SUCCESS) goto done;
allocated = KS_TRUE; allocated = KS_TRUE;
} else inserted = KS_TRUE; } else inserted = KS_TRUE;
@ -1278,26 +1209,27 @@ KS_DECLARE(ks_status_t) ks_dht_search(ks_dht_t *dht,
query.type = KS_DHT_REMOTE; query.type = KS_DHT_REMOTE;
query.max = KS_DHT_SEARCH_RESULTS_MAX_SIZE; query.max = KS_DHT_SEARCH_RESULTS_MAX_SIZE;
query.family = family; query.family = family;
query.count = 0;
ks_dhtrt_findclosest_nodes(family == AF_INET ? dht->rt_ipv4 : dht->rt_ipv6, &query); ks_dhtrt_findclosest_nodes(family == AF_INET ? dht->rt_ipv4 : dht->rt_ipv6, &query);
for (int32_t i = 0; i < query.count; ++i) { for (int32_t i = 0; i < query.count; ++i) {
ks_dht_node_t *n = query.nodes[i]; ks_dht_node_t *n = query.nodes[i];
ks_dht_search_pending_t *pending = NULL; ks_dht_search_pending_t *pending = NULL;
s->results[i] = n;
s->results[i] = n->nodeid;
ks_dht_utility_nodeid_xor(&s->distances[i], &n->nodeid, &s->target);
// add to pending with expiration // add to pending with expiration
if ((ret = ks_dht_search_pending_alloc(&pending, s->pool)) != KS_STATUS_SUCCESS) goto done; if ((ret = ks_dht_search_pending_create(&pending, s->pool, &n->nodeid)) != KS_STATUS_SUCCESS) goto done;
if ((ret = ks_dht_search_pending_init(pending, n)) != KS_STATUS_SUCCESS) { if (!ks_hash_insert(s->pending, n->nodeid.id, pending)) {
ks_dht_search_pending_free(&pending); ks_dht_search_pending_destroy(&pending);
ret = KS_STATUS_FAIL;
goto done; goto done;
} }
if (!ks_hash_insert(s->pending, n->nodeid.id, n)) { if ((ret = ks_dht_send_findnode(dht, NULL, &n->addr, target)) != KS_STATUS_SUCCESS) goto done;
ks_dht_search_pending_deinit(pending);
ks_dht_search_pending_free(&pending);
goto done;
}
// @todo call send_findnode, but transactions need to track the target id from a find_node query since find_node response does not contain it
} }
s->results_length = query.count; s->results_length = query.count;
// @todo release query nodes
// @todo if entry has been added since we checked above this may fail, try adding callback instead of failing? or retain lock from earlier
if (!ks_hash_insert(dht->search_hash, s->target.id, s)) { if (!ks_hash_insert(dht->search_hash, s->target.id, s)) {
ret = KS_STATUS_FAIL; ret = KS_STATUS_FAIL;
goto done; goto done;
@ -1305,13 +1237,9 @@ KS_DECLARE(ks_status_t) ks_dht_search(ks_dht_t *dht,
inserted = KS_TRUE; inserted = KS_TRUE;
if (search) *search = s; if (search) *search = s;
ret = KS_STATUS_SUCCESS;
done: done:
if (ret != KS_STATUS_SUCCESS && !inserted && s) { if (ret != KS_STATUS_SUCCESS && !inserted && s) ks_dht_search_destroy(&s);
ks_dht_search_deinit(s);
ks_dht_search_free(&s);
}
return ret; return ret;
} }
@ -1335,9 +1263,7 @@ KS_DECLARE(ks_status_t) ks_dht_send_error(ks_dht_t *dht,
if (!ep && ks_dht_autoroute_check(dht, raddr, &ep) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL; if (!ep && ks_dht_autoroute_check(dht, raddr, &ep) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
if (ks_dht_message_alloc(&error, dht->pool) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL; if (ks_dht_message_create(&error, dht->pool, ep, raddr, KS_TRUE) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
if (ks_dht_message_init(error, ep, raddr, KS_TRUE) != KS_STATUS_SUCCESS) goto done;
if (ks_dht_message_error(error, transactionid, transactionid_length, &e) != KS_STATUS_SUCCESS) goto done; if (ks_dht_message_error(error, transactionid, transactionid_length, &e) != KS_STATUS_SUCCESS) goto done;
@ -1350,10 +1276,7 @@ KS_DECLARE(ks_status_t) ks_dht_send_error(ks_dht_t *dht,
ret = KS_STATUS_SUCCESS; ret = KS_STATUS_SUCCESS;
done: done:
if (ret != KS_STATUS_SUCCESS && error) { if (ret != KS_STATUS_SUCCESS && error) ks_dht_message_destroy(&error);
ks_dht_message_deinit(error);
ks_dht_message_free(&error);
}
return ret; return ret;
} }
@ -1671,14 +1594,11 @@ KS_DECLARE(ks_status_t) ks_dht_process_response_findnode(ks_dht_t *dht, ks_dht_m
ks_dhtrt_routetable_t *routetable = NULL; ks_dhtrt_routetable_t *routetable = NULL;
ks_dht_node_t *node = NULL; ks_dht_node_t *node = NULL;
char id_buf[KS_DHT_NODEID_SIZE * 2 + 1]; char id_buf[KS_DHT_NODEID_SIZE * 2 + 1];
ks_dht_search_t *search = NULL;
ks_assert(dht); ks_assert(dht);
ks_assert(message); ks_assert(message);
ks_assert(message->transaction);
// @todo pass in the ks_dht_transaction_t from the original query, available one call higher, to get the target id for search updating
// @todo make a utility function to produce a xor of two nodeid's for distance checks based on memcmp on the existing results and new response nodes
// @todo lookup search by target from transaction, lookup responding node id in search pending hash, set entry to finished for purging
// @todo check response nodes for closer nodes than results contain, skip duplicates, add pending and call send_findnode for new closer results
if (ks_dht_utility_extract_nodeid(message->args, "id", &id) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL; if (ks_dht_utility_extract_nodeid(message->args, "id", &id) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
@ -1702,6 +1622,14 @@ KS_DECLARE(ks_status_t) ks_dht_process_response_findnode(ks_dht_t *dht, ks_dht_m
ks_log(KS_LOG_DEBUG, "Touching node %s\n", ks_dht_hexid(id, id_buf)); ks_log(KS_LOG_DEBUG, "Touching node %s\n", ks_dht_hexid(id, id_buf));
if (ks_dhtrt_touch_node(routetable, *id) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL; if (ks_dhtrt_touch_node(routetable, *id) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
search = ks_hash_search(dht->search_hash, message->transaction->target.id, KS_READLOCKED);
ks_hash_read_unlock(dht->search_hash);
if (search) {
ks_dht_search_pending_t *pending = ks_hash_search(search->pending, id->id, KS_READLOCKED);
ks_hash_read_unlock(search->pending);
if (pending) pending->finished = KS_TRUE;
}
while (nodes_len < nodes_size) { while (nodes_len < nodes_size) {
ks_dht_nodeid_t nid; ks_dht_nodeid_t nid;
ks_sockaddr_t addr; ks_sockaddr_t addr;
@ -1718,6 +1646,49 @@ KS_DECLARE(ks_status_t) ks_dht_process_response_findnode(ks_dht_t *dht, ks_dht_m
ks_log(KS_LOG_DEBUG, "Creating node %s\n", ks_dht_hexid(&nid, id_buf)); ks_log(KS_LOG_DEBUG, "Creating node %s\n", ks_dht_hexid(&nid, id_buf));
ks_dhtrt_create_node(dht->rt_ipv4, nid, KS_DHT_REMOTE, addr.host, addr.port, &node); ks_dhtrt_create_node(dht->rt_ipv4, nid, KS_DHT_REMOTE, addr.host, addr.port, &node);
ks_dhtrt_release_node(node); ks_dhtrt_release_node(node);
if (search) {
ks_dht_nodeid_t distance;
int32_t results_index = -1;
ks_dht_utility_nodeid_xor(&distance, &nid, &search->target);
if (search->results_length < KS_DHT_SEARCH_RESULTS_MAX_SIZE) {
results_index = search->results_length;
search->results_length++;
} else {
for (int32_t index = 0; index < search->results_length; ++index) {
// Check if new node is closer than this existing result
if (memcmp(distance.id, search->distances[index].id, KS_DHT_NODEID_SIZE) < 0) {
// If this is the first node that is further then keep it
// Else if two or more nodes are further, and this existing result is further than the previous one then keep it
if (results_index < 0) results_index = index;
else if (memcmp(search->distances[index].id, search->distances[results_index].id, KS_DHT_NODEID_SIZE) > 0) results_index = index;
}
}
}
if (results_index >= 0) {
char id2_buf[KS_DHT_NODEID_SIZE * 2 + 1];
char id3_buf[KS_DHT_NODEID_SIZE * 2 + 1];
ks_dht_search_pending_t *pending = NULL;
ks_log(KS_LOG_DEBUG,
"Set closer node id %s (%s) in search of target id %s at results index %d\n",
ks_dht_hexid(&nid, id_buf),
ks_dht_hexid(&distance, id2_buf),
ks_dht_hexid(&search->target, id3_buf),
results_index);
search->results[results_index] = nid;
search->distances[results_index] = distance;
if (ks_dht_search_pending_create(&pending, search->pool, &nid) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
if (!ks_hash_insert(search->pending, nid.id, pending)) {
ks_dht_search_pending_destroy(&pending);
return KS_STATUS_FAIL;
}
if (ks_dht_send_findnode(dht, NULL, &addr, &search->target) != KS_STATUS_SUCCESS) return KS_STATUS_FAIL;
}
}
} }
while (nodes6_len < nodes6_size) { while (nodes6_len < nodes6_size) {

View File

@ -124,6 +124,7 @@ struct ks_dht_message_s {
struct bencode *data; struct bencode *data;
uint8_t transactionid[KS_DHT_MESSAGE_TRANSACTIONID_MAX_SIZE]; uint8_t transactionid[KS_DHT_MESSAGE_TRANSACTIONID_MAX_SIZE];
ks_size_t transactionid_length; ks_size_t transactionid_length;
ks_dht_transaction_t *transaction;
char type[KS_DHT_MESSAGE_TYPE_MAX_SIZE]; char type[KS_DHT_MESSAGE_TYPE_MAX_SIZE];
struct bencode *args; struct bencode *args;
}; };
@ -166,13 +167,14 @@ struct ks_dht_search_s {
ks_dht_search_callback_t *callbacks; ks_dht_search_callback_t *callbacks;
ks_size_t callbacks_size; ks_size_t callbacks_size;
ks_hash_t *pending; ks_hash_t *pending;
ks_dht_node_t *results[KS_DHT_SEARCH_RESULTS_MAX_SIZE]; // @todo change this to track the nodeid only, and obtain the nodes only if/when needed ks_dht_nodeid_t results[KS_DHT_SEARCH_RESULTS_MAX_SIZE];
ks_dht_nodeid_t distances[KS_DHT_SEARCH_RESULTS_MAX_SIZE];
ks_size_t results_length; ks_size_t results_length;
}; };
struct ks_dht_search_pending_s { struct ks_dht_search_pending_s {
ks_pool_t *pool; ks_pool_t *pool;
ks_dht_node_t *node; // @todo change this to track the nodeid only, and obtain the node only if/when needed ks_dht_nodeid_t nodeid;
ks_time_t expiration; ks_time_t expiration;
ks_bool_t finished; ks_bool_t finished;
}; };
@ -221,6 +223,7 @@ struct ks_dht_s {
uint8_t recv_buffer[KS_DHT_DATAGRAM_BUFFER_SIZE + 1]; // Add 1, if we receive it then overflow error uint8_t recv_buffer[KS_DHT_DATAGRAM_BUFFER_SIZE + 1]; // Add 1, if we receive it then overflow error
ks_size_t recv_buffer_length; ks_size_t recv_buffer_length;
ks_mutex_t *tid_mutex;
volatile uint32_t transactionid_next; volatile uint32_t transactionid_next;
ks_hash_t *transactions_hash; ks_hash_t *transactions_hash;
@ -236,61 +239,21 @@ struct ks_dht_s {
}; };
/** /**
* Allocator function for ks_dht_t. * Constructor function for ks_dht_t.
* Should be used when a ks_dht_t is allocated on the heap, and may provide an external memory pool or allocate one internally. * Will allocate and initialize internal state including registration of message handlers.
* @param dht dereferenced out pointer to the allocated dht instance * @param dht dereferenced out pointer to the allocated dht instance
* @param pool pointer to the memory pool used by the dht instance, may be NULL to create a new pool internally * @param pool pointer to the memory pool used by the dht instance, may be NULL to create a new memory pool internally
* @param The ks_status_t result: KS_STATUS_SUCCESS, KS_STATUS_NO_MEM * @param tpool pointer to a thread pool used by the dht instance, may be NULL to create a new thread pool internally
* @return The ks_status_t result: KS_STATUS_SUCCESS, KS_STATUS_NO_MEM
*/ */
KS_DECLARE(ks_status_t) ks_dht_alloc(ks_dht_t **dht, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_create(ks_dht_t **dht, ks_pool_t *pool, ks_thread_pool_t *tpool);
/**
* Preallocator function for ks_dht_t.
* Should be used when a ks_dht_t is preallocated on the stack or within another structure, and must provide an external memory pool.
* @param dht pointer to the dht instance
* @param pool pointer to the memory pool used by the dht instance
*/
KS_DECLARE(void) ks_dht_prealloc(ks_dht_t *dht, ks_pool_t *pool);
/**
* Deallocator function for ks_dht_t.
* Must be used when a ks_dht_t is allocated using ks_dht_alloc, will also destroy memory pool if it was created internally.
* @param dht dereferenced in/out pointer to the dht instance, NULL upon return
* @return The ks_status_t result: KS_STATUS_SUCCESS, ...
* @see ks_dht_deinit
* @see ks_pool_free
* @see ks_pool_close
*/
KS_DECLARE(ks_status_t) ks_dht_free(ks_dht_t **dht);
/**
* Constructor function for ks_dht_t.
* Must be used regardless of how ks_dht_t is allocated, will allocate and initialize internal state including registration of message handlers.
* @param dht pointer to the dht instance
* @param tpool pointer to a thread pool, may be NULL to create a new thread pool internally
* @return The ks_status_t result: KS_STATUS_SUCCESS, ...
* @see ks_hash_create
* @see ks_dht_register_type
* @see ks_q_create
*/
KS_DECLARE(ks_status_t) ks_dht_init(ks_dht_t *dht, ks_thread_pool_t *tpool);
/** /**
* Destructor function for ks_dht_t. * Destructor function for ks_dht_t.
* Must be used regardless of how ks_dht_t is allocated, will deallocate and deinitialize internal state. * Will deinitialize and deallocate internal state.
* @param dht pointer to the dht instance * @param dht dereferenced in/out pointer to the dht instance, NULL upon return
* @return The ks_status_t result: KS_STATUS_SUCCESS, ...
* @see ks_dht_storageitem_deinit
* @see ks_dht_storageitem_free
* @see ks_hash_destroy
* @see ks_dht_message_deinit
* @see ks_dht_message_free
* @see ks_q_destroy
* @see ks_dht_endpoint_deinit
* @see ks_dht_endpoint_free
* @see ks_pool_free
*/ */
KS_DECLARE(ks_status_t) ks_dht_deinit(ks_dht_t *dht); KS_DECLARE(void) ks_dht_destroy(ks_dht_t **dht);
/** /**
* Enable or disable (default) autorouting support. * Enable or disable (default) autorouting support.
@ -361,27 +324,15 @@ KS_DECLARE(void) ks_dht_pulse(ks_dht_t *dht, int32_t timeout);
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_message_alloc(ks_dht_message_t **message, ks_pool_t *pool); KS_DECLARE(ks_status_t) ks_dht_message_create(ks_dht_message_t **message,
ks_pool_t *pool,
ks_dht_endpoint_t *endpoint,
ks_sockaddr_t *raddr,
ks_bool_t alloc_data);
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_message_prealloc(ks_dht_message_t *message, ks_pool_t *pool); KS_DECLARE(void) ks_dht_message_destroy(ks_dht_message_t **message);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_message_free(ks_dht_message_t **message);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_message_init(ks_dht_message_t *message, ks_dht_endpoint_t *ep, ks_sockaddr_t *raddr, ks_bool_t alloc_data);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_message_deinit(ks_dht_message_t *message);
/** /**
* *
@ -412,32 +363,6 @@ KS_DECLARE(ks_status_t) ks_dht_message_error(ks_dht_message_t *message,
ks_size_t transactionid_length, ks_size_t transactionid_length,
struct bencode **args); struct bencode **args);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_alloc(ks_dht_transaction_t **transaction, ks_pool_t *pool);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_prealloc(ks_dht_transaction_t *transaction, ks_pool_t *pool);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_free(ks_dht_transaction_t **transaction);
KS_DECLARE(ks_status_t) ks_dht_transaction_init(ks_dht_transaction_t *transaction,
ks_sockaddr_t *raddr,
uint32_t transactionid,
ks_dht_message_callback_t callback);
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_deinit(ks_dht_transaction_t *transaction);
/** /**
* route table methods * route table methods

View File

@ -2,75 +2,58 @@
#include "ks_dht-int.h" #include "ks_dht-int.h"
#include "sodium.h" #include "sodium.h"
KS_DECLARE(ks_status_t) ks_dht_datagram_alloc(ks_dht_datagram_t **datagram, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_datagram_create(ks_dht_datagram_t **datagram,
ks_pool_t *pool,
ks_dht_t *dht,
ks_dht_endpoint_t *endpoint,
const ks_sockaddr_t *raddr)
{ {
ks_dht_datagram_t *dg; ks_dht_datagram_t *dg;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(datagram); ks_assert(datagram);
ks_assert(pool); ks_assert(pool);
*datagram = dg = ks_pool_alloc(pool, sizeof(ks_dht_datagram_t));
dg->pool = pool;
return KS_STATUS_SUCCESS;
}
KS_DECLARE(void) ks_dht_datagram_prealloc(ks_dht_datagram_t *datagram, ks_pool_t *pool)
{
ks_assert(datagram);
ks_assert(pool);
memset(datagram, 0, sizeof(ks_dht_datagram_t));
datagram->pool = pool;
}
KS_DECLARE(ks_status_t) ks_dht_datagram_free(ks_dht_datagram_t **datagram)
{
ks_assert(datagram);
ks_assert(*datagram);
ks_dht_datagram_deinit(*datagram);
ks_pool_free((*datagram)->pool, *datagram);
*datagram = NULL;
return KS_STATUS_SUCCESS;
}
KS_DECLARE(ks_status_t) ks_dht_datagram_init(ks_dht_datagram_t *datagram, ks_dht_t *dht, ks_dht_endpoint_t *endpoint, const ks_sockaddr_t *raddr)
{
ks_assert(datagram);
ks_assert(datagram->pool);
ks_assert(dht); ks_assert(dht);
ks_assert(endpoint); ks_assert(endpoint);
ks_assert(raddr); ks_assert(raddr);
ks_assert(raddr->family == AF_INET || raddr->family == AF_INET6); ks_assert(raddr->family == AF_INET || raddr->family == AF_INET6);
*datagram = dg = ks_pool_alloc(pool, sizeof(ks_dht_datagram_t));
if (!dg) {
ret = KS_STATUS_NO_MEM;
goto done;
}
dg->pool = pool;
datagram->dht = dht; dg->dht = dht;
datagram->endpoint = endpoint; dg->endpoint = endpoint;
datagram->raddr = *raddr; dg->raddr = *raddr;
memcpy(datagram->buffer, dht->recv_buffer, dht->recv_buffer_length); memcpy(dg->buffer, dht->recv_buffer, dht->recv_buffer_length);
datagram->buffer_length = dht->recv_buffer_length; dg->buffer_length = dht->recv_buffer_length;
return KS_STATUS_SUCCESS; done:
if (ret != KS_STATUS_SUCCESS) {
if (dg) ks_dht_datagram_destroy(&dg);
*datagram = NULL;
}
return ret;
} }
KS_DECLARE(ks_status_t) ks_dht_datagram_deinit(ks_dht_datagram_t *datagram) KS_DECLARE(void) ks_dht_datagram_destroy(ks_dht_datagram_t **datagram)
{ {
ks_dht_datagram_t *dg;
ks_assert(datagram); ks_assert(datagram);
ks_assert(*datagram);
datagram->buffer_length = 0; dg = *datagram;
datagram->raddr = (const ks_sockaddr_t){ 0 };
datagram->endpoint = NULL;
datagram->dht = NULL;
return KS_STATUS_SUCCESS; ks_pool_free(dg->pool, dg);
*datagram = NULL;
} }
/* For Emacs: /* For Emacs:
* Local Variables: * Local Variables:
* mode:c * mode:c

View File

@ -5,87 +5,60 @@
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_endpoint_alloc(ks_dht_endpoint_t **endpoint, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_endpoint_create(ks_dht_endpoint_t **endpoint,
ks_pool_t *pool,
const ks_dht_nodeid_t *nodeid,
const ks_sockaddr_t *addr,
ks_socket_t sock)
{
ks_dht_endpoint_t *ep;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(endpoint);
ks_assert(pool);
ks_assert(addr);
ks_assert(addr->family == AF_INET || addr->family == AF_INET6);
*endpoint = ep = ks_pool_alloc(pool, sizeof(ks_dht_endpoint_t));
if (!ep) {
ret = KS_STATUS_NO_MEM;
goto done;
}
ep->pool = pool;
if (!nodeid) randombytes_buf(ep->nodeid.id, KS_DHT_NODEID_SIZE);
else memcpy(ep->nodeid.id, nodeid->id, KS_DHT_NODEID_SIZE);
ep->addr = *addr;
ep->sock = sock;
done:
if (ret != KS_STATUS_SUCCESS) {
if (ep) ks_dht_endpoint_destroy(&ep);
*endpoint = NULL;
}
return ret;
}
/**
*
*/
KS_DECLARE(void) ks_dht_endpoint_destroy(ks_dht_endpoint_t **endpoint)
{ {
ks_dht_endpoint_t *ep; ks_dht_endpoint_t *ep;
ks_assert(endpoint);
ks_assert(pool);
*endpoint = ep = ks_pool_alloc(pool, sizeof(ks_dht_endpoint_t));
ep->pool = pool;
ep->sock = KS_SOCK_INVALID;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_endpoint_prealloc(ks_dht_endpoint_t *endpoint, ks_pool_t *pool)
{
ks_assert(endpoint);
ks_assert(pool);
memset(endpoint, 0, sizeof(ks_dht_endpoint_t));
endpoint->pool = pool;
endpoint->sock = KS_SOCK_INVALID;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_endpoint_free(ks_dht_endpoint_t **endpoint)
{
ks_assert(endpoint); ks_assert(endpoint);
ks_assert(*endpoint); ks_assert(*endpoint);
ks_dht_endpoint_deinit(*endpoint); ep = *endpoint;
ks_pool_free((*endpoint)->pool, *endpoint);
if (ep->node) {
// @todo release the node?
}
if (ep->sock != KS_SOCK_INVALID) ks_socket_close(&ep->sock);
ks_pool_free(ep->pool, ep);
*endpoint = NULL; *endpoint = NULL;
return KS_STATUS_SUCCESS;
} }
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_endpoint_init(ks_dht_endpoint_t *endpoint, const ks_dht_nodeid_t *nodeid, const ks_sockaddr_t *addr, ks_socket_t sock)
{
ks_assert(endpoint);
ks_assert(endpoint->pool);
ks_assert(addr);
ks_assert(addr->family == AF_INET || addr->family == AF_INET6);
if (!nodeid) randombytes_buf(endpoint->nodeid.id, KS_DHT_NODEID_SIZE);
else memcpy(endpoint->nodeid.id, nodeid->id, KS_DHT_NODEID_SIZE);
endpoint->addr = *addr;
endpoint->sock = sock;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_endpoint_deinit(ks_dht_endpoint_t *endpoint)
{
ks_assert(endpoint);
endpoint->node = NULL;
if (endpoint->sock != KS_SOCK_INVALID) ks_socket_close(&endpoint->sock);
endpoint->addr = (const ks_sockaddr_t){ 0 };
return KS_STATUS_SUCCESS;
}
/* For Emacs: /* For Emacs:
* Local Variables: * Local Variables:
* mode:c * mode:c

View File

@ -4,86 +4,59 @@
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_message_alloc(ks_dht_message_t **message, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_message_create(ks_dht_message_t **message,
ks_pool_t *pool,
ks_dht_endpoint_t *endpoint,
ks_sockaddr_t *raddr,
ks_bool_t alloc_data)
{ {
ks_dht_message_t *msg; ks_dht_message_t *m;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(message); ks_assert(message);
ks_assert(pool); ks_assert(pool);
*message = msg = ks_pool_alloc(pool, sizeof(ks_dht_message_t)); *message = m = ks_pool_alloc(pool, sizeof(ks_dht_message_t));
msg->pool = pool; if (!m) {
ret = KS_STATUS_NO_MEM;
goto done;
}
m->pool = pool;
return KS_STATUS_SUCCESS; m->endpoint = endpoint;
m->raddr = *raddr;
if (alloc_data) m->data = ben_dict();
done:
if (ret != KS_STATUS_SUCCESS) {
if (m) ks_dht_message_destroy(&m);
*message = NULL;
}
return ret;
} }
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_message_prealloc(ks_dht_message_t *message, ks_pool_t *pool) KS_DECLARE(void) ks_dht_message_destroy(ks_dht_message_t **message)
{ {
ks_assert(message); ks_dht_message_t *m;
ks_assert(pool);
memset(message, 0, sizeof(ks_dht_message_t));
message->pool = pool;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_message_free(ks_dht_message_t **message)
{
ks_assert(message); ks_assert(message);
ks_assert(*message); ks_assert(*message);
ks_dht_message_deinit(*message); m = *message;
ks_pool_free((*message)->pool, *message);
if (m->data) {
ben_free(m->data);
m->data = NULL;
}
ks_pool_free(m->pool, *message);
*message = NULL; *message = NULL;
return KS_STATUS_SUCCESS;
} }
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_message_init(ks_dht_message_t *message, ks_dht_endpoint_t *ep, ks_sockaddr_t *raddr, ks_bool_t alloc_data)
{
ks_assert(message);
ks_assert(message->pool);
message->endpoint = ep;
message->raddr = *raddr;
if (alloc_data) message->data = ben_dict();
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_message_deinit(ks_dht_message_t *message)
{
ks_assert(message);
message->endpoint = NULL;
message->raddr = (const ks_sockaddr_t){ 0 };
message->args = NULL;
message->type[0] = '\0';
message->transactionid_length = 0;
if (message->data) {
ben_free(message->data);
message->data = NULL;
}
return KS_STATUS_SUCCESS;
}
/** /**
* *
*/ */
@ -104,7 +77,7 @@ KS_DECLARE(ks_status_t) ks_dht_message_parse(ks_dht_message_t *message, const ui
message->data = ben_decode((const void *)buffer, buffer_length); message->data = ben_decode((const void *)buffer, buffer_length);
if (!message->data) { if (!message->data) {
ks_log(KS_LOG_DEBUG, "Message cannot be decoded\n"); ks_log(KS_LOG_DEBUG, "Message cannot be decoded\n");
goto failure; return KS_STATUS_FAIL;
} }
ks_log(KS_LOG_DEBUG, "Message decoded\n"); ks_log(KS_LOG_DEBUG, "Message decoded\n");
@ -113,14 +86,14 @@ KS_DECLARE(ks_status_t) ks_dht_message_parse(ks_dht_message_t *message, const ui
t = ben_dict_get_by_str(message->data, "t"); t = ben_dict_get_by_str(message->data, "t");
if (!t) { if (!t) {
ks_log(KS_LOG_DEBUG, "Message missing required key 't'\n"); ks_log(KS_LOG_DEBUG, "Message missing required key 't'\n");
goto failure; return KS_STATUS_FAIL;
} }
tv = ben_str_val(t); tv = ben_str_val(t);
tv_len = ben_str_len(t); tv_len = ben_str_len(t);
if (tv_len > KS_DHT_MESSAGE_TRANSACTIONID_MAX_SIZE) { if (tv_len > KS_DHT_MESSAGE_TRANSACTIONID_MAX_SIZE) {
ks_log(KS_LOG_DEBUG, "Message 't' value has an unexpectedly large size of %d\n", tv_len); ks_log(KS_LOG_DEBUG, "Message 't' value has an unexpectedly large size of %d\n", tv_len);
goto failure; return KS_STATUS_FAIL;
} }
memcpy(message->transactionid, tv, tv_len); memcpy(message->transactionid, tv, tv_len);
@ -131,14 +104,14 @@ KS_DECLARE(ks_status_t) ks_dht_message_parse(ks_dht_message_t *message, const ui
y = ben_dict_get_by_str(message->data, "y"); y = ben_dict_get_by_str(message->data, "y");
if (!y) { if (!y) {
ks_log(KS_LOG_DEBUG, "Message missing required key 'y'\n"); ks_log(KS_LOG_DEBUG, "Message missing required key 'y'\n");
goto failure; return KS_STATUS_FAIL;
} }
yv = ben_str_val(y); yv = ben_str_val(y);
yv_len = ben_str_len(y); yv_len = ben_str_len(y);
if (yv_len >= KS_DHT_MESSAGE_TYPE_MAX_SIZE) { if (yv_len >= KS_DHT_MESSAGE_TYPE_MAX_SIZE) {
ks_log(KS_LOG_DEBUG, "Message 'y' value has an unexpectedly large size of %d\n", yv_len); ks_log(KS_LOG_DEBUG, "Message 'y' value has an unexpectedly large size of %d\n", yv_len);
goto failure; return KS_STATUS_FAIL;
} }
memcpy(message->type, yv, yv_len); memcpy(message->type, yv, yv_len);
@ -146,10 +119,6 @@ KS_DECLARE(ks_status_t) ks_dht_message_parse(ks_dht_message_t *message, const ui
ks_log(KS_LOG_DEBUG, "Message type is '%s'\n", message->type); ks_log(KS_LOG_DEBUG, "Message type is '%s'\n", message->type);
return KS_STATUS_SUCCESS; return KS_STATUS_SUCCESS;
failure:
ks_dht_message_deinit(message);
return KS_STATUS_FAIL;
} }
/** /**

View File

@ -5,104 +5,70 @@
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_search_alloc(ks_dht_search_t **search, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_search_create(ks_dht_search_t **search, ks_pool_t *pool, const ks_dht_nodeid_t *target)
{ {
ks_dht_search_t *s; ks_dht_search_t *s;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(search); ks_assert(search);
ks_assert(pool); ks_assert(pool);
ks_assert(target);
*search = s = ks_pool_alloc(pool, sizeof(ks_dht_search_t)); *search = s = ks_pool_alloc(pool, sizeof(ks_dht_search_t));
if (!s) {
ret = KS_STATUS_NO_MEM;
goto done;
}
s->pool = pool; s->pool = pool;
if ((ret = ks_mutex_create(&s->mutex, KS_MUTEX_FLAG_DEFAULT, s->pool)) != KS_STATUS_SUCCESS) goto done;
memcpy(s->target.id, target->id, KS_DHT_NODEID_SIZE);
if ((ret = ks_hash_create(&s->pending,
KS_HASH_MODE_ARBITRARY,
KS_HASH_FLAG_RWLOCK,
s->pool)) != KS_STATUS_SUCCESS) goto done;
ks_hash_set_keysize(s->pending, KS_DHT_NODEID_SIZE);
done:
if (ret != KS_STATUS_SUCCESS) {
if (s) ks_dht_search_destroy(&s);
*search = NULL;
}
return KS_STATUS_SUCCESS; return KS_STATUS_SUCCESS;
} }
/** /**
* *
*/ */
KS_DECLARE(void) ks_dht_search_prealloc(ks_dht_search_t *search, ks_pool_t *pool) KS_DECLARE(void) ks_dht_search_destroy(ks_dht_search_t **search)
{ {
ks_assert(search); ks_dht_search_t *s;
ks_assert(pool); ks_hash_iterator_t *it;
memset(search, 0, sizeof(ks_dht_search_t));
search->pool = pool;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_search_free(ks_dht_search_t **search)
{
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(search); ks_assert(search);
ks_assert(*search); ks_assert(*search);
if ((ret = ks_dht_search_deinit(*search)) != KS_STATUS_SUCCESS) return ret; s = *search;
if ((ret = ks_pool_free((*search)->pool, *search)) != KS_STATUS_SUCCESS) return ret;
*search = NULL; if (s->pending) {
for (it = ks_hash_first(s->pending, KS_UNLOCKED); it; it = ks_hash_next(&it)) {
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_search_init(ks_dht_search_t *search, const ks_dht_nodeid_t *target)
{
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(search);
ks_assert(search->pool);
ks_assert(target);
if ((ret = ks_mutex_create(&search->mutex, KS_MUTEX_FLAG_DEFAULT, search->pool)) != KS_STATUS_SUCCESS) return ret;
memcpy(search->target.id, target->id, KS_DHT_NODEID_SIZE);
if ((ret = ks_hash_create(&search->pending,
KS_HASH_MODE_ARBITRARY,
KS_HASH_FLAG_RWLOCK,
search->pool)) != KS_STATUS_SUCCESS) return ret;
ks_hash_set_keysize(search->pending, KS_DHT_NODEID_SIZE);
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_search_deinit(ks_dht_search_t *search)
{
ks_hash_iterator_t *it;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(search);
search->results_length = 0;
if (search->pending) {
for (it = ks_hash_first(search->pending, KS_UNLOCKED); it; it = ks_hash_next(&it)) {
const void *key;
ks_dht_search_pending_t *val; ks_dht_search_pending_t *val;
ks_hash_this(it, &key, NULL, (void **)&val); ks_hash_this_val(it, (void **)&val);
if ((ret = ks_dht_search_pending_deinit(val)) != KS_STATUS_SUCCESS) return ret; ks_dht_search_pending_destroy(&val);
if ((ret = ks_dht_search_pending_free(&val)) != KS_STATUS_SUCCESS) return ret;
} }
ks_hash_destroy(&search->pending); ks_hash_destroy(&s->pending);
} }
search->callbacks_size = 0; if (s->callbacks) {
if (search->callbacks) { ks_pool_free(s->pool, s->callbacks);
if ((ret = ks_pool_free(search->pool, search->callbacks)) != KS_STATUS_SUCCESS) return ret; s->callbacks = NULL;
search->callbacks = NULL;
} }
if (search->mutex && (ret = ks_mutex_destroy(&search->mutex)) != KS_STATUS_SUCCESS) return ret; if (s->mutex) ks_mutex_destroy(&s->mutex);
return KS_STATUS_SUCCESS; ks_pool_free(s->pool, s);
*search = NULL;
} }
KS_DECLARE(ks_status_t) ks_dht_search_callback_add(ks_dht_search_t *search, ks_dht_search_callback_t callback) KS_DECLARE(ks_status_t) ks_dht_search_callback_add(ks_dht_search_t *search, ks_dht_search_callback_t callback)
@ -111,77 +77,58 @@ KS_DECLARE(ks_status_t) ks_dht_search_callback_add(ks_dht_search_t *search, ks_d
if (callback) { if (callback) {
int32_t index; int32_t index;
// @todo lock mutex
ks_mutex_lock(search->mutex);
index = search->callbacks_size++; index = search->callbacks_size++;
search->callbacks = (ks_dht_search_callback_t *)ks_pool_resize(search->pool, search->callbacks = (ks_dht_search_callback_t *)ks_pool_resize(search->pool,
(void *)search->callbacks, (void *)search->callbacks,
sizeof(ks_dht_search_callback_t) * search->callbacks_size); sizeof(ks_dht_search_callback_t) * search->callbacks_size);
if (!search->callbacks) return KS_STATUS_NO_MEM;
search->callbacks[index] = callback; search->callbacks[index] = callback;
// @todo unlock mutex ks_mutex_unlock(search->mutex);
} }
return KS_STATUS_SUCCESS; return KS_STATUS_SUCCESS;
} }
KS_DECLARE(ks_status_t) ks_dht_search_pending_alloc(ks_dht_search_pending_t **pending, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_search_pending_create(ks_dht_search_pending_t **pending, ks_pool_t *pool, const ks_dht_nodeid_t *nodeid)
{ {
ks_dht_search_pending_t *p; ks_dht_search_pending_t *p;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(pending); ks_assert(pending);
ks_assert(pool); ks_assert(pool);
*pending = p = ks_pool_alloc(pool, sizeof(ks_dht_search_pending_t)); *pending = p = ks_pool_alloc(pool, sizeof(ks_dht_search_pending_t));
if (!p) {
ret = KS_STATUS_NO_MEM;
goto done;
}
p->pool = pool; p->pool = pool;
p->nodeid = *nodeid;
p->expiration = ks_time_now_sec() + KS_DHT_SEARCH_EXPIRATION;
p->finished = KS_FALSE;
done:
if (ret != KS_STATUS_SUCCESS) {
if (p) ks_dht_search_pending_destroy(&p);
*pending = NULL;
}
return KS_STATUS_SUCCESS; return KS_STATUS_SUCCESS;
} }
KS_DECLARE(void) ks_dht_search_pending_prealloc(ks_dht_search_pending_t *pending, ks_pool_t *pool) KS_DECLARE(void) ks_dht_search_pending_destroy(ks_dht_search_pending_t **pending)
{ {
ks_assert(pending); ks_dht_search_pending_t *p;
ks_assert(pool);
memset(pending, 0, sizeof(ks_dht_search_pending_t));
pending->pool = pool;
}
KS_DECLARE(ks_status_t) ks_dht_search_pending_free(ks_dht_search_pending_t **pending)
{
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(pending); ks_assert(pending);
ks_assert(*pending); ks_assert(*pending);
if ((ret = ks_dht_search_pending_deinit(*pending)) != KS_STATUS_SUCCESS) return ret; p = *pending;
if ((ret = ks_pool_free((*pending)->pool, *pending)) != KS_STATUS_SUCCESS) return ret;
ks_pool_free(p->pool, p);
*pending = NULL; *pending = NULL;
return KS_STATUS_SUCCESS;
}
KS_DECLARE(ks_status_t) ks_dht_search_pending_init(ks_dht_search_pending_t *pending, ks_dht_node_t *node)
{
ks_assert(pending);
ks_assert(pending->pool);
ks_assert(node);
pending->node = node;
pending->expiration = ks_time_now_sec() + KS_DHT_SEARCH_EXPIRATION;
pending->finished = KS_FALSE;
return KS_STATUS_SUCCESS;
}
KS_DECLARE(ks_status_t) ks_dht_search_pending_deinit(ks_dht_search_pending_t *pending)
{
ks_assert(pending);
pending->node = NULL;
pending->expiration = 0;
pending->finished = KS_FALSE;
return KS_STATUS_SUCCESS;
} }
/* For Emacs: /* For Emacs:

View File

@ -5,192 +5,123 @@
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_storageitem_alloc(ks_dht_storageitem_t **item, ks_pool_t *pool) KS_DECLARE(ks_status_t) ks_dht_storageitem_create_immutable(ks_dht_storageitem_t **item, ks_pool_t *pool, struct bencode *v)
{ {
ks_dht_storageitem_t *si; ks_dht_storageitem_t *si;
ks_assert(item);
ks_assert(pool);
*item = si = ks_pool_alloc(pool, sizeof(ks_dht_storageitem_t));
si->pool = pool;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_storageitem_prealloc(ks_dht_storageitem_t *item, ks_pool_t *pool)
{
ks_assert(item);
ks_assert(pool);
memset(item, 0, sizeof(ks_dht_storageitem_t));
item->pool = pool;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_storageitem_free(ks_dht_storageitem_t **item)
{
ks_assert(item);
ks_assert(*item);
ks_dht_storageitem_deinit(*item);
ks_pool_free((*item)->pool, *item);
*item = NULL;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_storageitem_init(ks_dht_storageitem_t *item, struct bencode *v)
{
ks_assert(item);
ks_assert(item->pool);
ks_assert(v);
ks_assert(SHA_DIGEST_LENGTH == KS_DHT_NODEID_SIZE);
item->v = ben_clone(v);
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_storageitem_deinit(ks_dht_storageitem_t *item)
{
ks_assert(item);
if (item->v) {
ben_free(item->v);
item->v = NULL;
}
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_storageitem_create(ks_dht_storageitem_t *item, ks_bool_t mutable)
{
SHA_CTX sha;
ks_assert(item);
ks_assert(item->pool);
ks_assert(item->v);
item->mutable = mutable;
if (!mutable) {
size_t enc_len = 0;
uint8_t *enc = ben_encode(&enc_len, item->v);
SHA1_Init(&sha);
SHA1_Update(&sha, enc, enc_len);
SHA1_Final(item->id.id, &sha);
free(enc);
} else {
size_t enc_len = 0;
uint8_t *enc = NULL;
struct bencode *sig = ben_dict();
crypto_sign_keypair(item->pk.key, item->sk.key);
randombytes_buf(item->salt, KS_DHT_STORAGEITEM_SALT_MAX_SIZE);
item->salt_length = KS_DHT_STORAGEITEM_SALT_MAX_SIZE;
item->seq = 1;
ben_dict_set(sig, ben_blob("salt", 4), ben_blob(item->salt, item->salt_length));
ben_dict_set(sig, ben_blob("seq", 3), ben_int(item->seq));
ben_dict_set(sig, ben_blob("v", 1), ben_clone(item->v));
enc = ben_encode(&enc_len, sig);
ben_free(sig);
SHA1_Init(&sha);
SHA1_Update(&sha, enc, enc_len);
SHA1_Final(item->sig.sig, &sha);
free(enc);
SHA1_Init(&sha);
SHA1_Update(&sha, item->pk.key, KS_DHT_STORAGEITEM_KEY_SIZE);
SHA1_Update(&sha, item->salt, item->salt_length);
SHA1_Final(item->id.id, &sha);
}
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_storageitem_immutable(ks_dht_storageitem_t *item)
{
SHA_CTX sha; SHA_CTX sha;
size_t enc_len = 0; size_t enc_len = 0;
uint8_t *enc = NULL; uint8_t *enc = NULL;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(item);
ks_assert(item->v);
item->mutable = KS_FALSE; ks_assert(item);
ks_assert(pool);
ks_assert(v);
ks_assert(SHA_DIGEST_LENGTH == KS_DHT_NODEID_SIZE);
*item = si = ks_pool_alloc(pool, sizeof(ks_dht_storageitem_t));
if (!si) {
ret = KS_STATUS_NO_MEM;
goto done;
}
si->pool = pool;
si->mutable = KS_FALSE;
enc = ben_encode(&enc_len, item->v); si->v = ben_clone(v);
if (!si->v) {
ret = KS_STATUS_NO_MEM;
goto done;
}
enc = ben_encode(&enc_len, si->v);
SHA1_Init(&sha); SHA1_Init(&sha);
SHA1_Update(&sha, enc, enc_len); SHA1_Update(&sha, enc, enc_len);
SHA1_Final(item->id.id, &sha); SHA1_Final(si->id.id, &sha);
free(enc); free(enc);
return KS_STATUS_SUCCESS; done:
if (ret != KS_STATUS_SUCCESS) {
if (si) ks_dht_storageitem_destroy(&si);
*item = NULL;
}
return ret;
}
KS_DECLARE(ks_status_t) ks_dht_storageitem_create_mutable(ks_dht_storageitem_t **item,
ks_pool_t *pool,
struct bencode *v,
ks_dht_storageitem_key_t *k,
uint8_t *salt,
ks_size_t salt_length,
int64_t sequence,
ks_dht_storageitem_signature_t *signature)
{
ks_dht_storageitem_t *si;
SHA_CTX sha;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(item);
ks_assert(pool);
ks_assert(v);
ks_assert(SHA_DIGEST_LENGTH == KS_DHT_NODEID_SIZE);
ks_assert(k);
ks_assert(!(!salt && salt_length > 0));
ks_assert(!(salt_length > KS_DHT_STORAGEITEM_SIGNATURE_SIZE));
ks_assert(signature);
*item = si = ks_pool_alloc(pool, sizeof(ks_dht_storageitem_t));
if (!si) {
ret = KS_STATUS_NO_MEM;
goto done;
}
si->pool = pool;
si->v = ben_clone(v);
si->mutable = KS_TRUE;
memcpy(si->pk.key, k->key, KS_DHT_STORAGEITEM_KEY_SIZE);
if (salt && salt_length > 0) {
memcpy(si->salt, salt, salt_length);
si->salt_length = salt_length;
}
si->seq = sequence;
memcpy(si->sig.sig, signature->sig, KS_DHT_STORAGEITEM_SIGNATURE_SIZE);
SHA1_Init(&sha);
SHA1_Update(&sha, si->pk.key, KS_DHT_STORAGEITEM_KEY_SIZE);
if (si->salt && si->salt_length > 0) SHA1_Update(&sha, si->salt, si->salt_length);
SHA1_Final(si->id.id, &sha);
done:
if (ret != KS_STATUS_SUCCESS) {
if (si) ks_dht_storageitem_destroy(&si);
*item = NULL;
}
return ret;
} }
/** /**
* *
*/ */
KS_DECLARE(ks_status_t) ks_dht_storageitem_mutable(ks_dht_storageitem_t *item, KS_DECLARE(void) ks_dht_storageitem_destroy(ks_dht_storageitem_t **item)
ks_dht_storageitem_key_t *k,
uint8_t *salt,
ks_size_t salt_length,
int64_t sequence,
ks_dht_storageitem_signature_t *signature)
{ {
SHA_CTX sha; ks_dht_storageitem_t *si;
ks_assert(item); ks_assert(item);
ks_assert(item->v); ks_assert(*item);
ks_assert(k);
ks_assert(!(!salt && salt_length > 0));
ks_assert(salt_length > KS_DHT_STORAGEITEM_SIGNATURE_SIZE);
ks_assert(signature);
item->mutable = KS_TRUE; si = *item;
memcpy(item->pk.key, k->key, KS_DHT_STORAGEITEM_KEY_SIZE); if (si->v) {
if (salt && salt_length > 0) { ben_free(si->v);
memcpy(item->salt, salt, salt_length); si->v = NULL;
item->salt_length = salt_length;
} }
item->seq = sequence; ks_pool_free(si->pool, si);
memcpy(item->sig.sig, signature->sig, KS_DHT_STORAGEITEM_SIGNATURE_SIZE);
SHA1_Init(&sha); *item = NULL;
SHA1_Update(&sha, item->pk.key, KS_DHT_STORAGEITEM_KEY_SIZE);
if (item->salt && item->salt_length > 0) SHA1_Update(&sha, item->salt, item->salt_length);
SHA1_Final(item->id.id, &sha);
return KS_STATUS_SUCCESS;
} }
/* For Emacs: /* For Emacs:
* Local Variables: * Local Variables:
* mode:c * mode:c

View File

@ -1,92 +1,52 @@
#include "ks_dht.h" #include "ks_dht.h"
#include "ks_dht-int.h" #include "ks_dht-int.h"
/** KS_DECLARE(ks_status_t) ks_dht_transaction_create(ks_dht_transaction_t **transaction,
* ks_pool_t *pool,
*/ ks_sockaddr_t *raddr,
KS_DECLARE(ks_status_t) ks_dht_transaction_alloc(ks_dht_transaction_t **transaction, ks_pool_t *pool) uint32_t transactionid,
ks_dht_message_callback_t callback)
{ {
ks_dht_transaction_t *tran; ks_dht_transaction_t *t;
ks_status_t ret = KS_STATUS_SUCCESS;
ks_assert(transaction); ks_assert(transaction);
ks_assert(pool); ks_assert(pool);
ks_assert(raddr);
*transaction = tran = ks_pool_alloc(pool, sizeof(ks_dht_transaction_t)); *transaction = t = ks_pool_alloc(pool, sizeof(ks_dht_transaction_t));
tran->pool = pool; if (!t) {
ret = KS_STATUS_NO_MEM;
goto done;
}
t->pool = pool;
return KS_STATUS_SUCCESS; t->raddr = *raddr;
t->transactionid = transactionid;
t->callback = callback;
t->expiration = ks_time_now_sec() + KS_DHT_TRANSACTION_EXPIRATION_DELAY;
done:
if (ret != KS_STATUS_SUCCESS) {
if (t) ks_dht_transaction_destroy(&t);
*transaction = NULL;
}
return ret;
} }
/** KS_DECLARE(void) ks_dht_transaction_destroy(ks_dht_transaction_t **transaction)
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_prealloc(ks_dht_transaction_t *transaction, ks_pool_t *pool)
{ {
ks_assert(transaction); ks_dht_transaction_t *t;
ks_assert(pool);
memset(transaction, 0, sizeof(ks_dht_transaction_t));
transaction->pool = pool;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_free(ks_dht_transaction_t **transaction)
{
ks_assert(transaction); ks_assert(transaction);
ks_assert(*transaction); ks_assert(*transaction);
ks_dht_transaction_deinit(*transaction); t = *transaction;
ks_pool_free((*transaction)->pool, *transaction);
ks_pool_free(t->pool, t);
*transaction = NULL; *transaction = NULL;
return KS_STATUS_SUCCESS;
} }
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_init(ks_dht_transaction_t *transaction,
ks_sockaddr_t *raddr,
uint32_t transactionid,
ks_dht_message_callback_t callback)
{
ks_assert(transaction);
ks_assert(raddr);
ks_assert(transaction->pool);
ks_assert(callback);
transaction->raddr = *raddr;
transaction->transactionid = transactionid;
transaction->callback = callback;
transaction->expiration = ks_time_now_sec() + KS_DHT_TRANSACTION_EXPIRATION_DELAY;
transaction->finished = KS_FALSE;
return KS_STATUS_SUCCESS;
}
/**
*
*/
KS_DECLARE(ks_status_t) ks_dht_transaction_deinit(ks_dht_transaction_t *transaction)
{
ks_assert(transaction);
transaction->raddr = (const ks_sockaddr_t){ 0 };
transaction->transactionid = 0;
transaction->callback = NULL;
transaction->expiration = 0;
transaction->finished = KS_FALSE;
return KS_STATUS_SUCCESS;
}
/* For Emacs: /* For Emacs:
* Local Variables: * Local Variables:

View File

@ -19,7 +19,7 @@ int main() {
ks_status_t err; ks_status_t err;
int mask = 0; int mask = 0;
ks_dht_t *dht1 = NULL; ks_dht_t *dht1 = NULL;
ks_dht_t dht2; ks_dht_t *dht2 = NULL;
ks_dht_t *dht3 = NULL; ks_dht_t *dht3 = NULL;
ks_dht_endpoint_t *ep1; ks_dht_endpoint_t *ep1;
ks_dht_endpoint_t *ep2; ks_dht_endpoint_t *ep2;
@ -53,23 +53,15 @@ int main() {
diag("Binding to %s on ipv6\n", v6); diag("Binding to %s on ipv6\n", v6);
} }
err = ks_dht_alloc(&dht1, NULL); err = ks_dht_create(&dht1, NULL, NULL);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
err = ks_dht_init(dht1, NULL); err = ks_dht_create(&dht2, NULL, NULL);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
ks_dht_prealloc(&dht2, dht1->pool); err = ks_dht_create(&dht3, NULL, NULL);
err = ks_dht_init(&dht2, NULL);
ok(err == KS_STATUS_SUCCESS);
err = ks_dht_alloc(&dht3, NULL);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
err = ks_dht_init(dht3, NULL);
ok(err == KS_STATUS_SUCCESS);
ks_dht_register_type(dht1, "z", dht_z_callback); ks_dht_register_type(dht1, "z", dht_z_callback);
@ -85,7 +77,7 @@ int main() {
err = ks_addr_set(&addr, v4, KS_DHT_DEFAULT_PORT + 1, AF_INET); err = ks_addr_set(&addr, v4, KS_DHT_DEFAULT_PORT + 1, AF_INET);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
err = ks_dht_bind(&dht2, NULL, &addr, &ep2); err = ks_dht_bind(dht2, NULL, &addr, &ep2);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
//raddr2 = addr; //raddr2 = addr;
@ -109,7 +101,7 @@ int main() {
err = ks_addr_set(&addr, v6, KS_DHT_DEFAULT_PORT + 1, AF_INET6); err = ks_addr_set(&addr, v6, KS_DHT_DEFAULT_PORT + 1, AF_INET6);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
err = ks_dht_bind(&dht2, NULL, &addr, NULL); err = ks_dht_bind(dht2, NULL, &addr, NULL);
ok(err == KS_STATUS_SUCCESS); ok(err == KS_STATUS_SUCCESS);
err = ks_addr_set(&addr, v6, KS_DHT_DEFAULT_PORT + 2, AF_INET6); err = ks_addr_set(&addr, v6, KS_DHT_DEFAULT_PORT + 2, AF_INET6);
@ -143,24 +135,24 @@ int main() {
diag("Ping test\n"); diag("Ping test\n");
ks_dht_send_ping(&dht2, ep2, &raddr1); // Queue bootstrap ping from dht2 to dht1 ks_dht_send_ping(dht2, ep2, &raddr1); // Queue bootstrap ping from dht2 to dht1
ks_dht_pulse(&dht2, 100); // Send queued ping from dht2 to dht1 ks_dht_pulse(dht2, 100); // Send queued ping from dht2 to dht1
ks_dht_pulse(dht1, 100); // Receive and process ping query from dht2, queue and send ping response ks_dht_pulse(dht1, 100); // Receive and process ping query from dht2, queue and send ping response
ok(ks_dhtrt_find_node(dht1->rt_ipv4, ep2->nodeid) == NULL); // The node should be dubious, and thus not be returned as good yet ok(ks_dhtrt_find_node(dht1->rt_ipv4, ep2->nodeid) == NULL); // The node should be dubious, and thus not be returned as good yet
ks_dht_pulse(&dht2, 100); // Receive and process ping response from dht1 ks_dht_pulse(dht2, 100); // Receive and process ping response from dht1
ok(ks_dhtrt_find_node(dht2.rt_ipv4, ep1->nodeid) != NULL); // The node should be good, and thus be returned as good ok(ks_dhtrt_find_node(dht2->rt_ipv4, ep1->nodeid) != NULL); // The node should be good, and thus be returned as good
diag("Pulsing for route table pings\n"); // Wait a second for route table pinging to catch up diag("Pulsing for route table pings\n"); // Wait for route table pinging to catch up
for (int i = 0; i < 10; ++i) { for (int i = 0; i < 10; ++i) {
diag("DHT 1\n"); diag("DHT 1\n");
ks_dht_pulse(dht1, 100); ks_dht_pulse(dht1, 100);
diag("DHT 2\n"); diag("DHT 2\n");
ks_dht_pulse(&dht2, 100); ks_dht_pulse(dht2, 100);
} }
ok(ks_dhtrt_find_node(dht1->rt_ipv4, ep2->nodeid) != NULL); // The node should be good by now, and thus be returned as good ok(ks_dhtrt_find_node(dht1->rt_ipv4, ep2->nodeid) != NULL); // The node should be good by now, and thus be returned as good
@ -180,35 +172,26 @@ int main() {
ok(ks_dhtrt_find_node(dht3->rt_ipv4, ep2->nodeid) == NULL); // The node should be dubious, and thus not be returned as good yet ok(ks_dhtrt_find_node(dht3->rt_ipv4, ep2->nodeid) == NULL); // The node should be dubious, and thus not be returned as good yet
diag("Pulsing for route table pings\n"); // Wait a second for route table pinging to catch up diag("Pulsing for route table pings\n"); // Wait for route table pinging to catch up
for (int i = 0; i < 10; ++i) { for (int i = 0; i < 10; ++i) {
diag("DHT 1\n"); diag("DHT 1\n");
ks_dht_pulse(dht1, 100); ks_dht_pulse(dht1, 100);
diag("DHT 2\n"); diag("DHT 2\n");
ks_dht_pulse(&dht2, 100); ks_dht_pulse(dht2, 100);
} }
ok(ks_dhtrt_find_node(dht3->rt_ipv4, ep2->nodeid) != NULL); // The node should be good by now, and thus be returned as good ok(ks_dhtrt_find_node(dht3->rt_ipv4, ep2->nodeid) != NULL); // The node should be good by now, and thus be returned as good
diag("Cleanup\n");
/* Cleanup and shutdown */ /* Cleanup and shutdown */
diag("Cleanup\n");
err = ks_dht_deinit(dht3); ks_dht_destroy(&dht3);
ok(err == KS_STATUS_SUCCESS);
err = ks_dht_free(&dht3); ks_dht_destroy(&dht2);
ok(err == KS_STATUS_SUCCESS);
err = ks_dht_deinit(&dht2); ks_dht_destroy(&dht1);
ok(err == KS_STATUS_SUCCESS);
err = ks_dht_deinit(dht1); ks_shutdown();
ok(err == KS_STATUS_SUCCESS);
err = ks_dht_free(&dht1);
ok(err == KS_STATUS_SUCCESS);
err = ks_shutdown();
ok(err == KS_STATUS_SUCCESS);
done_testing(); done_testing();
} }