/*
ge_train.c
Jean Marc Valin Feb 2012
Joint pitch and energy VQ training program
usage:
cat GE | ./ge_train 2 1000000 8 > quantized
The first column is the log2 of the pitch compared to the lowest freq,
so log2(wo/pi*4000/50) where wo is the frequency your patch outputs. The
second column is the energy in dB, so 10*log10(1e-4+E)
*/
/*
Copyright (C) 2012 Jean-Marc Valin
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see .
*/
#include
#include
#include
#include
#define MIN(a,b) ((a)<(b)?(a):(b))
//#define COEF 0.0
static float COEF[2] = {0.8, 0.9};
//static float COEF[2] = {0.0, 0.};
#define MAX_ENTRIES 16384
void compute_weights2(const float *x, const float *xp, float *w, int ndim)
{
w[0] = 30;
w[1] = 1;
if (x[1]<0)
{
w[0] *= .6;
w[1] *= .3;
}
if (x[1]<-10)
{
w[0] *= .3;
w[1] *= .3;
}
/* Higher weight if pitch is stable */
if (fabs(x[0]-xp[0])<.2)
{
w[0] *= 2;
w[1] *= 1.5;
} else if (fabs(x[0]-xp[0])>.5) /* Lower if not stable */
{
w[0] *= .5;
}
/* Lower weight for low energy */
if (x[1] < xp[1]-10)
{
w[1] *= .5;
}
if (x[1] < xp[1]-20)
{
w[1] *= .5;
}
//w[0] = 30;
//w[1] = 1;
/* Square the weights because it's applied on the squared error */
w[0] *= w[0];
w[1] *= w[1];
}
int find_nearest_weighted(const float *codebook, int nb_entries, float *x, const float *w, int ndim)
{
int i, j;
float min_dist = 1e15;
int nearest = 0;
for (i=0;i