git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@6180 d0543943-73ff-0310-b7d9-9358b9ac24b2
This commit is contained in:
Anthony Minessale 2007-11-07 21:16:38 +00:00
parent 06f08e79a7
commit de8928f33b
4 changed files with 187 additions and 174 deletions

View File

@ -54,7 +54,7 @@
* Exception:
* The author hereby grants the use of this source code under the
* following license if and only if the source code is distributed
* as part of the openzap library. Any use or distribution of this
* as part of the openzap library. Any use or distribution of this
* source code outside the scope of the openzap library will nullify the
* following license and reinact the MPL 1.1 as stated above.
*
@ -80,7 +80,7 @@
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
@ -106,64 +106,64 @@ static teletone_detection_descriptor_t dtmf_detect_col[GRID_FACTOR];
static teletone_detection_descriptor_t dtmf_detect_row_2nd[GRID_FACTOR];
static teletone_detection_descriptor_t dtmf_detect_col_2nd[GRID_FACTOR];
static float dtmf_row[] = {697.0f, 770.0f, 852.0f, 941.0f};
static float dtmf_row[] = {697.0f, 770.0f, 852.0f, 941.0f};
static float dtmf_col[] = {1209.0f, 1336.0f, 1477.0f, 1633.0f};
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static void goertzel_init(teletone_goertzel_state_t *goertzel_state, teletone_detection_descriptor_t *tdesc) {
goertzel_state->v2 = goertzel_state->v3 = 0.0;
goertzel_state->fac = tdesc->fac;
goertzel_state->v2 = goertzel_state->v3 = 0.0;
goertzel_state->fac = tdesc->fac;
}
void teletone_goertzel_update(teletone_goertzel_state_t *goertzel_state,
int16_t sample_buffer[],
int samples)
{
int i;
float v1;
for (i = 0; i < samples; i++) {
v1 = goertzel_state->v2;
goertzel_state->v2 = goertzel_state->v3;
goertzel_state->v3 = (float)(goertzel_state->fac*goertzel_state->v2 - v1 + sample_buffer[i]);
}
int i;
float v1;
for (i = 0; i < samples; i++) {
v1 = goertzel_state->v2;
goertzel_state->v2 = goertzel_state->v3;
goertzel_state->v3 = (float)(goertzel_state->fac*goertzel_state->v2 - v1 + sample_buffer[i]);
}
}
#define teletone_goertzel_result(gs) ((gs)->v3 * (gs)->v3 + (gs)->v2 * (gs)->v2 - (gs)->v2 * (gs)->v3 * (gs)->fac)
#define teletone_goertzel_result(gs) (float)(((gs)->v3 * (gs)->v3 + (gs)->v2 * (gs)->v2 - (gs)->v2 * (gs)->v3 * (gs)->fac))
void teletone_dtmf_detect_init (teletone_dtmf_detect_state_t *dtmf_detect_state, int sample_rate)
{
int i;
float theta;
int i;
float theta;
dtmf_detect_state->hit1 = dtmf_detect_state->hit2 = 0;
dtmf_detect_state->hit1 = dtmf_detect_state->hit2 = 0;
for (i = 0; i < GRID_FACTOR; i++) {
theta = (float)(M_TWO_PI*(dtmf_row[i]/(float)sample_rate));
dtmf_detect_row[i].fac = (float)(2.0f*cos(theta));
for (i = 0; i < GRID_FACTOR; i++) {
theta = (float)(M_TWO_PI*(dtmf_row[i]/(float)sample_rate));
dtmf_detect_row[i].fac = (float)(2.0*cos(theta));
theta = (float)(M_TWO_PI*(dtmf_col[i]/(float)sample_rate));
dtmf_detect_col[i].fac = (float)(2.0f*cos(theta));
theta = (float)(M_TWO_PI*(dtmf_row[i]*2.0/(float)sample_rate));
dtmf_detect_row_2nd[i].fac = (float)(2.0f*cos(theta));
theta = (float)(M_TWO_PI*(dtmf_col[i]/(float)sample_rate));
dtmf_detect_col[i].fac = (float)(2.0*cos(theta));
theta = (float)(M_TWO_PI*(dtmf_row[i]*2.0/(float)sample_rate));
dtmf_detect_row_2nd[i].fac = (float)(2.0*cos(theta));
theta = (float)(M_TWO_PI*(dtmf_col[i]*2.0/(float)sample_rate));
dtmf_detect_col_2nd[i].fac = (float)(2.0f*cos(theta));
theta = (float)(M_TWO_PI*(dtmf_col[i]*2.0/(float)sample_rate));
dtmf_detect_col_2nd[i].fac = (float)(2.0*cos(theta));
goertzel_init (&dtmf_detect_state->row_out[i], &dtmf_detect_row[i]);
goertzel_init (&dtmf_detect_state->col_out[i], &dtmf_detect_col[i]);
goertzel_init (&dtmf_detect_state->row_out2nd[i], &dtmf_detect_row_2nd[i]);
goertzel_init (&dtmf_detect_state->col_out2nd[i], &dtmf_detect_col_2nd[i]);
goertzel_init (&dtmf_detect_state->col_out[i], &dtmf_detect_col[i]);
goertzel_init (&dtmf_detect_state->row_out2nd[i], &dtmf_detect_row_2nd[i]);
goertzel_init (&dtmf_detect_state->col_out2nd[i], &dtmf_detect_col_2nd[i]);
dtmf_detect_state->energy = 0.0;
}
dtmf_detect_state->current_sample = 0;
dtmf_detect_state->detected_digits = 0;
dtmf_detect_state->lost_digits = 0;
dtmf_detect_state->digits[0] = '\0';
dtmf_detect_state->mhit = 0;
}
dtmf_detect_state->current_sample = 0;
dtmf_detect_state->detected_digits = 0;
dtmf_detect_state->lost_digits = 0;
dtmf_detect_state->digits[0] = '\0';
dtmf_detect_state->mhit = 0;
}
void teletone_multi_tone_init(teletone_multi_tone_t *mt, teletone_tone_map_t *map)
@ -197,7 +197,7 @@ void teletone_multi_tone_init(teletone_multi_tone_t *mt, teletone_tone_map_t *ma
}
mt->tone_count++;
theta = (float)(M_TWO_PI*(map->freqs[x]/(float)mt->sample_rate));
mt->tdd[x].fac = (float)(2.0f * cos(theta));
mt->tdd[x].fac = (float)(2.0 * cos(theta));
goertzel_init (&mt->gs[x], &mt->tdd[x]);
goertzel_init (&mt->gs2[x], &mt->tdd[x]);
}
@ -213,17 +213,17 @@ int teletone_multi_tone_detect (teletone_multi_tone_t *mt,
float eng_sum = 0, eng_all[TELETONE_MAX_TONES];
int gtest = 0, see_hit = 0;
for (sample = 0; sample < samples; sample = limit) {
for (sample = 0; sample < samples; sample = limit) {
mt->total_samples++;
if ((samples - sample) >= (mt->min_samples - mt->current_sample)) {
limit = sample + (mt->min_samples - mt->current_sample);
if ((samples - sample) >= (mt->min_samples - mt->current_sample)) {
limit = sample + (mt->min_samples - mt->current_sample);
} else {
limit = samples;
limit = samples;
}
for (j = sample; j < limit; j++) {
famp = sample_buffer[j];
for (j = sample; j < limit; j++) {
famp = sample_buffer[j];
mt->energy += famp*famp;
@ -231,16 +231,16 @@ int teletone_multi_tone_detect (teletone_multi_tone_t *mt,
v1 = mt->gs[x].v2;
mt->gs[x].v2 = mt->gs[x].v3;
mt->gs[x].v3 = (float)(mt->gs[x].fac * mt->gs[x].v2 - v1 + famp);
v1 = mt->gs2[x].v2;
mt->gs2[x].v2 = mt->gs2[x].v3;
mt->gs2[x].v3 = (float)(mt->gs2[x].fac*mt->gs2[x].v2 - v1 + famp);
}
}
mt->current_sample += (limit - sample);
if (mt->current_sample < mt->min_samples) {
continue;
mt->current_sample += (limit - sample);
if (mt->current_sample < mt->min_samples) {
continue;
}
eng_sum = 0;
@ -277,15 +277,15 @@ int teletone_multi_tone_detect (teletone_multi_tone_t *mt,
}
}
/* Reinitialise the detector for the next block */
/* Reinitialise the detector for the next block */
for(x = 0; x < mt->tone_count; x++) {
goertzel_init (&mt->gs[x], &mt->tdd[x]);
goertzel_init (&mt->gs2[x], &mt->tdd[x]);
}
mt->energy = 0.0;
mt->current_sample = 0;
}
mt->current_sample = 0;
}
return see_hit;
}
@ -295,30 +295,30 @@ int teletone_dtmf_detect (teletone_dtmf_detect_state_t *dtmf_detect_state,
int16_t sample_buffer[],
int samples)
{
float row_energy[GRID_FACTOR];
float col_energy[GRID_FACTOR];
float famp;
float v1;
int i;
int j;
int sample;
int best_row;
int best_col;
char hit;
int limit;
float row_energy[GRID_FACTOR];
float col_energy[GRID_FACTOR];
float famp;
float v1;
int i;
int j;
int sample;
int best_row;
int best_col;
char hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* BLOCK_LEN is optimised to meet the DTMF specs. */
if ((samples - sample) >= (BLOCK_LEN - dtmf_detect_state->current_sample)) {
limit = sample + (BLOCK_LEN - dtmf_detect_state->current_sample);
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* BLOCK_LEN is optimised to meet the DTMF specs. */
if ((samples - sample) >= (BLOCK_LEN - dtmf_detect_state->current_sample)) {
limit = sample + (BLOCK_LEN - dtmf_detect_state->current_sample);
} else {
limit = samples;
limit = samples;
}
for (j = sample; j < limit; j++) {
for (j = sample; j < limit; j++) {
int x = 0;
famp = sample_buffer[j];
famp = sample_buffer[j];
dtmf_detect_state->energy += famp*famp;
@ -326,7 +326,7 @@ int teletone_dtmf_detect (teletone_dtmf_detect_state_t *dtmf_detect_state,
v1 = dtmf_detect_state->row_out[x].v2;
dtmf_detect_state->row_out[x].v2 = dtmf_detect_state->row_out[x].v3;
dtmf_detect_state->row_out[x].v3 = (float)(dtmf_detect_state->row_out[x].fac*dtmf_detect_state->row_out[x].v2 - v1 + famp);
v1 = dtmf_detect_state->col_out[x].v2;
dtmf_detect_state->col_out[x].v2 = dtmf_detect_state->col_out[x].v3;
dtmf_detect_state->col_out[x].v3 = (float)(dtmf_detect_state->col_out[x].fac*dtmf_detect_state->col_out[x].v2 - v1 + famp);
@ -334,59 +334,59 @@ int teletone_dtmf_detect (teletone_dtmf_detect_state_t *dtmf_detect_state,
v1 = dtmf_detect_state->col_out2nd[x].v2;
dtmf_detect_state->col_out2nd[x].v2 = dtmf_detect_state->col_out2nd[x].v3;
dtmf_detect_state->col_out2nd[x].v3 = (float)(dtmf_detect_state->col_out2nd[x].fac*dtmf_detect_state->col_out2nd[x].v2 - v1 + famp);
v1 = dtmf_detect_state->row_out2nd[x].v2;
dtmf_detect_state->row_out2nd[x].v2 = dtmf_detect_state->row_out2nd[x].v3;
dtmf_detect_state->row_out2nd[x].v3 = (float)(dtmf_detect_state->row_out2nd[x].fac*dtmf_detect_state->row_out2nd[x].v2 - v1 + famp);
}
}
dtmf_detect_state->current_sample += (limit - sample);
if (dtmf_detect_state->current_sample < BLOCK_LEN) {
continue;
}
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = (float)(teletone_goertzel_result (&dtmf_detect_state->row_out[0]));
col_energy[0] = (float)(teletone_goertzel_result (&dtmf_detect_state->col_out[0]));
for (best_row = best_col = 0, i = 1; i < GRID_FACTOR; i++) {
row_energy[i] = (float)(teletone_goertzel_result (&dtmf_detect_state->row_out[i]));
if (row_energy[i] > row_energy[best_row]) {
best_row = i;
dtmf_detect_state->current_sample += (limit - sample);
if (dtmf_detect_state->current_sample < BLOCK_LEN) {
continue;
}
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = teletone_goertzel_result (&dtmf_detect_state->row_out[0]);
col_energy[0] = teletone_goertzel_result (&dtmf_detect_state->col_out[0]);
for (best_row = best_col = 0, i = 1; i < GRID_FACTOR; i++) {
row_energy[i] = teletone_goertzel_result (&dtmf_detect_state->row_out[i]);
if (row_energy[i] > row_energy[best_row]) {
best_row = i;
}
col_energy[i] = (float)(teletone_goertzel_result (&dtmf_detect_state->col_out[i]));
if (col_energy[i] > col_energy[best_col]) {
best_col = i;
col_energy[i] = teletone_goertzel_result (&dtmf_detect_state->col_out[i]);
if (col_energy[i] > col_energy[best_col]) {
best_col = i;
}
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < GRID_FACTOR; i++) {
if ((i != best_col && col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row && row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and second harmonic test */
if (i >= GRID_FACTOR && (row_energy[best_row] + col_energy[best_col]) > 42.0*dtmf_detect_state->energy &&
teletone_goertzel_result (&dtmf_detect_state->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col] &&
teletone_goertzel_result (&dtmf_detect_state->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
hit = dtmf_positions[(best_row << 2) + best_col];
/* Look for two successive similar results */
/* The logic in the next test is:
We need two successive identical clean detects, with
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < GRID_FACTOR; i++) {
if ((i != best_col && col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row && row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and second harmonic test */
if (i >= GRID_FACTOR && (row_energy[best_row] + col_energy[best_col]) > 42.0*dtmf_detect_state->energy &&
teletone_goertzel_result (&dtmf_detect_state->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col] &&
teletone_goertzel_result (&dtmf_detect_state->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
hit = dtmf_positions[(best_row << 2) + best_col];
/* Look for two successive similar results */
/* The logic in the next test is:
We need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit. */
if (hit == dtmf_detect_state->hit3 && dtmf_detect_state->hit3 != dtmf_detect_state->hit2) {
if (hit == dtmf_detect_state->hit3 && dtmf_detect_state->hit3 != dtmf_detect_state->hit2) {
dtmf_detect_state->mhit = hit;
dtmf_detect_state->digit_hits[(best_row << 2) + best_col]++;
dtmf_detect_state->detected_digits++;
@ -399,26 +399,26 @@ int teletone_dtmf_detect (teletone_dtmf_detect_state_t *dtmf_detect_state,
dtmf_detect_state->lost_digits++;
}
}
}
}
dtmf_detect_state->hit1 = dtmf_detect_state->hit2;
dtmf_detect_state->hit2 = dtmf_detect_state->hit3;
dtmf_detect_state->hit3 = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < GRID_FACTOR; i++) {
goertzel_init (&dtmf_detect_state->row_out[i], &dtmf_detect_row[i]);
goertzel_init (&dtmf_detect_state->col_out[i], &dtmf_detect_col[i]);
goertzel_init (&dtmf_detect_state->row_out2nd[i], &dtmf_detect_row_2nd[i]);
goertzel_init (&dtmf_detect_state->col_out2nd[i], &dtmf_detect_col_2nd[i]);
}
}
}
dtmf_detect_state->hit1 = dtmf_detect_state->hit2;
dtmf_detect_state->hit2 = dtmf_detect_state->hit3;
dtmf_detect_state->hit3 = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < GRID_FACTOR; i++) {
goertzel_init (&dtmf_detect_state->row_out[i], &dtmf_detect_row[i]);
goertzel_init (&dtmf_detect_state->col_out[i], &dtmf_detect_col[i]);
goertzel_init (&dtmf_detect_state->row_out2nd[i], &dtmf_detect_row_2nd[i]);
goertzel_init (&dtmf_detect_state->col_out2nd[i], &dtmf_detect_col_2nd[i]);
}
dtmf_detect_state->energy = 0.0;
dtmf_detect_state->current_sample = 0;
}
if ((!dtmf_detect_state->mhit) || (dtmf_detect_state->mhit != hit)) {
dtmf_detect_state->current_sample = 0;
}
if ((!dtmf_detect_state->mhit) || (dtmf_detect_state->mhit != hit)) {
dtmf_detect_state->mhit = 0;
return(0);
}
return (hit);
}
return (hit);
}
@ -426,16 +426,16 @@ int teletone_dtmf_get (teletone_dtmf_detect_state_t *dtmf_detect_state,
char *buf,
int max)
{
if (max > dtmf_detect_state->current_digits) {
max = dtmf_detect_state->current_digits;
if (max > dtmf_detect_state->current_digits) {
max = dtmf_detect_state->current_digits;
}
if (max > 0) {
memcpy (buf, dtmf_detect_state->digits, max);
memmove (dtmf_detect_state->digits, dtmf_detect_state->digits + max, dtmf_detect_state->current_digits - max);
dtmf_detect_state->current_digits -= max;
}
buf[max] = '\0';
return max;
if (max > 0) {
memcpy (buf, dtmf_detect_state->digits, max);
memmove (dtmf_detect_state->digits, dtmf_detect_state->digits + max, dtmf_detect_state->current_digits - max);
dtmf_detect_state->current_digits -= max;
}
buf[max] = '\0';
return max;
}
/* For Emacs:

View File

@ -54,7 +54,7 @@
* Exception:
* The author hereby grants the use of this source code under the
* following license if and only if the source code is distributed
* as part of the openzap library. Any use or distribution of this
* as part of the openzap library. Any use or distribution of this
* source code outside the scope of the openzap library will nullify the
* following license and reinact the MPL 1.1 as stated above.
*
@ -80,7 +80,7 @@
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
@ -105,9 +105,9 @@ extern "C" {
*/
#ifndef FALSE
#define FALSE 0
#define FALSE 0
#ifndef TRUE
#define TRUE (!FALSE)
#define TRUE (!FALSE)
#endif
#endif
@ -123,13 +123,13 @@ extern "C" {
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
#define DTMF_REVERSE_TWIST 2.5 /* 4dB */
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW 2.5 /* 4dB */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_THRESHOLD 8.0e7
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
#define DTMF_REVERSE_TWIST 2.5 /* 4dB */
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW 2.5 /* 4dB */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define GRID_FACTOR 4
#define BLOCK_LEN 102
#define M_TWO_PI 2.0*M_PI
@ -154,7 +154,7 @@ extern "C" {
teletone_goertzel_state_t row_out2nd[GRID_FACTOR];
teletone_goertzel_state_t col_out2nd[GRID_FACTOR];
float energy;
int current_sample;
char digits[TELETONE_MAX_DTMF_DIGITS + 1];
int current_digits;

View File

@ -33,7 +33,7 @@
* Exception:
* The author hereby grants the use of this source code under the
* following license if and only if the source code is distributed
* as part of the openzap library. Any use or distribution of this
* as part of the openzap library. Any use or distribution of this
* source code outside the scope of the openzap library will nullify the
* following license and reinact the MPL 1.1 as stated above.
*
@ -59,7 +59,7 @@
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
@ -219,7 +219,8 @@ int teletone_mux_tones(teletone_generation_session_t *ts, teletone_tone_map_t *m
if (map->freqs[0] > 0) {
for (freqlen = 0; map->freqs[freqlen] && freqlen < TELETONE_MAX_TONES; freqlen++) {
teletone_dds_state_set_tone(&tones[freqlen], map->freqs[freqlen], ts->rate, vol);
teletone_dds_state_set_tone(&tones[freqlen], map->freqs[freqlen], ts->rate, 0);
teletone_dds_state_set_tx_level(&tones[freqlen], vol);
}
if (ts->channels > 1) {
@ -249,7 +250,7 @@ int teletone_mux_tones(teletone_generation_session_t *ts, teletone_tone_map_t *m
sample = 128;
for (i = 0; i < freqlen; i++) {
int32_t s = teletone_dds_modulate_sample(&tones[i]);
int32_t s = teletone_dds_state_modulate_sample(&tones[i], 0);
sample += s;
}
sample /= freqlen;

View File

@ -33,7 +33,7 @@
* Exception:
* The author hereby grants the use of this source code under the
* following license if and only if the source code is distributed
* as part of the openzap library. Any use or distribution of this
* as part of the openzap library. Any use or distribution of this
* source code outside the scope of the openzap library will nullify the
* following license and reinact the MPL 1.1 as stated above.
*
@ -59,7 +59,7 @@
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
@ -80,8 +80,9 @@ extern "C" {
#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
#undef inline
#define inline __inline
#ifndef __inline__
#define __inline__ __inline
#endif
typedef unsigned __int64 uint64_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int16 uint16_t;
@ -111,12 +112,12 @@ extern float powf (float, float);
#define TELETONE_VOL_DB_MAX 0
#define TELETONE_VOL_DB_MIN -63
#define MAX_PHASE_TONES 4
struct teletone_dds_state {
uint32_t phase_rate;
uint32_t phase_rate[MAX_PHASE_TONES];
uint32_t scale_factor;
uint32_t phase_accumulator;
int16_t sample;
teletone_process_t tx_level;
};
typedef struct teletone_dds_state teletone_dds_state_t;
@ -130,42 +131,53 @@ typedef struct teletone_dds_state teletone_dds_state_t;
extern int16_t TELETONE_SINES[SINE_TABLE_MAX];
static inline int16_t teletone_dds_modulate_sample(teletone_dds_state_t *dds)
static __inline__ int32_t teletone_dds_phase_rate(teletone_process_t tone, uint32_t rate)
{
int32_t bitmask = dds->phase_accumulator, sine_index = (bitmask >>= 23) & SINE_TABLE_LEN;
return (int32_t) ((tone * MAX_PHASE_ACCUMULATOR) / rate);
}
static __inline__ int16_t teletone_dds_state_modulate_sample(teletone_dds_state_t *dds, uint32_t pindex)
{
int32_t bitmask = dds->phase_accumulator, sine_index = (bitmask >>= 23) & SINE_TABLE_LEN;
int16_t sample;
if (bitmask & SINE_TABLE_MAX) {
sine_index = SINE_TABLE_LEN - sine_index;
if (pindex >= MAX_PHASE_TONES) {
pindex = 0;
}
sample = TELETONE_SINES[sine_index];
if (bitmask & SINE_TABLE_MAX) {
sine_index = SINE_TABLE_LEN - sine_index;
}
sample = TELETONE_SINES[sine_index];
if (bitmask & (SINE_TABLE_MAX * 2)) {
if (bitmask & (SINE_TABLE_MAX * 2)) {
sample *= -1;
}
dds->phase_accumulator += dds->phase_rate;
return (int16_t) (sample * dds->scale_factor >> 15);
dds->phase_accumulator += dds->phase_rate[pindex];
return (int16_t) (sample * dds->scale_factor >> 15);
}
static inline void teletone_dds_state_set_tx_level(teletone_dds_state_t *dds, float tx_level)
static __inline__ void teletone_dds_state_set_tx_level(teletone_dds_state_t *dds, float tx_level)
{
dds->scale_factor = (int) (powf(10.0f, (tx_level - DBM0_MAX_POWER) / 20.0f) * (32767.0f * 1.414214f));
dds->tx_level = tx_level;
}
static inline void teletone_dds_state_set_tone(teletone_dds_state_t *dds, teletone_process_t tone, uint32_t rate, float tx_level)
static __inline__ void teletone_dds_state_reset_accum(teletone_dds_state_t *dds)
{
dds->phase_accumulator = 0;
dds->phase_rate = (int32_t) ((tone * MAX_PHASE_ACCUMULATOR) / rate);
}
if (dds->tx_level != tx_level || !dds->scale_factor) {
teletone_dds_state_set_tx_level(dds, tx_level);
static __inline__ int teletone_dds_state_set_tone(teletone_dds_state_t *dds, teletone_process_t tone, uint32_t rate, uint32_t pindex)
{
if (pindex < MAX_PHASE_TONES) {
dds->phase_rate[pindex] = teletone_dds_phase_rate(tone, rate);
return 0;
}
dds->tx_level = tx_level;
return -1;
}