/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set sw=4 ts=8 et tw=80: * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * JS regular expressions, after Perl. */ #include "jsstddef.h" #include #include #include "jstypes.h" #include "jsarena.h" /* Added by JSIFY */ #include "jsutil.h" /* Added by JSIFY */ #include "jsapi.h" #include "jsarray.h" #include "jsatom.h" #include "jscntxt.h" #include "jsconfig.h" #include "jsfun.h" #include "jsgc.h" #include "jsinterp.h" #include "jslock.h" #include "jsnum.h" #include "jsobj.h" #include "jsopcode.h" #include "jsregexp.h" #include "jsscan.h" #include "jsstr.h" #if JS_HAS_REGEXPS /* Note : contiguity of 'simple opcodes' is important for SimpleMatch() */ typedef enum REOp { REOP_EMPTY = 0, /* match rest of input against rest of r.e. */ REOP_ALT = 1, /* alternative subexpressions in kid and next */ REOP_SIMPLE_START = 2, /* start of 'simple opcodes' */ REOP_BOL = 2, /* beginning of input (or line if multiline) */ REOP_EOL = 3, /* end of input (or line if multiline) */ REOP_WBDRY = 4, /* match "" at word boundary */ REOP_WNONBDRY = 5, /* match "" at word non-boundary */ REOP_DOT = 6, /* stands for any character */ REOP_DIGIT = 7, /* match a digit char: [0-9] */ REOP_NONDIGIT = 8, /* match a non-digit char: [^0-9] */ REOP_ALNUM = 9, /* match an alphanumeric char: [0-9a-z_A-Z] */ REOP_NONALNUM = 10, /* match a non-alphanumeric char: [^0-9a-z_A-Z] */ REOP_SPACE = 11, /* match a whitespace char */ REOP_NONSPACE = 12, /* match a non-whitespace char */ REOP_BACKREF = 13, /* back-reference (e.g., \1) to a parenthetical */ REOP_FLAT = 14, /* match a flat string */ REOP_FLAT1 = 15, /* match a single char */ REOP_FLATi = 16, /* case-independent REOP_FLAT */ REOP_FLAT1i = 17, /* case-independent REOP_FLAT1 */ REOP_UCFLAT1 = 18, /* single Unicode char */ REOP_UCFLAT1i = 19, /* case-independent REOP_UCFLAT1 */ REOP_UCFLAT = 20, /* flat Unicode string; len immediate counts chars */ REOP_UCFLATi = 21, /* case-independent REOP_UCFLAT */ REOP_CLASS = 22, /* character class with index */ REOP_NCLASS = 23, /* negated character class with index */ REOP_SIMPLE_END = 23, /* end of 'simple opcodes' */ REOP_QUANT = 25, /* quantified atom: atom{1,2} */ REOP_STAR = 26, /* zero or more occurrences of kid */ REOP_PLUS = 27, /* one or more occurrences of kid */ REOP_OPT = 28, /* optional subexpression in kid */ REOP_LPAREN = 29, /* left paren bytecode: kid is u.num'th sub-regexp */ REOP_RPAREN = 30, /* right paren bytecode */ REOP_JUMP = 31, /* for deoptimized closure loops */ REOP_DOTSTAR = 32, /* optimize .* to use a single opcode */ REOP_ANCHOR = 33, /* like .* but skips left context to unanchored r.e. */ REOP_EOLONLY = 34, /* $ not preceded by any pattern */ REOP_BACKREFi = 37, /* case-independent REOP_BACKREF */ REOP_LPARENNON = 41, /* non-capturing version of REOP_LPAREN */ REOP_ASSERT = 43, /* zero width positive lookahead assertion */ REOP_ASSERT_NOT = 44, /* zero width negative lookahead assertion */ REOP_ASSERTTEST = 45, /* sentinel at end of assertion child */ REOP_ASSERTNOTTEST = 46, /* sentinel at end of !assertion child */ REOP_MINIMALSTAR = 47, /* non-greedy version of * */ REOP_MINIMALPLUS = 48, /* non-greedy version of + */ REOP_MINIMALOPT = 49, /* non-greedy version of ? */ REOP_MINIMALQUANT = 50, /* non-greedy version of {} */ REOP_ENDCHILD = 51, /* sentinel at end of quantifier child */ REOP_REPEAT = 52, /* directs execution of greedy quantifier */ REOP_MINIMALREPEAT = 53, /* directs execution of non-greedy quantifier */ REOP_ALTPREREQ = 54, /* prerequisite for ALT, either of two chars */ REOP_ALTPREREQ2 = 55, /* prerequisite for ALT, a char or a class */ REOP_ENDALT = 56, /* end of final alternate */ REOP_CONCAT = 57, /* concatenation of terms (parse time only) */ REOP_END } REOp; #define REOP_IS_SIMPLE(op) ((unsigned)((op) - REOP_SIMPLE_START) < \ (unsigned)REOP_SIMPLE_END) struct RENode { REOp op; /* r.e. op bytecode */ RENode *next; /* next in concatenation order */ void *kid; /* first operand */ union { void *kid2; /* second operand */ jsint num; /* could be a number */ size_t parenIndex; /* or a parenthesis index */ struct { /* or a quantifier range */ uintN min; uintN max; JSPackedBool greedy; } range; struct { /* or a character class */ size_t startIndex; size_t kidlen; /* length of string at kid, in jschars */ size_t index; /* index into class list */ uint16 bmsize; /* bitmap size, based on max char code */ JSPackedBool sense; } ucclass; struct { /* or a literal sequence */ jschar chr; /* of one character */ size_t length; /* or many (via the kid) */ } flat; struct { RENode *kid2; /* second operand from ALT */ jschar ch1; /* match char for ALTPREREQ */ jschar ch2; /* ditto, or class index for ALTPREREQ2 */ } altprereq; } u; }; #define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \ ((c >= 'a') && (c <= 'z')) ) #define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \ (c == LINE_SEPARATOR) || (c == PARA_SEPARATOR)) #define CLASS_CACHE_SIZE 4 typedef struct CompilerState { JSContext *context; JSTokenStream *tokenStream; /* For reporting errors */ const jschar *cpbegin; const jschar *cpend; const jschar *cp; size_t parenCount; size_t classCount; /* number of [] encountered */ size_t treeDepth; /* maximum depth of parse tree */ size_t progLength; /* estimated bytecode length */ RENode *result; size_t classBitmapsMem; /* memory to hold all class bitmaps */ struct { const jschar *start; /* small cache of class strings */ size_t length; /* since they're often the same */ size_t index; } classCache[CLASS_CACHE_SIZE]; uint16 flags; } CompilerState; typedef struct EmitStateStackEntry { jsbytecode *altHead; /* start of REOP_ALT* opcode */ jsbytecode *nextAltFixup; /* fixup pointer to next-alt offset */ jsbytecode *nextTermFixup; /* fixup ptr. to REOP_JUMP offset */ jsbytecode *endTermFixup; /* fixup ptr. to REOPT_ALTPREREQ* offset */ RENode *continueNode; /* original REOP_ALT* node being stacked */ jsbytecode continueOp; /* REOP_JUMP or REOP_ENDALT continuation */ JSPackedBool jumpToJumpFlag; /* true if we've patched jump-to-jump to avoid 16-bit unsigned offset overflow */ } EmitStateStackEntry; /* * Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h, * the getters and setters take the pc of the offset, not of the opcode before * the offset. */ #define ARG_LEN 2 #define GET_ARG(pc) ((uint16)(((pc)[0] << 8) | (pc)[1])) #define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \ (pc)[1] = (jsbytecode) (arg)) #define OFFSET_LEN ARG_LEN #define OFFSET_MAX (JS_BIT(ARG_LEN * 8) - 1) #define GET_OFFSET(pc) GET_ARG(pc) /* * Maximum supported tree depth is maximum size of EmitStateStackEntry stack. * For sanity, we limit it to 2^24 bytes. */ #define TREE_DEPTH_MAX (JS_BIT(24) / sizeof(EmitStateStackEntry)) /* * The maximum memory that can be allocated for class bitmaps. * For sanity, we limit it to 2^24 bytes. */ #define CLASS_BITMAPS_MEM_LIMIT JS_BIT(24) /* * Functions to get size and write/read bytecode that represent small indexes * compactly. * Each byte in the code represent 7-bit chunk of the index. 8th bit when set * indicates that the following byte brings more bits to the index. Otherwise * this is the last byte in the index bytecode representing highest index bits. */ static size_t GetCompactIndexWidth(size_t index) { size_t width; for (width = 1; (index >>= 7) != 0; ++width) { } return width; } static jsbytecode * WriteCompactIndex(jsbytecode *pc, size_t index) { size_t next; while ((next = index >> 7) != 0) { *pc++ = (jsbytecode)(index | 0x80); index = next; } *pc++ = (jsbytecode)index; return pc; } static jsbytecode * ReadCompactIndex(jsbytecode *pc, size_t *result) { size_t nextByte; nextByte = *pc++; if ((nextByte & 0x80) == 0) { /* * Short-circuit the most common case when compact index <= 127. */ *result = nextByte; } else { size_t shift = 7; *result = 0x7F & nextByte; do { nextByte = *pc++; *result |= (nextByte & 0x7F) << shift; shift += 7; } while ((nextByte & 0x80) != 0); } return pc; } typedef struct RECapture { ptrdiff_t index; /* start of contents, -1 for empty */ size_t length; /* length of capture */ } RECapture; typedef struct REMatchState { const jschar *cp; RECapture parens[1]; /* first of 're->parenCount' captures, allocated at end of this struct */ } REMatchState; struct REBackTrackData; typedef struct REProgState { jsbytecode *continue_pc; /* current continuation data */ jsbytecode continue_op; ptrdiff_t index; /* progress in text */ size_t parenSoFar; /* highest indexed paren started */ union { struct { uintN min; /* current quantifier limits */ uintN max; } quantifier; struct { size_t top; /* backtrack stack state */ size_t sz; } assertion; } u; } REProgState; typedef struct REBackTrackData { size_t sz; /* size of previous stack entry */ jsbytecode *backtrack_pc; /* where to backtrack to */ jsbytecode backtrack_op; const jschar *cp; /* index in text of match at backtrack */ size_t parenIndex; /* start index of saved paren contents */ size_t parenCount; /* # of saved paren contents */ size_t saveStateStackTop; /* number of parent states */ /* saved parent states follow */ /* saved paren contents follow */ } REBackTrackData; #define INITIAL_STATESTACK 100 #define INITIAL_BACKTRACK 8000 typedef struct REGlobalData { JSContext *cx; JSRegExp *regexp; /* the RE in execution */ JSBool ok; /* runtime error (out_of_memory only?) */ size_t start; /* offset to start at */ ptrdiff_t skipped; /* chars skipped anchoring this r.e. */ const jschar *cpbegin; /* text base address */ const jschar *cpend; /* text limit address */ REProgState *stateStack; /* stack of state of current parents */ size_t stateStackTop; size_t stateStackLimit; REBackTrackData *backTrackStack;/* stack of matched-so-far positions */ REBackTrackData *backTrackSP; size_t backTrackStackSize; size_t cursz; /* size of current stack entry */ JSArenaPool pool; /* It's faster to use one malloc'd pool than to malloc/free the three items that are allocated from this pool */ } REGlobalData; /* * 1. If IgnoreCase is false, return ch. * 2. Let u be ch converted to upper case as if by calling * String.prototype.toUpperCase on the one-character string ch. * 3. If u does not consist of a single character, return ch. * 4. Let cu be u's character. * 5. If ch's code point value is greater than or equal to decimal 128 and cu's * code point value is less than decimal 128, then return ch. * 6. Return cu. */ static jschar upcase(jschar ch) { jschar cu = JS_TOUPPER(ch); if (ch >= 128 && cu < 128) return ch; return cu; } static jschar downcase(jschar ch) { jschar cl = JS_TOLOWER(ch); if (cl >= 128 && ch < 128) return ch; return cl; } /* Construct and initialize an RENode, returning NULL for out-of-memory */ static RENode * NewRENode(CompilerState *state, REOp op) { JSContext *cx; RENode *ren; cx = state->context; JS_ARENA_ALLOCATE_CAST(ren, RENode *, &cx->tempPool, sizeof *ren); if (!ren) { JS_ReportOutOfMemory(cx); return NULL; } ren->op = op; ren->next = NULL; ren->kid = NULL; return ren; } /* * Validates and converts hex ascii value. */ static JSBool isASCIIHexDigit(jschar c, uintN *digit) { uintN cv = c; if (cv < '0') return JS_FALSE; if (cv <= '9') { *digit = cv - '0'; return JS_TRUE; } cv |= 0x20; if (cv >= 'a' && cv <= 'f') { *digit = cv - 'a' + 10; return JS_TRUE; } return JS_FALSE; } typedef struct { REOp op; const jschar *errPos; size_t parenIndex; } REOpData; /* * Process the op against the two top operands, reducing them to a single * operand in the penultimate slot. Update progLength and treeDepth. */ static JSBool ProcessOp(CompilerState *state, REOpData *opData, RENode **operandStack, intN operandSP) { RENode *result; switch (opData->op) { case REOP_ALT: result = NewRENode(state, REOP_ALT); if (!result) return JS_FALSE; result->kid = operandStack[operandSP - 2]; result->u.kid2 = operandStack[operandSP - 1]; operandStack[operandSP - 2] = result; if (state->treeDepth == TREE_DEPTH_MAX) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX); return JS_FALSE; } ++state->treeDepth; /* * Look at both alternates to see if there's a FLAT or a CLASS at * the start of each. If so, use a prerequisite match. */ if (((RENode *) result->kid)->op == REOP_FLAT && ((RENode *) result->u.kid2)->op == REOP_FLAT && (state->flags & JSREG_FOLD) == 0) { result->op = REOP_ALTPREREQ; result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr; result->u.altprereq.ch2 = ((RENode *) result->u.kid2)->u.flat.chr; /* ALTPREREQ, , uch1, uch2, , ..., JUMP, ... ENDALT */ state->progLength += 13; } else if (((RENode *) result->kid)->op == REOP_CLASS && ((RENode *) result->kid)->u.ucclass.index < 256 && ((RENode *) result->u.kid2)->op == REOP_FLAT && (state->flags & JSREG_FOLD) == 0) { result->op = REOP_ALTPREREQ2; result->u.altprereq.ch1 = ((RENode *) result->u.kid2)->u.flat.chr; result->u.altprereq.ch2 = ((RENode *) result->kid)->u.ucclass.index; /* ALTPREREQ2, , uch1, uch2, , ..., JUMP, ... ENDALT */ state->progLength += 13; } else if (((RENode *) result->kid)->op == REOP_FLAT && ((RENode *) result->u.kid2)->op == REOP_CLASS && ((RENode *) result->u.kid2)->u.ucclass.index < 256 && (state->flags & JSREG_FOLD) == 0) { result->op = REOP_ALTPREREQ2; result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr; result->u.altprereq.ch2 = ((RENode *) result->u.kid2)->u.ucclass.index; /* ALTPREREQ2, , uch1, uch2, , ..., JUMP, ... ENDALT */ state->progLength += 13; } else { /* ALT, , ..., JUMP, ... ENDALT */ state->progLength += 7; } break; case REOP_CONCAT: result = operandStack[operandSP - 2]; while (result->next) result = result->next; result->next = operandStack[operandSP - 1]; break; case REOP_ASSERT: case REOP_ASSERT_NOT: case REOP_LPARENNON: case REOP_LPAREN: /* These should have been processed by a close paren. */ js_ReportCompileErrorNumberUC(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_MISSING_PAREN, opData->errPos); return JS_FALSE; default:; } return JS_TRUE; } /* * Parser forward declarations. */ static JSBool ParseTerm(CompilerState *state); static JSBool ParseQuantifier(CompilerState *state); static intN ParseMinMaxQuantifier(CompilerState *state, JSBool ignoreValues); /* * Top-down regular expression grammar, based closely on Perl4. * * regexp: altern A regular expression is one or more * altern '|' regexp alternatives separated by vertical bar. */ #define INITIAL_STACK_SIZE 128 static JSBool ParseRegExp(CompilerState *state) { size_t parenIndex; RENode *operand; REOpData *operatorStack; RENode **operandStack; REOp op; intN i; JSBool result = JS_FALSE; intN operatorSP = 0, operatorStackSize = INITIAL_STACK_SIZE; intN operandSP = 0, operandStackSize = INITIAL_STACK_SIZE; /* Watch out for empty regexp */ if (state->cp == state->cpend) { state->result = NewRENode(state, REOP_EMPTY); return (state->result != NULL); } operatorStack = (REOpData *) JS_malloc(state->context, sizeof(REOpData) * operatorStackSize); if (!operatorStack) return JS_FALSE; operandStack = (RENode **) JS_malloc(state->context, sizeof(RENode *) * operandStackSize); if (!operandStack) goto out; for (;;) { parenIndex = state->parenCount; if (state->cp == state->cpend) { /* * If we are at the end of the regexp and we're short one or more * operands, the regexp must have the form /x|/ or some such, with * left parentheses making us short more than one operand. */ if (operatorSP >= operandSP) { operand = NewRENode(state, REOP_EMPTY); if (!operand) goto out; goto pushOperand; } } else { switch (*state->cp) { case '(': ++state->cp; if (state->cp + 1 < state->cpend && *state->cp == '?' && (state->cp[1] == '=' || state->cp[1] == '!' || state->cp[1] == ':')) { switch (state->cp[1]) { case '=': op = REOP_ASSERT; /* ASSERT, , ... ASSERTTEST */ state->progLength += 4; break; case '!': op = REOP_ASSERT_NOT; /* ASSERTNOT, , ... ASSERTNOTTEST */ state->progLength += 4; break; default: op = REOP_LPARENNON; break; } state->cp += 2; } else { op = REOP_LPAREN; /* LPAREN, , ... RPAREN, */ state->progLength += 2 * (1 + GetCompactIndexWidth(parenIndex)); state->parenCount++; if (state->parenCount == 65535) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_TOO_MANY_PARENS); goto out; } } goto pushOperator; case ')': /* * If there's no stacked open parenthesis, throw syntax error. */ for (i = operatorSP - 1; ; i--) { if (i < 0) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_UNMATCHED_RIGHT_PAREN); goto out; } if (operatorStack[i].op == REOP_ASSERT || operatorStack[i].op == REOP_ASSERT_NOT || operatorStack[i].op == REOP_LPARENNON || operatorStack[i].op == REOP_LPAREN) { break; } } /* FALL THROUGH */ case '|': /* Expected an operand before these, so make an empty one */ operand = NewRENode(state, REOP_EMPTY); if (!operand) goto out; goto pushOperand; default: if (!ParseTerm(state)) goto out; operand = state->result; pushOperand: if (operandSP == operandStackSize) { operandStackSize += operandStackSize; operandStack = (RENode **) JS_realloc(state->context, operandStack, sizeof(RENode *) * operandStackSize); if (!operandStack) goto out; } operandStack[operandSP++] = operand; break; } } /* At the end; process remaining operators. */ restartOperator: if (state->cp == state->cpend) { while (operatorSP) { --operatorSP; if (!ProcessOp(state, &operatorStack[operatorSP], operandStack, operandSP)) goto out; --operandSP; } JS_ASSERT(operandSP == 1); state->result = operandStack[0]; result = JS_TRUE; goto out; } switch (*state->cp) { case '|': /* Process any stacked 'concat' operators */ ++state->cp; while (operatorSP && operatorStack[operatorSP - 1].op == REOP_CONCAT) { --operatorSP; if (!ProcessOp(state, &operatorStack[operatorSP], operandStack, operandSP)) { goto out; } --operandSP; } op = REOP_ALT; goto pushOperator; case ')': /* * If there's no stacked open parenthesis, throw syntax error. */ for (i = operatorSP - 1; ; i--) { if (i < 0) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_UNMATCHED_RIGHT_PAREN); goto out; } if (operatorStack[i].op == REOP_ASSERT || operatorStack[i].op == REOP_ASSERT_NOT || operatorStack[i].op == REOP_LPARENNON || operatorStack[i].op == REOP_LPAREN) { break; } } ++state->cp; /* Process everything on the stack until the open parenthesis. */ for (;;) { JS_ASSERT(operatorSP); --operatorSP; switch (operatorStack[operatorSP].op) { case REOP_ASSERT: case REOP_ASSERT_NOT: case REOP_LPAREN: operand = NewRENode(state, operatorStack[operatorSP].op); if (!operand) goto out; operand->u.parenIndex = operatorStack[operatorSP].parenIndex; JS_ASSERT(operandSP); operand->kid = operandStack[operandSP - 1]; operandStack[operandSP - 1] = operand; if (state->treeDepth == TREE_DEPTH_MAX) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX); goto out; } ++state->treeDepth; /* FALL THROUGH */ case REOP_LPARENNON: state->result = operandStack[operandSP - 1]; if (!ParseQuantifier(state)) goto out; operandStack[operandSP - 1] = state->result; goto restartOperator; default: if (!ProcessOp(state, &operatorStack[operatorSP], operandStack, operandSP)) goto out; --operandSP; break; } } break; case '{': { const jschar *errp = state->cp; if (ParseMinMaxQuantifier(state, JS_TRUE) < 0) { /* * This didn't even scan correctly as a quantifier, so we should * treat it as flat. */ op = REOP_CONCAT; goto pushOperator; } state->cp = errp; /* FALL THROUGH */ } case '+': case '*': case '?': js_ReportCompileErrorNumberUC(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_BAD_QUANTIFIER, state->cp); result = JS_FALSE; goto out; default: /* Anything else is the start of the next term. */ op = REOP_CONCAT; pushOperator: if (operatorSP == operatorStackSize) { operatorStackSize += operatorStackSize; operatorStack = (REOpData *) JS_realloc(state->context, operatorStack, sizeof(REOpData) * operatorStackSize); if (!operatorStack) goto out; } operatorStack[operatorSP].op = op; operatorStack[operatorSP].errPos = state->cp; operatorStack[operatorSP++].parenIndex = parenIndex; break; } } out: if (operatorStack) JS_free(state->context, operatorStack); if (operandStack) JS_free(state->context, operandStack); return result; } /* * Hack two bits in CompilerState.flags, for use within FindParenCount to flag * its being on the stack, and to propagate errors to its callers. */ #define JSREG_FIND_PAREN_COUNT 0x8000 #define JSREG_FIND_PAREN_ERROR 0x4000 /* * Magic return value from FindParenCount and GetDecimalValue, to indicate * overflow beyond GetDecimalValue's max parameter, or a computed maximum if * its findMax parameter is non-null. */ #define OVERFLOW_VALUE ((uintN)-1) static uintN FindParenCount(CompilerState *state) { CompilerState temp; int i; if (state->flags & JSREG_FIND_PAREN_COUNT) return OVERFLOW_VALUE; /* * Copy state into temp, flag it so we never report an invalid backref, * and reset its members to parse the entire regexp. This is obviously * suboptimal, but GetDecimalValue calls us only if a backref appears to * refer to a forward parenthetical, which is rare. */ temp = *state; temp.flags |= JSREG_FIND_PAREN_COUNT; temp.cp = temp.cpbegin; temp.parenCount = 0; temp.classCount = 0; temp.progLength = 0; temp.treeDepth = 0; temp.classBitmapsMem = 0; for (i = 0; i < CLASS_CACHE_SIZE; i++) temp.classCache[i].start = NULL; if (!ParseRegExp(&temp)) { state->flags |= JSREG_FIND_PAREN_ERROR; return OVERFLOW_VALUE; } return temp.parenCount; } /* * Extract and return a decimal value at state->cp. The initial character c * has already been read. Return OVERFLOW_VALUE if the result exceeds max. * Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in * state->flags to discover whether an error occurred under findMax. */ static uintN GetDecimalValue(jschar c, uintN max, uintN (*findMax)(CompilerState *state), CompilerState *state) { uintN value = JS7_UNDEC(c); JSBool overflow = (value > max && (!findMax || value > findMax(state))); /* The following restriction allows simpler overflow checks. */ JS_ASSERT(max <= ((uintN)-1 - 9) / 10); while (state->cp < state->cpend) { c = *state->cp; if (!JS7_ISDEC(c)) break; value = 10 * value + JS7_UNDEC(c); if (!overflow && value > max && (!findMax || value > findMax(state))) overflow = JS_TRUE; ++state->cp; } return overflow ? OVERFLOW_VALUE : value; } /* * Calculate the total size of the bitmap required for a class expression. */ static JSBool CalculateBitmapSize(CompilerState *state, RENode *target, const jschar *src, const jschar *end) { uintN max = 0; JSBool inRange = JS_FALSE; jschar c, rangeStart = 0; uintN n, digit, nDigits, i; target->u.ucclass.bmsize = 0; target->u.ucclass.sense = JS_TRUE; if (src == end) return JS_TRUE; if (*src == '^') { ++src; target->u.ucclass.sense = JS_FALSE; } while (src != end) { uintN localMax = 0; switch (*src) { case '\\': ++src; c = *src++; switch (c) { case 'b': localMax = 0x8; break; case 'f': localMax = 0xC; break; case 'n': localMax = 0xA; break; case 'r': localMax = 0xD; break; case 't': localMax = 0x9; break; case 'v': localMax = 0xB; break; case 'c': if (src + 1 < end && RE_IS_LETTER(src[1])) localMax = (jschar) (*src++ & 0x1F); else localMax = '\\'; break; case 'x': nDigits = 2; goto lexHex; case 'u': nDigits = 4; lexHex: n = 0; for (i = 0; (i < nDigits) && (src < end); i++) { c = *src++; if (!isASCIIHexDigit(c, &digit)) { /* * Back off to accepting the original *'\' as a literal. */ src -= i + 1; n = '\\'; break; } n = (n << 4) | digit; } localMax = n; break; case 'd': if (inRange) { JS_ReportErrorNumber(state->context, js_GetErrorMessage, NULL, JSMSG_BAD_CLASS_RANGE); return JS_FALSE; } localMax = '9'; break; case 'D': case 's': case 'S': case 'w': case 'W': if (inRange) { JS_ReportErrorNumber(state->context, js_GetErrorMessage, NULL, JSMSG_BAD_CLASS_RANGE); return JS_FALSE; } target->u.ucclass.bmsize = 65535; return JS_TRUE; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': /* * This is a non-ECMA extension - decimal escapes (in this * case, octal!) are supposed to be an error inside class * ranges, but supported here for backwards compatibility. * */ n = JS7_UNDEC(c); c = *src; if ('0' <= c && c <= '7') { src++; n = 8 * n + JS7_UNDEC(c); c = *src; if ('0' <= c && c <= '7') { src++; i = 8 * n + JS7_UNDEC(c); if (i <= 0377) n = i; else src--; } } localMax = n; break; default: localMax = c; break; } break; default: localMax = *src++; break; } if (inRange) { if (rangeStart > localMax) { JS_ReportErrorNumber(state->context, js_GetErrorMessage, NULL, JSMSG_BAD_CLASS_RANGE); return JS_FALSE; } inRange = JS_FALSE; } else { if (src < end - 1) { if (*src == '-') { ++src; inRange = JS_TRUE; rangeStart = (jschar)localMax; continue; } } } if (state->flags & JSREG_FOLD) { c = JS_MAX(upcase((jschar)localMax), downcase((jschar)localMax)); if (c > localMax) localMax = c; } if (localMax > max) max = localMax; } target->u.ucclass.bmsize = max; return JS_TRUE; } /* * item: assertion An item is either an assertion or * quantatom a quantified atom. * * assertion: '^' Assertions match beginning of string * (or line if the class static property * RegExp.multiline is true). * '$' End of string (or line if the class * static property RegExp.multiline is * true). * '\b' Word boundary (between \w and \W). * '\B' Word non-boundary. * * quantatom: atom An unquantified atom. * quantatom '{' n ',' m '}' * Atom must occur between n and m times. * quantatom '{' n ',' '}' Atom must occur at least n times. * quantatom '{' n '}' Atom must occur exactly n times. * quantatom '*' Zero or more times (same as {0,}). * quantatom '+' One or more times (same as {1,}). * quantatom '?' Zero or one time (same as {0,1}). * * any of which can be optionally followed by '?' for ungreedy * * atom: '(' regexp ')' A parenthesized regexp (what matched * can be addressed using a backreference, * see '\' n below). * '.' Matches any char except '\n'. * '[' classlist ']' A character class. * '[' '^' classlist ']' A negated character class. * '\f' Form Feed. * '\n' Newline (Line Feed). * '\r' Carriage Return. * '\t' Horizontal Tab. * '\v' Vertical Tab. * '\d' A digit (same as [0-9]). * '\D' A non-digit. * '\w' A word character, [0-9a-z_A-Z]. * '\W' A non-word character. * '\s' A whitespace character, [ \b\f\n\r\t\v]. * '\S' A non-whitespace character. * '\' n A backreference to the nth (n decimal * and positive) parenthesized expression. * '\' octal An octal escape sequence (octal must be * two or three digits long, unless it is * 0 for the null character). * '\x' hex A hex escape (hex must be two digits). * '\u' unicode A unicode escape (must be four digits). * '\c' ctrl A control character, ctrl is a letter. * '\' literalatomchar Any character except one of the above * that follow '\' in an atom. * otheratomchar Any character not first among the other * atom right-hand sides. */ static JSBool ParseTerm(CompilerState *state) { jschar c = *state->cp++; uintN nDigits; uintN num, tmp, n, i; const jschar *termStart; switch (c) { /* assertions and atoms */ case '^': state->result = NewRENode(state, REOP_BOL); if (!state->result) return JS_FALSE; state->progLength++; return JS_TRUE; case '$': state->result = NewRENode(state, REOP_EOL); if (!state->result) return JS_FALSE; state->progLength++; return JS_TRUE; case '\\': if (state->cp >= state->cpend) { /* a trailing '\' is an error */ js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_TRAILING_SLASH); return JS_FALSE; } c = *state->cp++; switch (c) { /* assertion escapes */ case 'b' : state->result = NewRENode(state, REOP_WBDRY); if (!state->result) return JS_FALSE; state->progLength++; return JS_TRUE; case 'B': state->result = NewRENode(state, REOP_WNONBDRY); if (!state->result) return JS_FALSE; state->progLength++; return JS_TRUE; /* Decimal escape */ case '0': /* Give a strict warning. See also the note below. */ if (!js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_WARNING | JSREPORT_STRICT, JSMSG_INVALID_BACKREF)) { return JS_FALSE; } doOctal: num = 0; while (state->cp < state->cpend) { c = *state->cp; if (c < '0' || '7' < c) break; state->cp++; tmp = 8 * num + (uintN)JS7_UNDEC(c); if (tmp > 0377) break; num = tmp; } c = (jschar)num; doFlat: state->result = NewRENode(state, REOP_FLAT); if (!state->result) return JS_FALSE; state->result->u.flat.chr = c; state->result->u.flat.length = 1; state->progLength += 3; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': termStart = state->cp - 1; num = GetDecimalValue(c, state->parenCount, FindParenCount, state); if (state->flags & JSREG_FIND_PAREN_ERROR) return JS_FALSE; if (num == OVERFLOW_VALUE) { /* Give a strict mode warning. */ if (!js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_WARNING | JSREPORT_STRICT, (c >= '8') ? JSMSG_INVALID_BACKREF : JSMSG_BAD_BACKREF)) { return JS_FALSE; } /* * Note: ECMA 262, 15.10.2.9 says that we should throw a syntax * error here. However, for compatibility with IE, we treat the * whole backref as flat if the first character in it is not a * valid octal character, and as an octal escape otherwise. */ state->cp = termStart; if (c >= '8') { /* Treat this as flat. termStart - 1 is the \. */ c = '\\'; goto asFlat; } /* Treat this as an octal escape. */ goto doOctal; } JS_ASSERT(1 <= num && num <= 0x10000); state->result = NewRENode(state, REOP_BACKREF); if (!state->result) return JS_FALSE; state->result->u.parenIndex = num - 1; state->progLength += 1 + GetCompactIndexWidth(state->result->u.parenIndex); break; /* Control escape */ case 'f': c = 0xC; goto doFlat; case 'n': c = 0xA; goto doFlat; case 'r': c = 0xD; goto doFlat; case 't': c = 0x9; goto doFlat; case 'v': c = 0xB; goto doFlat; /* Control letter */ case 'c': if (state->cp + 1 < state->cpend && RE_IS_LETTER(state->cp[1])) { c = (jschar) (*state->cp++ & 0x1F); } else { /* back off to accepting the original '\' as a literal */ --state->cp; c = '\\'; } goto doFlat; /* HexEscapeSequence */ case 'x': nDigits = 2; goto lexHex; /* UnicodeEscapeSequence */ case 'u': nDigits = 4; lexHex: n = 0; for (i = 0; i < nDigits && state->cp < state->cpend; i++) { uintN digit; c = *state->cp++; if (!isASCIIHexDigit(c, &digit)) { /* * Back off to accepting the original 'u' or 'x' as a * literal. */ state->cp -= i + 2; n = *state->cp++; break; } n = (n << 4) | digit; } c = (jschar) n; goto doFlat; /* Character class escapes */ case 'd': state->result = NewRENode(state, REOP_DIGIT); doSimple: if (!state->result) return JS_FALSE; state->progLength++; break; case 'D': state->result = NewRENode(state, REOP_NONDIGIT); goto doSimple; case 's': state->result = NewRENode(state, REOP_SPACE); goto doSimple; case 'S': state->result = NewRENode(state, REOP_NONSPACE); goto doSimple; case 'w': state->result = NewRENode(state, REOP_ALNUM); goto doSimple; case 'W': state->result = NewRENode(state, REOP_NONALNUM); goto doSimple; /* IdentityEscape */ default: state->result = NewRENode(state, REOP_FLAT); if (!state->result) return JS_FALSE; state->result->u.flat.chr = c; state->result->u.flat.length = 1; state->result->kid = (void *) (state->cp - 1); state->progLength += 3; break; } break; case '[': state->result = NewRENode(state, REOP_CLASS); if (!state->result) return JS_FALSE; termStart = state->cp; state->result->u.ucclass.startIndex = termStart - state->cpbegin; for (;;) { if (state->cp == state->cpend) { js_ReportCompileErrorNumberUC(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_UNTERM_CLASS, termStart); return JS_FALSE; } if (*state->cp == '\\') { state->cp++; } else { if (*state->cp == ']') { state->result->u.ucclass.kidlen = state->cp - termStart; break; } } state->cp++; } for (i = 0; i < CLASS_CACHE_SIZE; i++) { if (!state->classCache[i].start) { state->classCache[i].start = termStart; state->classCache[i].length = state->result->u.ucclass.kidlen; state->classCache[i].index = state->classCount; break; } if (state->classCache[i].length == state->result->u.ucclass.kidlen) { for (n = 0; ; n++) { if (n == state->classCache[i].length) { state->result->u.ucclass.index = state->classCache[i].index; goto claim; } if (state->classCache[i].start[n] != termStart[n]) break; } } } state->result->u.ucclass.index = state->classCount++; claim: /* * Call CalculateBitmapSize now as we want any errors it finds * to be reported during the parse phase, not at execution. */ if (!CalculateBitmapSize(state, state->result, termStart, state->cp++)) return JS_FALSE; /* * Update classBitmapsMem with number of bytes to hold bmsize bits, * which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8 * or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize. */ n = (state->result->u.ucclass.bmsize >> 3) + 1; if (n > CLASS_BITMAPS_MEM_LIMIT - state->classBitmapsMem) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX); return JS_FALSE; } state->classBitmapsMem += n; /* CLASS, */ state->progLength += 1 + GetCompactIndexWidth(state->result->u.ucclass.index); break; case '.': state->result = NewRENode(state, REOP_DOT); goto doSimple; case '{': { const jschar *errp = state->cp--; intN err; err = ParseMinMaxQuantifier(state, JS_TRUE); state->cp = errp; if (err < 0) goto asFlat; /* FALL THROUGH */ } case '*': case '+': case '?': js_ReportCompileErrorNumberUC(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_BAD_QUANTIFIER, state->cp - 1); return JS_FALSE; default: asFlat: state->result = NewRENode(state, REOP_FLAT); if (!state->result) return JS_FALSE; state->result->u.flat.chr = c; state->result->u.flat.length = 1; state->result->kid = (void *) (state->cp - 1); state->progLength += 3; break; } return ParseQuantifier(state); } static JSBool ParseQuantifier(CompilerState *state) { RENode *term; term = state->result; if (state->cp < state->cpend) { switch (*state->cp) { case '+': state->result = NewRENode(state, REOP_QUANT); if (!state->result) return JS_FALSE; state->result->u.range.min = 1; state->result->u.range.max = (uintN)-1; /* , ... */ state->progLength += 4; goto quantifier; case '*': state->result = NewRENode(state, REOP_QUANT); if (!state->result) return JS_FALSE; state->result->u.range.min = 0; state->result->u.range.max = (uintN)-1; /* , ... */ state->progLength += 4; goto quantifier; case '?': state->result = NewRENode(state, REOP_QUANT); if (!state->result) return JS_FALSE; state->result->u.range.min = 0; state->result->u.range.max = 1; /* , ... */ state->progLength += 4; goto quantifier; case '{': /* balance '}' */ { intN err; const jschar *errp = state->cp; err = ParseMinMaxQuantifier(state, JS_FALSE); if (err == 0) goto quantifier; if (err == -1) return JS_TRUE; js_ReportCompileErrorNumberUC(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, err, errp); return JS_FALSE; } default:; } } return JS_TRUE; quantifier: if (state->treeDepth == TREE_DEPTH_MAX) { js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX); return JS_FALSE; } ++state->treeDepth; ++state->cp; state->result->kid = term; if (state->cp < state->cpend && *state->cp == '?') { ++state->cp; state->result->u.range.greedy = JS_FALSE; } else { state->result->u.range.greedy = JS_TRUE; } return JS_TRUE; } static intN ParseMinMaxQuantifier(CompilerState *state, JSBool ignoreValues) { uintN min, max; jschar c; const jschar *errp = state->cp++; c = *state->cp; if (JS7_ISDEC(c)) { ++state->cp; min = GetDecimalValue(c, 0xFFFF, NULL, state); c = *state->cp; if (!ignoreValues && min == OVERFLOW_VALUE) return JSMSG_MIN_TOO_BIG; if (c == ',') { c = *++state->cp; if (JS7_ISDEC(c)) { ++state->cp; max = GetDecimalValue(c, 0xFFFF, NULL, state); c = *state->cp; if (!ignoreValues && max == OVERFLOW_VALUE) return JSMSG_MAX_TOO_BIG; if (!ignoreValues && min > max) return JSMSG_OUT_OF_ORDER; } else { max = (uintN)-1; } } else { max = min; } if (c == '}') { state->result = NewRENode(state, REOP_QUANT); if (!state->result) return JS_FALSE; state->result->u.range.min = min; state->result->u.range.max = max; /* * QUANT, , , ... * where is written as compact(max+1) to make * (uintN)-1 sentinel to occupy 1 byte, not width_of(max)+1. */ state->progLength += (1 + GetCompactIndexWidth(min) + GetCompactIndexWidth(max + 1) +3); return 0; } } state->cp = errp; return -1; } static JSBool SetForwardJumpOffset(jsbytecode *jump, jsbytecode *target) { ptrdiff_t offset = target - jump; /* Check that target really points forward. */ JS_ASSERT(offset >= 2); if ((size_t)offset > OFFSET_MAX) return JS_FALSE; jump[0] = JUMP_OFFSET_HI(offset); jump[1] = JUMP_OFFSET_LO(offset); return JS_TRUE; } /* * Generate bytecode for the tree rooted at t using an explicit stack instead * of recursion. */ static jsbytecode * EmitREBytecode(CompilerState *state, JSRegExp *re, size_t treeDepth, jsbytecode *pc, RENode *t) { EmitStateStackEntry *emitStateSP, *emitStateStack; RECharSet *charSet; REOp op; if (treeDepth == 0) { emitStateStack = NULL; } else { emitStateStack = (EmitStateStackEntry *)JS_malloc(state->context, sizeof(EmitStateStackEntry) * treeDepth); if (!emitStateStack) return NULL; } emitStateSP = emitStateStack; op = t->op; for (;;) { *pc++ = op; switch (op) { case REOP_EMPTY: --pc; break; case REOP_ALTPREREQ2: case REOP_ALTPREREQ: JS_ASSERT(emitStateSP); emitStateSP->altHead = pc - 1; emitStateSP->endTermFixup = pc; pc += OFFSET_LEN; SET_ARG(pc, t->u.altprereq.ch1); pc += ARG_LEN; SET_ARG(pc, t->u.altprereq.ch2); pc += ARG_LEN; emitStateSP->nextAltFixup = pc; /* offset to next alternate */ pc += OFFSET_LEN; emitStateSP->continueNode = t; emitStateSP->continueOp = REOP_JUMP; emitStateSP->jumpToJumpFlag = JS_FALSE; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = (RENode *) t->kid; op = t->op; continue; case REOP_JUMP: emitStateSP->nextTermFixup = pc; /* offset to following term */ pc += OFFSET_LEN; if (!SetForwardJumpOffset(emitStateSP->nextAltFixup, pc)) goto jump_too_big; emitStateSP->continueOp = REOP_ENDALT; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = t->u.kid2; op = t->op; continue; case REOP_ENDALT: /* * If we already patched emitStateSP->nextTermFixup to jump to * a nearer jump, to avoid 16-bit immediate offset overflow, we * are done here. */ if (emitStateSP->jumpToJumpFlag) break; /* * Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT. * REOP_ENDALT is executed only on successful match of the last * alternate in a group. */ if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc)) goto jump_too_big; if (t->op != REOP_ALT) { if (!SetForwardJumpOffset(emitStateSP->endTermFixup, pc)) goto jump_too_big; } /* * If the program is bigger than the REOP_JUMP offset range, then * we must check for alternates before this one that are part of * the same group, and fix up their jump offsets to target jumps * close enough to fit in a 16-bit unsigned offset immediate. */ if ((size_t)(pc - re->program) > OFFSET_MAX && emitStateSP > emitStateStack) { EmitStateStackEntry *esp, *esp2; jsbytecode *alt, *jump; ptrdiff_t span, header; esp2 = emitStateSP; alt = esp2->altHead; for (esp = esp2 - 1; esp >= emitStateStack; --esp) { if (esp->continueOp == REOP_ENDALT && !esp->jumpToJumpFlag && esp->nextTermFixup + OFFSET_LEN == alt && (size_t)(pc - ((esp->continueNode->op != REOP_ALT) ? esp->endTermFixup : esp->nextTermFixup)) > OFFSET_MAX) { alt = esp->altHead; jump = esp->nextTermFixup; /* * The span must be 1 less than the distance from * jump offset to jump offset, so we actually jump * to a REOP_JUMP bytecode, not to its offset! */ for (;;) { JS_ASSERT(jump < esp2->nextTermFixup); span = esp2->nextTermFixup - jump - 1; if ((size_t)span <= OFFSET_MAX) break; do { if (--esp2 == esp) goto jump_too_big; } while (esp2->continueOp != REOP_ENDALT); } jump[0] = JUMP_OFFSET_HI(span); jump[1] = JUMP_OFFSET_LO(span); if (esp->continueNode->op != REOP_ALT) { /* * We must patch the offset at esp->endTermFixup * as well, for the REOP_ALTPREREQ{,2} opcodes. * If we're unlucky and endTermFixup is more than * OFFSET_MAX bytes from its target, we cheat by * jumping 6 bytes to the jump whose offset is at * esp->nextTermFixup, which has the same target. */ jump = esp->endTermFixup; header = esp->nextTermFixup - jump; span += header; if ((size_t)span > OFFSET_MAX) span = header; jump[0] = JUMP_OFFSET_HI(span); jump[1] = JUMP_OFFSET_LO(span); } esp->jumpToJumpFlag = JS_TRUE; } } } break; case REOP_ALT: JS_ASSERT(emitStateSP); emitStateSP->altHead = pc - 1; emitStateSP->nextAltFixup = pc; /* offset to next alternate */ pc += OFFSET_LEN; emitStateSP->continueNode = t; emitStateSP->continueOp = REOP_JUMP; emitStateSP->jumpToJumpFlag = JS_FALSE; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = t->kid; op = t->op; continue; case REOP_FLAT: /* * Coalesce FLATs if possible and if it would not increase bytecode * beyond preallocated limit. The latter happens only when bytecode * size for coalesced string with offset p and length 2 exceeds 6 * bytes preallocated for 2 single char nodes, i.e. when * 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or * GetCompactIndexWidth(p) > 4. * Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more * nodes strictly decreases bytecode size, the check has to be * done only for the first coalescing. */ if (t->kid && GetCompactIndexWidth((jschar *)t->kid - state->cpbegin) <= 4) { while (t->next && t->next->op == REOP_FLAT && (jschar*)t->kid + t->u.flat.length == (jschar*)t->next->kid) { t->u.flat.length += t->next->u.flat.length; t->next = t->next->next; } } if (t->kid && t->u.flat.length > 1) { pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLATi : REOP_FLAT; pc = WriteCompactIndex(pc, (jschar *)t->kid - state->cpbegin); pc = WriteCompactIndex(pc, t->u.flat.length); } else if (t->u.flat.chr < 256) { pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLAT1i : REOP_FLAT1; *pc++ = (jsbytecode) t->u.flat.chr; } else { pc[-1] = (state->flags & JSREG_FOLD) ? REOP_UCFLAT1i : REOP_UCFLAT1; SET_ARG(pc, t->u.flat.chr); pc += ARG_LEN; } break; case REOP_LPAREN: JS_ASSERT(emitStateSP); pc = WriteCompactIndex(pc, t->u.parenIndex); emitStateSP->continueNode = t; emitStateSP->continueOp = REOP_RPAREN; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = (RENode *) t->kid; op = t->op; continue; case REOP_RPAREN: pc = WriteCompactIndex(pc, t->u.parenIndex); break; case REOP_BACKREF: pc = WriteCompactIndex(pc, t->u.parenIndex); break; case REOP_ASSERT: JS_ASSERT(emitStateSP); emitStateSP->nextTermFixup = pc; pc += OFFSET_LEN; emitStateSP->continueNode = t; emitStateSP->continueOp = REOP_ASSERTTEST; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = (RENode *) t->kid; op = t->op; continue; case REOP_ASSERTTEST: case REOP_ASSERTNOTTEST: if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc)) goto jump_too_big; break; case REOP_ASSERT_NOT: JS_ASSERT(emitStateSP); emitStateSP->nextTermFixup = pc; pc += OFFSET_LEN; emitStateSP->continueNode = t; emitStateSP->continueOp = REOP_ASSERTNOTTEST; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = (RENode *) t->kid; op = t->op; continue; case REOP_QUANT: JS_ASSERT(emitStateSP); if (t->u.range.min == 0 && t->u.range.max == (uintN)-1) { pc[-1] = (t->u.range.greedy) ? REOP_STAR : REOP_MINIMALSTAR; } else if (t->u.range.min == 0 && t->u.range.max == 1) { pc[-1] = (t->u.range.greedy) ? REOP_OPT : REOP_MINIMALOPT; } else if (t->u.range.min == 1 && t->u.range.max == (uintN) -1) { pc[-1] = (t->u.range.greedy) ? REOP_PLUS : REOP_MINIMALPLUS; } else { if (!t->u.range.greedy) pc[-1] = REOP_MINIMALQUANT; pc = WriteCompactIndex(pc, t->u.range.min); /* * Write max + 1 to avoid using size_t(max) + 1 bytes * for (uintN)-1 sentinel. */ pc = WriteCompactIndex(pc, t->u.range.max + 1); } emitStateSP->nextTermFixup = pc; pc += OFFSET_LEN; emitStateSP->continueNode = t; emitStateSP->continueOp = REOP_ENDCHILD; ++emitStateSP; JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth); t = (RENode *) t->kid; op = t->op; continue; case REOP_ENDCHILD: if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc)) goto jump_too_big; break; case REOP_CLASS: if (!t->u.ucclass.sense) pc[-1] = REOP_NCLASS; pc = WriteCompactIndex(pc, t->u.ucclass.index); charSet = &re->classList[t->u.ucclass.index]; charSet->converted = JS_FALSE; charSet->length = t->u.ucclass.bmsize; charSet->u.src.startIndex = t->u.ucclass.startIndex; charSet->u.src.length = t->u.ucclass.kidlen; charSet->sense = t->u.ucclass.sense; break; default: break; } t = t->next; if (t) { op = t->op; } else { if (emitStateSP == emitStateStack) break; --emitStateSP; t = emitStateSP->continueNode; op = emitStateSP->continueOp; } } cleanup: if (emitStateStack) JS_free(state->context, emitStateStack); return pc; jump_too_big: js_ReportCompileErrorNumber(state->context, state->tokenStream, JSREPORT_TS | JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX); pc = NULL; goto cleanup; } JSRegExp * js_NewRegExp(JSContext *cx, JSTokenStream *ts, JSString *str, uintN flags, JSBool flat) { JSRegExp *re; void *mark; CompilerState state; size_t resize; jsbytecode *endPC; uintN i; size_t len; re = NULL; mark = JS_ARENA_MARK(&cx->tempPool); len = JSSTRING_LENGTH(str); state.context = cx; state.tokenStream = ts; state.cp = js_UndependString(cx, str); if (!state.cp) goto out; state.cpbegin = state.cp; state.cpend = state.cp + len; state.flags = flags; state.parenCount = 0; state.classCount = 0; state.progLength = 0; state.treeDepth = 0; state.classBitmapsMem = 0; for (i = 0; i < CLASS_CACHE_SIZE; i++) state.classCache[i].start = NULL; if (len != 0 && flat) { state.result = NewRENode(&state, REOP_FLAT); state.result->u.flat.chr = *state.cpbegin; state.result->u.flat.length = len; state.result->kid = (void *) state.cpbegin; /* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */ state.progLength += 1 + GetCompactIndexWidth(0) + GetCompactIndexWidth(len); } else { if (!ParseRegExp(&state)) goto out; } resize = offsetof(JSRegExp, program) + state.progLength + 1; re = (JSRegExp *) JS_malloc(cx, resize); if (!re) goto out; re->nrefs = 1; JS_ASSERT(state.classBitmapsMem <= CLASS_BITMAPS_MEM_LIMIT); re->classCount = state.classCount; if (re->classCount) { re->classList = (RECharSet *) JS_malloc(cx, re->classCount * sizeof(RECharSet)); if (!re->classList) { js_DestroyRegExp(cx, re); re = NULL; goto out; } } else { re->classList = NULL; } endPC = EmitREBytecode(&state, re, state.treeDepth, re->program, state.result); if (!endPC) { js_DestroyRegExp(cx, re); re = NULL; goto out; } *endPC++ = REOP_END; /* * Check whether size was overestimated and shrink using realloc. * This is safe since no pointers to newly parsed regexp or its parts * besides re exist here. */ if ((size_t)(endPC - re->program) != state.progLength + 1) { JSRegExp *tmp; JS_ASSERT((size_t)(endPC - re->program) < state.progLength + 1); resize = offsetof(JSRegExp, program) + (endPC - re->program); tmp = (JSRegExp *) JS_realloc(cx, re, resize); if (tmp) re = tmp; } re->flags = flags; re->cloneIndex = 0; re->parenCount = state.parenCount; re->source = str; out: JS_ARENA_RELEASE(&cx->tempPool, mark); return re; } JSRegExp * js_NewRegExpOpt(JSContext *cx, JSTokenStream *ts, JSString *str, JSString *opt, JSBool flat) { uintN flags; jschar *s; size_t i, n; char charBuf[2]; flags = 0; if (opt) { s = JSSTRING_CHARS(opt); for (i = 0, n = JSSTRING_LENGTH(opt); i < n; i++) { switch (s[i]) { case 'g': flags |= JSREG_GLOB; break; case 'i': flags |= JSREG_FOLD; break; case 'm': flags |= JSREG_MULTILINE; break; default: charBuf[0] = (char)s[i]; charBuf[1] = '\0'; js_ReportCompileErrorNumber(cx, ts, JSREPORT_TS | JSREPORT_ERROR, JSMSG_BAD_FLAG, charBuf); return NULL; } } } return js_NewRegExp(cx, ts, str, flags, flat); } #define HOLD_REGEXP(cx, re) JS_ATOMIC_INCREMENT(&(re)->nrefs) #define DROP_REGEXP(cx, re) js_DestroyRegExp(cx, re) /* * Save the current state of the match - the position in the input * text as well as the position in the bytecode. The state of any * parent expressions is also saved (preceding state). * Contents of parenCount parentheses from parenIndex are also saved. */ static REBackTrackData * PushBackTrackState(REGlobalData *gData, REOp op, jsbytecode *target, REMatchState *x, const jschar *cp, size_t parenIndex, size_t parenCount) { size_t i; REBackTrackData *result = (REBackTrackData *) ((char *)gData->backTrackSP + gData->cursz); size_t sz = sizeof(REBackTrackData) + gData->stateStackTop * sizeof(REProgState) + parenCount * sizeof(RECapture); ptrdiff_t btsize = gData->backTrackStackSize; ptrdiff_t btincr = ((char *)result + sz) - ((char *)gData->backTrackStack + btsize); if (btincr > 0) { ptrdiff_t offset = (char *)result - (char *)gData->backTrackStack; btincr = JS_ROUNDUP(btincr, btsize); JS_ARENA_GROW_CAST(gData->backTrackStack, REBackTrackData *, &gData->pool, btsize, btincr); if (!gData->backTrackStack) return NULL; gData->backTrackStackSize = btsize + btincr; result = (REBackTrackData *) ((char *)gData->backTrackStack + offset); } gData->backTrackSP = result; result->sz = gData->cursz; gData->cursz = sz; result->backtrack_op = op; result->backtrack_pc = target; result->cp = cp; result->parenCount = parenCount; result->saveStateStackTop = gData->stateStackTop; JS_ASSERT(gData->stateStackTop); memcpy(result + 1, gData->stateStack, sizeof(REProgState) * result->saveStateStackTop); if (parenCount != 0) { result->parenIndex = parenIndex; memcpy((char *)(result + 1) + sizeof(REProgState) * result->saveStateStackTop, &x->parens[parenIndex], sizeof(RECapture) * parenCount); for (i = 0; i != parenCount; i++) x->parens[parenIndex + i].index = -1; } return result; } /* * Consecutive literal characters. */ #if 0 static REMatchState * FlatNMatcher(REGlobalData *gData, REMatchState *x, jschar *matchChars, size_t length) { size_t i; if (length > gData->cpend - x->cp) return NULL; for (i = 0; i != length; i++) { if (matchChars[i] != x->cp[i]) return NULL; } x->cp += length; return x; } #endif static REMatchState * FlatNIMatcher(REGlobalData *gData, REMatchState *x, jschar *matchChars, size_t length) { size_t i; JS_ASSERT(gData->cpend >= x->cp); if (length > (size_t)(gData->cpend - x->cp)) return NULL; for (i = 0; i != length; i++) { if (upcase(matchChars[i]) != upcase(x->cp[i])) return NULL; } x->cp += length; return x; } /* * 1. Evaluate DecimalEscape to obtain an EscapeValue E. * 2. If E is not a character then go to step 6. * 3. Let ch be E's character. * 4. Let A be a one-element RECharSet containing the character ch. * 5. Call CharacterSetMatcher(A, false) and return its Matcher result. * 6. E must be an integer. Let n be that integer. * 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception. * 8. Return an internal Matcher closure that takes two arguments, a State x * and a Continuation c, and performs the following: * 1. Let cap be x's captures internal array. * 2. Let s be cap[n]. * 3. If s is undefined, then call c(x) and return its result. * 4. Let e be x's endIndex. * 5. Let len be s's length. * 6. Let f be e+len. * 7. If f>InputLength, return failure. * 8. If there exists an integer i between 0 (inclusive) and len (exclusive) * such that Canonicalize(s[i]) is not the same character as * Canonicalize(Input [e+i]), then return failure. * 9. Let y be the State (f, cap). * 10. Call c(y) and return its result. */ static REMatchState * BackrefMatcher(REGlobalData *gData, REMatchState *x, size_t parenIndex) { size_t len, i; const jschar *parenContent; RECapture *cap = &x->parens[parenIndex]; if (cap->index == -1) return x; len = cap->length; if (x->cp + len > gData->cpend) return NULL; parenContent = &gData->cpbegin[cap->index]; if (gData->regexp->flags & JSREG_FOLD) { for (i = 0; i < len; i++) { if (upcase(parenContent[i]) != upcase(x->cp[i])) return NULL; } } else { for (i = 0; i < len; i++) { if (parenContent[i] != x->cp[i]) return NULL; } } x->cp += len; return x; } /* Add a single character to the RECharSet */ static void AddCharacterToCharSet(RECharSet *cs, jschar c) { uintN byteIndex = (uintN)(c >> 3); JS_ASSERT(c <= cs->length); cs->u.bits[byteIndex] |= 1 << (c & 0x7); } /* Add a character range, c1 to c2 (inclusive) to the RECharSet */ static void AddCharacterRangeToCharSet(RECharSet *cs, jschar c1, jschar c2) { uintN i; uintN byteIndex1 = (uintN)(c1 >> 3); uintN byteIndex2 = (uintN)(c2 >> 3); JS_ASSERT((c2 <= cs->length) && (c1 <= c2)); c1 &= 0x7; c2 &= 0x7; if (byteIndex1 == byteIndex2) { cs->u.bits[byteIndex1] |= ((uint8)0xFF >> (7 - (c2 - c1))) << c1; } else { cs->u.bits[byteIndex1] |= 0xFF << c1; for (i = byteIndex1 + 1; i < byteIndex2; i++) cs->u.bits[i] = 0xFF; cs->u.bits[byteIndex2] |= (uint8)0xFF >> (7 - c2); } } /* Compile the source of the class into a RECharSet */ static JSBool ProcessCharSet(REGlobalData *gData, RECharSet *charSet) { const jschar *src, *end; JSBool inRange = JS_FALSE; jschar rangeStart = 0; uintN byteLength, n; jschar c, thisCh; intN nDigits, i; JS_ASSERT(!charSet->converted); /* * Assert that startIndex and length points to chars inside [] inside * source string. */ JS_ASSERT(1 <= charSet->u.src.startIndex); JS_ASSERT(charSet->u.src.startIndex < JSSTRING_LENGTH(gData->regexp->source)); JS_ASSERT(charSet->u.src.length <= JSSTRING_LENGTH(gData->regexp->source) - 1 - charSet->u.src.startIndex); charSet->converted = JS_TRUE; src = JSSTRING_CHARS(gData->regexp->source) + charSet->u.src.startIndex; end = src + charSet->u.src.length; JS_ASSERT(src[-1] == '['); JS_ASSERT(end[0] == ']'); byteLength = (charSet->length >> 3) + 1; charSet->u.bits = (uint8 *)JS_malloc(gData->cx, byteLength); if (!charSet->u.bits) return JS_FALSE; memset(charSet->u.bits, 0, byteLength); if (src == end) return JS_TRUE; if (*src == '^') { JS_ASSERT(charSet->sense == JS_FALSE); ++src; } else { JS_ASSERT(charSet->sense == JS_TRUE); } while (src != end) { switch (*src) { case '\\': ++src; c = *src++; switch (c) { case 'b': thisCh = 0x8; break; case 'f': thisCh = 0xC; break; case 'n': thisCh = 0xA; break; case 'r': thisCh = 0xD; break; case 't': thisCh = 0x9; break; case 'v': thisCh = 0xB; break; case 'c': if (src + 1 < end && JS_ISWORD(src[1])) { thisCh = (jschar)(*src++ & 0x1F); } else { --src; thisCh = '\\'; } break; case 'x': nDigits = 2; goto lexHex; case 'u': nDigits = 4; lexHex: n = 0; for (i = 0; (i < nDigits) && (src < end); i++) { uintN digit; c = *src++; if (!isASCIIHexDigit(c, &digit)) { /* * Back off to accepting the original '\' * as a literal */ src -= i + 1; n = '\\'; break; } n = (n << 4) | digit; } thisCh = (jschar)n; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': /* * This is a non-ECMA extension - decimal escapes (in this * case, octal!) are supposed to be an error inside class * ranges, but supported here for backwards compatibility. */ n = JS7_UNDEC(c); c = *src; if ('0' <= c && c <= '7') { src++; n = 8 * n + JS7_UNDEC(c); c = *src; if ('0' <= c && c <= '7') { src++; i = 8 * n + JS7_UNDEC(c); if (i <= 0377) n = i; else src--; } } thisCh = (jschar)n; break; case 'd': AddCharacterRangeToCharSet(charSet, '0', '9'); continue; /* don't need range processing */ case 'D': AddCharacterRangeToCharSet(charSet, 0, '0' - 1); AddCharacterRangeToCharSet(charSet, (jschar)('9' + 1), (jschar)charSet->length); continue; case 's': for (i = (intN)charSet->length; i >= 0; i--) if (JS_ISSPACE(i)) AddCharacterToCharSet(charSet, (jschar)i); continue; case 'S': for (i = (intN)charSet->length; i >= 0; i--) if (!JS_ISSPACE(i)) AddCharacterToCharSet(charSet, (jschar)i); continue; case 'w': for (i = (intN)charSet->length; i >= 0; i--) if (JS_ISWORD(i)) AddCharacterToCharSet(charSet, (jschar)i); continue; case 'W': for (i = (intN)charSet->length; i >= 0; i--) if (!JS_ISWORD(i)) AddCharacterToCharSet(charSet, (jschar)i); continue; default: thisCh = c; break; } break; default: thisCh = *src++; break; } if (inRange) { if (gData->regexp->flags & JSREG_FOLD) { AddCharacterRangeToCharSet(charSet, upcase(rangeStart), upcase(thisCh)); AddCharacterRangeToCharSet(charSet, downcase(rangeStart), downcase(thisCh)); } else { AddCharacterRangeToCharSet(charSet, rangeStart, thisCh); } inRange = JS_FALSE; } else { if (gData->regexp->flags & JSREG_FOLD) { AddCharacterToCharSet(charSet, upcase(thisCh)); AddCharacterToCharSet(charSet, downcase(thisCh)); } else { AddCharacterToCharSet(charSet, thisCh); } if (src < end - 1) { if (*src == '-') { ++src; inRange = JS_TRUE; rangeStart = thisCh; } } } } return JS_TRUE; } void js_DestroyRegExp(JSContext *cx, JSRegExp *re) { if (JS_ATOMIC_DECREMENT(&re->nrefs) == 0) { if (re->classList) { uintN i; for (i = 0; i < re->classCount; i++) { if (re->classList[i].converted) JS_free(cx, re->classList[i].u.bits); re->classList[i].u.bits = NULL; } JS_free(cx, re->classList); } JS_free(cx, re); } } static JSBool ReallocStateStack(REGlobalData *gData) { size_t limit = gData->stateStackLimit; size_t sz = sizeof(REProgState) * limit; JS_ARENA_GROW_CAST(gData->stateStack, REProgState *, &gData->pool, sz, sz); if (!gData->stateStack) { gData->ok = JS_FALSE; return JS_FALSE; } gData->stateStackLimit = limit + limit; return JS_TRUE; } #define PUSH_STATE_STACK(data) \ JS_BEGIN_MACRO \ ++(data)->stateStackTop; \ if ((data)->stateStackTop == (data)->stateStackLimit && \ !ReallocStateStack((data))) { \ return NULL; \ } \ JS_END_MACRO /* * Apply the current op against the given input to see if it's going to match * or fail. Return false if we don't get a match, true if we do and update the * state of the input and pc if the update flag is true. */ static REMatchState * SimpleMatch(REGlobalData *gData, REMatchState *x, REOp op, jsbytecode **startpc, JSBool update) { REMatchState *result = NULL; jschar matchCh; size_t parenIndex; size_t offset, length, index; jsbytecode *pc = *startpc; /* pc has already been incremented past op */ jschar *source; const jschar *startcp = x->cp; jschar ch; RECharSet *charSet; switch (op) { case REOP_BOL: if (x->cp != gData->cpbegin) { if (!gData->cx->regExpStatics.multiline && !(gData->regexp->flags & JSREG_MULTILINE)) { break; } if (!RE_IS_LINE_TERM(x->cp[-1])) break; } result = x; break; case REOP_EOL: if (x->cp != gData->cpend) { if (!gData->cx->regExpStatics.multiline && !(gData->regexp->flags & JSREG_MULTILINE)) { break; } if (!RE_IS_LINE_TERM(*x->cp)) break; } result = x; break; case REOP_WBDRY: if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^ !(x->cp != gData->cpend && JS_ISWORD(*x->cp))) { result = x; } break; case REOP_WNONBDRY: if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^ (x->cp != gData->cpend && JS_ISWORD(*x->cp))) { result = x; } break; case REOP_DOT: if (x->cp != gData->cpend && !RE_IS_LINE_TERM(*x->cp)) { result = x; result->cp++; } break; case REOP_DIGIT: if (x->cp != gData->cpend && JS_ISDIGIT(*x->cp)) { result = x; result->cp++; } break; case REOP_NONDIGIT: if (x->cp != gData->cpend && !JS_ISDIGIT(*x->cp)) { result = x; result->cp++; } break; case REOP_ALNUM: if (x->cp != gData->cpend && JS_ISWORD(*x->cp)) { result = x; result->cp++; } break; case REOP_NONALNUM: if (x->cp != gData->cpend && !JS_ISWORD(*x->cp)) { result = x; result->cp++; } break; case REOP_SPACE: if (x->cp != gData->cpend && JS_ISSPACE(*x->cp)) { result = x; result->cp++; } break; case REOP_NONSPACE: if (x->cp != gData->cpend && !JS_ISSPACE(*x->cp)) { result = x; result->cp++; } break; case REOP_BACKREF: pc = ReadCompactIndex(pc, &parenIndex); JS_ASSERT(parenIndex < gData->regexp->parenCount); result = BackrefMatcher(gData, x, parenIndex); break; case REOP_FLAT: pc = ReadCompactIndex(pc, &offset); JS_ASSERT(offset < JSSTRING_LENGTH(gData->regexp->source)); pc = ReadCompactIndex(pc, &length); JS_ASSERT(1 <= length); JS_ASSERT(length <= JSSTRING_LENGTH(gData->regexp->source) - offset); if (length <= (size_t)(gData->cpend - x->cp)) { source = JSSTRING_CHARS(gData->regexp->source) + offset; for (index = 0; index != length; index++) { if (source[index] != x->cp[index]) return NULL; } x->cp += length; result = x; } break; case REOP_FLAT1: matchCh = *pc++; if (x->cp != gData->cpend && *x->cp == matchCh) { result = x; result->cp++; } break; case REOP_FLATi: pc = ReadCompactIndex(pc, &offset); JS_ASSERT(offset < JSSTRING_LENGTH(gData->regexp->source)); pc = ReadCompactIndex(pc, &length); JS_ASSERT(1 <= length); JS_ASSERT(length <= JSSTRING_LENGTH(gData->regexp->source) - offset); source = JSSTRING_CHARS(gData->regexp->source); result = FlatNIMatcher(gData, x, source + offset, length); break; case REOP_FLAT1i: matchCh = *pc++; if (x->cp != gData->cpend && upcase(*x->cp) == upcase(matchCh)) { result = x; result->cp++; } break; case REOP_UCFLAT1: matchCh = GET_ARG(pc); pc += ARG_LEN; if (x->cp != gData->cpend && *x->cp == matchCh) { result = x; result->cp++; } break; case REOP_UCFLAT1i: matchCh = GET_ARG(pc); pc += ARG_LEN; if (x->cp != gData->cpend && upcase(*x->cp) == upcase(matchCh)) { result = x; result->cp++; } break; case REOP_CLASS: pc = ReadCompactIndex(pc, &index); JS_ASSERT(index < gData->regexp->classCount); if (x->cp != gData->cpend) { charSet = &gData->regexp->classList[index]; JS_ASSERT(charSet->converted); ch = *x->cp; index = ch >> 3; if (charSet->length != 0 && ch <= charSet->length && (charSet->u.bits[index] & (1 << (ch & 0x7)))) { result = x; result->cp++; } } break; case REOP_NCLASS: pc = ReadCompactIndex(pc, &index); JS_ASSERT(index < gData->regexp->classCount); if (x->cp != gData->cpend) { charSet = &gData->regexp->classList[index]; JS_ASSERT(charSet->converted); ch = *x->cp; index = ch >> 3; if (charSet->length == 0 || ch > charSet->length || !(charSet->u.bits[index] & (1 << (ch & 0x7)))) { result = x; result->cp++; } } break; default: JS_ASSERT(JS_FALSE); } if (result) { if (update) *startpc = pc; else x->cp = startcp; return result; } x->cp = startcp; return NULL; } static REMatchState * ExecuteREBytecode(REGlobalData *gData, REMatchState *x) { REMatchState *result = NULL; REBackTrackData *backTrackData; jsbytecode *nextpc; REOp nextop; RECapture *cap; REProgState *curState; const jschar *startcp; size_t parenIndex, k; size_t parenSoFar = 0; jschar matchCh1, matchCh2; RECharSet *charSet; JSBool anchor; jsbytecode *pc = gData->regexp->program; REOp op = (REOp) *pc++; /* * If the first node is a simple match, step the index into the string * until that match is made, or fail if it can't be found at all. */ if (REOP_IS_SIMPLE(op)) { anchor = JS_FALSE; while (x->cp <= gData->cpend) { nextpc = pc; /* reset back to start each time */ result = SimpleMatch(gData, x, op, &nextpc, JS_TRUE); if (result) { anchor = JS_TRUE; x = result; pc = nextpc; /* accept skip to next opcode */ op = (REOp) *pc++; break; } gData->skipped++; x->cp++; } if (!anchor) return NULL; } for (;;) { if (REOP_IS_SIMPLE(op)) { result = SimpleMatch(gData, x, op, &pc, JS_TRUE); } else { curState = &gData->stateStack[gData->stateStackTop]; switch (op) { case REOP_EMPTY: result = x; break; case REOP_ALTPREREQ2: nextpc = pc + GET_OFFSET(pc); /* start of next op */ pc += ARG_LEN; matchCh2 = GET_ARG(pc); pc += ARG_LEN; k = GET_ARG(pc); pc += ARG_LEN; if (x->cp != gData->cpend) { if (*x->cp == matchCh2) goto doAlt; charSet = &gData->regexp->classList[k]; if (!charSet->converted) if (!ProcessCharSet(gData, charSet)) return NULL; matchCh1 = *x->cp; k = matchCh1 >> 3; if ((charSet->length == 0 || matchCh1 > charSet->length || !(charSet->u.bits[k] & (1 << (matchCh1 & 0x7)))) ^ charSet->sense) { goto doAlt; } } result = NULL; break; case REOP_ALTPREREQ: nextpc = pc + GET_OFFSET(pc); /* start of next op */ pc += ARG_LEN; matchCh1 = GET_ARG(pc); pc += ARG_LEN; matchCh2 = GET_ARG(pc); pc += ARG_LEN; if (x->cp == gData->cpend || (*x->cp != matchCh1 && *x->cp != matchCh2)) { result = NULL; break; } /* else false thru... */ case REOP_ALT: doAlt: nextpc = pc + GET_OFFSET(pc); /* start of next alternate */ pc += ARG_LEN; /* start of this alternate */ curState->parenSoFar = parenSoFar; PUSH_STATE_STACK(gData); op = (REOp) *pc++; startcp = x->cp; if (REOP_IS_SIMPLE(op)) { if (!SimpleMatch(gData, x, op, &pc, JS_TRUE)) { op = (REOp) *nextpc++; pc = nextpc; continue; } result = x; op = (REOp) *pc++; } nextop = (REOp) *nextpc++; if (!PushBackTrackState(gData, nextop, nextpc, x, startcp, 0, 0)) return NULL; continue; /* * Occurs at (succesful) end of REOP_ALT, */ case REOP_JUMP: --gData->stateStackTop; pc += GET_OFFSET(pc); op = (REOp) *pc++; continue; /* * Occurs at last (succesful) end of REOP_ALT, */ case REOP_ENDALT: --gData->stateStackTop; op = (REOp) *pc++; continue; case REOP_LPAREN: pc = ReadCompactIndex(pc, &parenIndex); JS_ASSERT(parenIndex < gData->regexp->parenCount); if (parenIndex + 1 > parenSoFar) parenSoFar = parenIndex + 1; x->parens[parenIndex].index = x->cp - gData->cpbegin; x->parens[parenIndex].length = 0; op = (REOp) *pc++; continue; case REOP_RPAREN: pc = ReadCompactIndex(pc, &parenIndex); JS_ASSERT(parenIndex < gData->regexp->parenCount); cap = &x->parens[parenIndex]; cap->length = x->cp - (gData->cpbegin + cap->index); op = (REOp) *pc++; continue; case REOP_ASSERT: nextpc = pc + GET_OFFSET(pc); /* start of term after ASSERT */ pc += ARG_LEN; /* start of ASSERT child */ op = (REOp) *pc++; if (REOP_IS_SIMPLE(op) && !SimpleMatch(gData, x, op, &pc, JS_FALSE)) { result = NULL; break; } curState->u.assertion.top = (char *)gData->backTrackSP - (char *)gData->backTrackStack; curState->u.assertion.sz = gData->cursz; curState->index = x->cp - gData->cpbegin; curState->parenSoFar = parenSoFar; PUSH_STATE_STACK(gData); if (!PushBackTrackState(gData, REOP_ASSERTTEST, nextpc, x, x->cp, 0, 0)) { return NULL; } continue; case REOP_ASSERT_NOT: nextpc = pc + GET_OFFSET(pc); pc += ARG_LEN; op = (REOp) *pc++; if (REOP_IS_SIMPLE(op) /* Note - fail to fail! */ && SimpleMatch(gData, x, op, &pc, JS_FALSE) && pc == nextpc) { result = NULL; break; } curState->u.assertion.top = (char *)gData->backTrackSP - (char *)gData->backTrackStack; curState->u.assertion.sz = gData->cursz; curState->index = x->cp - gData->cpbegin; curState->parenSoFar = parenSoFar; PUSH_STATE_STACK(gData); if (!PushBackTrackState(gData, REOP_ASSERTNOTTEST, nextpc, x, x->cp, 0, 0)) return NULL; continue; case REOP_ASSERTTEST: --gData->stateStackTop; --curState; x->cp = gData->cpbegin + curState->index; gData->backTrackSP = (REBackTrackData *) ((char *)gData->backTrackStack + curState->u.assertion.top); gData->cursz = curState->u.assertion.sz; if (result) result = x; break; case REOP_ASSERTNOTTEST: --gData->stateStackTop; --curState; x->cp = gData->cpbegin + curState->index; gData->backTrackSP = (REBackTrackData *) ((char *)gData->backTrackStack + curState->u.assertion.top); gData->cursz = curState->u.assertion.sz; result = (!result) ? x : NULL; break; case REOP_END: if (x) return x; break; case REOP_STAR: curState->u.quantifier.min = 0; curState->u.quantifier.max = (uintN)-1; goto quantcommon; case REOP_PLUS: curState->u.quantifier.min = 1; curState->u.quantifier.max = (uintN)-1; goto quantcommon; case REOP_OPT: curState->u.quantifier.min = 0; curState->u.quantifier.max = 1; goto quantcommon; case REOP_QUANT: pc = ReadCompactIndex(pc, &k); curState->u.quantifier.min = k; pc = ReadCompactIndex(pc, &k); /* max is k - 1 to use one byte for (uintN)-1 sentinel. */ curState->u.quantifier.max = k - 1; JS_ASSERT(curState->u.quantifier.min <= curState->u.quantifier.max); quantcommon: if (curState->u.quantifier.max == 0) { pc = pc + GET_OFFSET(pc); op = (REOp) *pc++; result = x; continue; } /* Step over */ nextpc = pc + ARG_LEN; op = (REOp) *nextpc++; startcp = x->cp; if (REOP_IS_SIMPLE(op)) { if (!SimpleMatch(gData, x, op, &nextpc, JS_TRUE)) { if (curState->u.quantifier.min == 0) result = x; else result = NULL; pc = pc + GET_OFFSET(pc); break; } op = (REOp) *nextpc++; result = x; } curState->index = startcp - gData->cpbegin; curState->continue_op = REOP_REPEAT; curState->continue_pc = pc; curState->parenSoFar = parenSoFar; PUSH_STATE_STACK(gData); if (curState->u.quantifier.min == 0 && !PushBackTrackState(gData, REOP_REPEAT, pc, x, startcp, 0, 0)) { return NULL; } pc = nextpc; continue; case REOP_ENDCHILD: /* marks the end of a quantifier child */ pc = curState[-1].continue_pc; op = curState[-1].continue_op; continue; case REOP_REPEAT: --curState; do { --gData->stateStackTop; if (!result) { /* Failed, see if we have enough children. */ if (curState->u.quantifier.min == 0) goto repeatDone; goto break_switch; } if (curState->u.quantifier.min == 0 && x->cp == gData->cpbegin + curState->index) { /* matched an empty string, that'll get us nowhere */ result = NULL; goto break_switch; } if (curState->u.quantifier.min != 0) curState->u.quantifier.min--; if (curState->u.quantifier.max != (uintN) -1) curState->u.quantifier.max--; if (curState->u.quantifier.max == 0) goto repeatDone; nextpc = pc + ARG_LEN; nextop = (REOp) *nextpc; startcp = x->cp; if (REOP_IS_SIMPLE(nextop)) { nextpc++; if (!SimpleMatch(gData, x, nextop, &nextpc, JS_TRUE)) { if (curState->u.quantifier.min == 0) goto repeatDone; result = NULL; goto break_switch; } result = x; } curState->index = startcp - gData->cpbegin; PUSH_STATE_STACK(gData); if (curState->u.quantifier.min == 0 && !PushBackTrackState(gData, REOP_REPEAT, pc, x, startcp, curState->parenSoFar, parenSoFar - curState->parenSoFar)) { return NULL; } } while (*nextpc == REOP_ENDCHILD); pc = nextpc; op = (REOp) *pc++; parenSoFar = curState->parenSoFar; continue; repeatDone: result = x; pc += GET_OFFSET(pc); goto break_switch; case REOP_MINIMALSTAR: curState->u.quantifier.min = 0; curState->u.quantifier.max = (uintN)-1; goto minimalquantcommon; case REOP_MINIMALPLUS: curState->u.quantifier.min = 1; curState->u.quantifier.max = (uintN)-1; goto minimalquantcommon; case REOP_MINIMALOPT: curState->u.quantifier.min = 0; curState->u.quantifier.max = 1; goto minimalquantcommon; case REOP_MINIMALQUANT: pc = ReadCompactIndex(pc, &k); curState->u.quantifier.min = k; pc = ReadCompactIndex(pc, &k); /* See REOP_QUANT comments about k - 1. */ curState->u.quantifier.max = k - 1; JS_ASSERT(curState->u.quantifier.min <= curState->u.quantifier.max); minimalquantcommon: curState->index = x->cp - gData->cpbegin; curState->parenSoFar = parenSoFar; PUSH_STATE_STACK(gData); if (curState->u.quantifier.min != 0) { curState->continue_op = REOP_MINIMALREPEAT; curState->continue_pc = pc; /* step over */ pc += OFFSET_LEN; op = (REOp) *pc++; } else { if (!PushBackTrackState(gData, REOP_MINIMALREPEAT, pc, x, x->cp, 0, 0)) { return NULL; } --gData->stateStackTop; pc = pc + GET_OFFSET(pc); op = (REOp) *pc++; } continue; case REOP_MINIMALREPEAT: --gData->stateStackTop; --curState; if (!result) { /* * Non-greedy failure - try to consume another child. */ if (curState->u.quantifier.max == (uintN) -1 || curState->u.quantifier.max > 0) { curState->index = x->cp - gData->cpbegin; curState->continue_op = REOP_MINIMALREPEAT; curState->continue_pc = pc; pc += ARG_LEN; for (k = curState->parenSoFar; k < parenSoFar; k++) x->parens[k].index = -1; PUSH_STATE_STACK(gData); op = (REOp) *pc++; continue; } /* Don't need to adjust pc since we're going to pop. */ break; } if (curState->u.quantifier.min == 0 && x->cp == gData->cpbegin + curState->index) { /* Matched an empty string, that'll get us nowhere. */ result = NULL; break; } if (curState->u.quantifier.min != 0) curState->u.quantifier.min--; if (curState->u.quantifier.max != (uintN) -1) curState->u.quantifier.max--; if (curState->u.quantifier.min != 0) { curState->continue_op = REOP_MINIMALREPEAT; curState->continue_pc = pc; pc += ARG_LEN; for (k = curState->parenSoFar; k < parenSoFar; k++) x->parens[k].index = -1; curState->index = x->cp - gData->cpbegin; PUSH_STATE_STACK(gData); op = (REOp) *pc++; continue; } curState->index = x->cp - gData->cpbegin; curState->parenSoFar = parenSoFar; PUSH_STATE_STACK(gData); if (!PushBackTrackState(gData, REOP_MINIMALREPEAT, pc, x, x->cp, curState->parenSoFar, parenSoFar - curState->parenSoFar)) { return NULL; } --gData->stateStackTop; pc = pc + GET_OFFSET(pc); op = (REOp) *pc++; continue; default: JS_ASSERT(JS_FALSE); result = NULL; } break_switch:; } /* * If the match failed and there's a backtrack option, take it. * Otherwise this is a complete and utter failure. */ if (!result) { if (gData->cursz == 0) return NULL; backTrackData = gData->backTrackSP; gData->cursz = backTrackData->sz; gData->backTrackSP = (REBackTrackData *) ((char *)backTrackData - backTrackData->sz); x->cp = backTrackData->cp; pc = backTrackData->backtrack_pc; op = backTrackData->backtrack_op; gData->stateStackTop = backTrackData->saveStateStackTop; JS_ASSERT(gData->stateStackTop); memcpy(gData->stateStack, backTrackData + 1, sizeof(REProgState) * backTrackData->saveStateStackTop); curState = &gData->stateStack[gData->stateStackTop - 1]; if (backTrackData->parenCount) { memcpy(&x->parens[backTrackData->parenIndex], (char *)(backTrackData + 1) + sizeof(REProgState) * backTrackData->saveStateStackTop, sizeof(RECapture) * backTrackData->parenCount); parenSoFar = backTrackData->parenIndex + backTrackData->parenCount; } else { for (k = curState->parenSoFar; k < parenSoFar; k++) x->parens[k].index = -1; parenSoFar = curState->parenSoFar; } continue; } x = result; /* * Continue with the expression. */ op = (REOp)*pc++; } return NULL; } static REMatchState * MatchRegExp(REGlobalData *gData, REMatchState *x) { REMatchState *result; const jschar *cp = x->cp; const jschar *cp2; uintN j; /* * Have to include the position beyond the last character * in order to detect end-of-input/line condition. */ for (cp2 = cp; cp2 <= gData->cpend; cp2++) { gData->skipped = cp2 - cp; x->cp = cp2; for (j = 0; j < gData->regexp->parenCount; j++) x->parens[j].index = -1; result = ExecuteREBytecode(gData, x); if (!gData->ok || result) return result; gData->backTrackSP = gData->backTrackStack; gData->cursz = 0; gData->stateStackTop = 0; cp2 = cp + gData->skipped; } return NULL; } static REMatchState * InitMatch(JSContext *cx, REGlobalData *gData, JSRegExp *re) { REMatchState *result; uintN i; gData->backTrackStackSize = INITIAL_BACKTRACK; JS_ARENA_ALLOCATE_CAST(gData->backTrackStack, REBackTrackData *, &gData->pool, INITIAL_BACKTRACK); if (!gData->backTrackStack) return NULL; gData->backTrackSP = gData->backTrackStack; gData->cursz = 0; gData->stateStackLimit = INITIAL_STATESTACK; JS_ARENA_ALLOCATE_CAST(gData->stateStack, REProgState *, &gData->pool, sizeof(REProgState) * INITIAL_STATESTACK); if (!gData->stateStack) return NULL; gData->stateStackTop = 0; gData->cx = cx; gData->regexp = re; gData->ok = JS_TRUE; JS_ARENA_ALLOCATE_CAST(result, REMatchState *, &gData->pool, offsetof(REMatchState, parens) + re->parenCount * sizeof(RECapture)); if (!result) return NULL; for (i = 0; i < re->classCount; i++) if (!re->classList[i].converted) if (!ProcessCharSet(gData, &re->classList[i])) return NULL; return result; } JSBool js_ExecuteRegExp(JSContext *cx, JSRegExp *re, JSString *str, size_t *indexp, JSBool test, jsval *rval) { REGlobalData gData; REMatchState *x, *result; const jschar *cp, *ep; size_t i, length, start; JSSubString *morepar; JSBool ok; JSRegExpStatics *res; ptrdiff_t matchlen; uintN num, morenum; JSString *parstr, *matchstr; JSObject *obj; RECapture *parsub = NULL; /* * It's safe to load from cp because JSStrings have a zero at the end, * and we never let cp get beyond cpend. */ start = *indexp; length = JSSTRING_LENGTH(str); if (start > length) start = length; cp = JSSTRING_CHARS(str); gData.cpbegin = cp; gData.cpend = cp + length; cp += start; gData.start = start; gData.skipped = 0; JS_InitArenaPool(&gData.pool, "RegExpPool", 8096, 4); x = InitMatch(cx, &gData, re); if (!x) return JS_FALSE; x->cp = cp; /* * Call the recursive matcher to do the real work. Return null on mismatch * whether testing or not. On match, return an extended Array object. */ result = MatchRegExp(&gData, x); ok = gData.ok; if (!ok) goto out; if (!result) { *rval = JSVAL_NULL; goto out; } cp = result->cp; i = cp - gData.cpbegin; *indexp = i; matchlen = i - (start + gData.skipped); ep = cp; cp -= matchlen; if (test) { /* * Testing for a match and updating cx->regExpStatics: don't allocate * an array object, do return true. */ *rval = JSVAL_TRUE; /* Avoid warning. (gcc doesn't detect that obj is needed iff !test); */ obj = NULL; } else { /* * The array returned on match has element 0 bound to the matched * string, elements 1 through state.parenCount bound to the paren * matches, an index property telling the length of the left context, * and an input property referring to the input string. */ obj = js_NewArrayObject(cx, 0, NULL); if (!obj) { ok = JS_FALSE; goto out; } *rval = OBJECT_TO_JSVAL(obj); #define DEFVAL(val, id) { \ ok = js_DefineProperty(cx, obj, id, val, \ JS_PropertyStub, JS_PropertyStub, \ JSPROP_ENUMERATE, NULL); \ if (!ok) { \ cx->newborn[GCX_OBJECT] = NULL; \ cx->newborn[GCX_STRING] = NULL; \ goto out; \ } \ } matchstr = js_NewStringCopyN(cx, cp, matchlen, 0); if (!matchstr) { cx->newborn[GCX_OBJECT] = NULL; ok = JS_FALSE; goto out; } DEFVAL(STRING_TO_JSVAL(matchstr), INT_TO_JSID(0)); } res = &cx->regExpStatics; res->input = str; res->parenCount = re->parenCount; if (re->parenCount == 0) { res->lastParen = js_EmptySubString; } else { for (num = 0; num < re->parenCount; num++) { parsub = &result->parens[num]; if (num < 9) { if (parsub->index == -1) { res->parens[num].chars = NULL; res->parens[num].length = 0; } else { res->parens[num].chars = gData.cpbegin + parsub->index; res->parens[num].length = parsub->length; } } else { morenum = num - 9; morepar = res->moreParens; if (!morepar) { res->moreLength = 10; morepar = (JSSubString*) JS_malloc(cx, 10 * sizeof(JSSubString)); } else if (morenum >= res->moreLength) { res->moreLength += 10; morepar = (JSSubString*) JS_realloc(cx, morepar, res->moreLength * sizeof(JSSubString)); } if (!morepar) { cx->newborn[GCX_OBJECT] = NULL; cx->newborn[GCX_STRING] = NULL; ok = JS_FALSE; goto out; } res->moreParens = morepar; if (parsub->index == -1) { morepar[morenum].chars = NULL; morepar[morenum].length = 0; } else { morepar[morenum].chars = gData.cpbegin + parsub->index; morepar[morenum].length = parsub->length; } } if (test) continue; if (parsub->index == -1) { ok = js_DefineProperty(cx, obj, INT_TO_JSID(num + 1), JSVAL_VOID, NULL, NULL, JSPROP_ENUMERATE, NULL); } else { parstr = js_NewStringCopyN(cx, gData.cpbegin + parsub->index, parsub->length, 0); if (!parstr) { cx->newborn[GCX_OBJECT] = NULL; cx->newborn[GCX_STRING] = NULL; ok = JS_FALSE; goto out; } ok = js_DefineProperty(cx, obj, INT_TO_JSID(num + 1), STRING_TO_JSVAL(parstr), NULL, NULL, JSPROP_ENUMERATE, NULL); } if (!ok) { cx->newborn[GCX_OBJECT] = NULL; cx->newborn[GCX_STRING] = NULL; goto out; } } if (parsub->index == -1) { res->lastParen = js_EmptySubString; } else { res->lastParen.chars = gData.cpbegin + parsub->index; res->lastParen.length = parsub->length; } } if (!test) { /* * Define the index and input properties last for better for/in loop * order (so they come after the elements). */ DEFVAL(INT_TO_JSVAL(start + gData.skipped), ATOM_TO_JSID(cx->runtime->atomState.indexAtom)); DEFVAL(STRING_TO_JSVAL(str), ATOM_TO_JSID(cx->runtime->atomState.inputAtom)); } #undef DEFVAL res->lastMatch.chars = cp; res->lastMatch.length = matchlen; if (JS_VERSION_IS_1_2(cx)) { /* * JS1.2 emulated Perl4.0.1.8 (patch level 36) for global regexps used * in scalar contexts, and unintentionally for the string.match "list" * pseudo-context. On "hi there bye", the following would result: * * Language while(/ /g){print("$`");} s/ /$`/g * perl4.036 "hi", "there" "hihitherehi therebye" * perl5 "hi", "hi there" "hihitherehi therebye" * js1.2 "hi", "there" "hihitheretherebye" */ res->leftContext.chars = JSSTRING_CHARS(str) + start; res->leftContext.length = gData.skipped; } else { /* * For JS1.3 and ECMAv2, emulate Perl5 exactly: * * js1.3 "hi", "hi there" "hihitherehi therebye" */ res->leftContext.chars = JSSTRING_CHARS(str); res->leftContext.length = start + gData.skipped; } res->rightContext.chars = ep; res->rightContext.length = gData.cpend - ep; out: JS_FinishArenaPool(&gData.pool); return ok; } /************************************************************************/ enum regexp_tinyid { REGEXP_SOURCE = -1, REGEXP_GLOBAL = -2, REGEXP_IGNORE_CASE = -3, REGEXP_LAST_INDEX = -4, REGEXP_MULTILINE = -5 }; #define REGEXP_PROP_ATTRS (JSPROP_PERMANENT|JSPROP_SHARED) static JSPropertySpec regexp_props[] = { {"source", REGEXP_SOURCE, REGEXP_PROP_ATTRS | JSPROP_READONLY,0,0}, {"global", REGEXP_GLOBAL, REGEXP_PROP_ATTRS | JSPROP_READONLY,0,0}, {"ignoreCase", REGEXP_IGNORE_CASE, REGEXP_PROP_ATTRS | JSPROP_READONLY,0,0}, {"lastIndex", REGEXP_LAST_INDEX, REGEXP_PROP_ATTRS,0,0}, {"multiline", REGEXP_MULTILINE, REGEXP_PROP_ATTRS | JSPROP_READONLY,0,0}, {0,0,0,0,0} }; static JSBool regexp_getProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp) { jsint slot; JSRegExp *re; if (!JSVAL_IS_INT(id)) return JS_TRUE; slot = JSVAL_TO_INT(id); if (slot == REGEXP_LAST_INDEX) return JS_GetReservedSlot(cx, obj, 0, vp); JS_LOCK_OBJ(cx, obj); re = (JSRegExp *) JS_GetInstancePrivate(cx, obj, &js_RegExpClass, NULL); if (re) { switch (slot) { case REGEXP_SOURCE: *vp = STRING_TO_JSVAL(re->source); break; case REGEXP_GLOBAL: *vp = BOOLEAN_TO_JSVAL((re->flags & JSREG_GLOB) != 0); break; case REGEXP_IGNORE_CASE: *vp = BOOLEAN_TO_JSVAL((re->flags & JSREG_FOLD) != 0); break; case REGEXP_MULTILINE: *vp = BOOLEAN_TO_JSVAL((re->flags & JSREG_MULTILINE) != 0); break; } } JS_UNLOCK_OBJ(cx, obj); return JS_TRUE; } static JSBool regexp_setProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp) { JSBool ok; jsint slot; jsdouble lastIndex; ok = JS_TRUE; if (!JSVAL_IS_INT(id)) return ok; slot = JSVAL_TO_INT(id); if (slot == REGEXP_LAST_INDEX) { if (!js_ValueToNumber(cx, *vp, &lastIndex)) return JS_FALSE; lastIndex = js_DoubleToInteger(lastIndex); ok = js_NewNumberValue(cx, lastIndex, vp) && JS_SetReservedSlot(cx, obj, 0, *vp); } return ok; } /* * RegExp class static properties and their Perl counterparts: * * RegExp.input $_ * RegExp.multiline $* * RegExp.lastMatch $& * RegExp.lastParen $+ * RegExp.leftContext $` * RegExp.rightContext $' */ enum regexp_static_tinyid { REGEXP_STATIC_INPUT = -1, REGEXP_STATIC_MULTILINE = -2, REGEXP_STATIC_LAST_MATCH = -3, REGEXP_STATIC_LAST_PAREN = -4, REGEXP_STATIC_LEFT_CONTEXT = -5, REGEXP_STATIC_RIGHT_CONTEXT = -6 }; JSBool js_InitRegExpStatics(JSContext *cx, JSRegExpStatics *res) { JS_ClearRegExpStatics(cx); return js_AddRoot(cx, &res->input, "res->input"); } void js_FreeRegExpStatics(JSContext *cx, JSRegExpStatics *res) { if (res->moreParens) { JS_free(cx, res->moreParens); res->moreParens = NULL; } js_RemoveRoot(cx->runtime, &res->input); } static JSBool regexp_static_getProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp) { jsint slot; JSRegExpStatics *res; JSString *str; JSSubString *sub; res = &cx->regExpStatics; if (!JSVAL_IS_INT(id)) return JS_TRUE; slot = JSVAL_TO_INT(id); switch (slot) { case REGEXP_STATIC_INPUT: *vp = res->input ? STRING_TO_JSVAL(res->input) : JS_GetEmptyStringValue(cx); return JS_TRUE; case REGEXP_STATIC_MULTILINE: *vp = BOOLEAN_TO_JSVAL(res->multiline); return JS_TRUE; case REGEXP_STATIC_LAST_MATCH: sub = &res->lastMatch; break; case REGEXP_STATIC_LAST_PAREN: sub = &res->lastParen; break; case REGEXP_STATIC_LEFT_CONTEXT: sub = &res->leftContext; break; case REGEXP_STATIC_RIGHT_CONTEXT: sub = &res->rightContext; break; default: sub = REGEXP_PAREN_SUBSTRING(res, slot); break; } str = js_NewStringCopyN(cx, sub->chars, sub->length, 0); if (!str) return JS_FALSE; *vp = STRING_TO_JSVAL(str); return JS_TRUE; } static JSBool regexp_static_setProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp) { JSRegExpStatics *res; if (!JSVAL_IS_INT(id)) return JS_TRUE; res = &cx->regExpStatics; /* XXX use if-else rather than switch to keep MSVC1.52 from crashing */ if (JSVAL_TO_INT(id) == REGEXP_STATIC_INPUT) { if (!JSVAL_IS_STRING(*vp) && !JS_ConvertValue(cx, *vp, JSTYPE_STRING, vp)) { return JS_FALSE; } res->input = JSVAL_TO_STRING(*vp); } else if (JSVAL_TO_INT(id) == REGEXP_STATIC_MULTILINE) { if (!JSVAL_IS_BOOLEAN(*vp) && !JS_ConvertValue(cx, *vp, JSTYPE_BOOLEAN, vp)) { return JS_FALSE; } res->multiline = JSVAL_TO_BOOLEAN(*vp); } return JS_TRUE; } static JSPropertySpec regexp_static_props[] = { {"input", REGEXP_STATIC_INPUT, JSPROP_ENUMERATE|JSPROP_SHARED, regexp_static_getProperty, regexp_static_setProperty}, {"multiline", REGEXP_STATIC_MULTILINE, JSPROP_ENUMERATE|JSPROP_SHARED, regexp_static_getProperty, regexp_static_setProperty}, {"lastMatch", REGEXP_STATIC_LAST_MATCH, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"lastParen", REGEXP_STATIC_LAST_PAREN, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"leftContext", REGEXP_STATIC_LEFT_CONTEXT, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"rightContext", REGEXP_STATIC_RIGHT_CONTEXT, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, /* XXX should have block scope and local $1, etc. */ {"$1", 0, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$2", 1, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$3", 2, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$4", 3, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$5", 4, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$6", 5, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$7", 6, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$8", 7, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {"$9", 8, JSPROP_ENUMERATE|JSPROP_READONLY|JSPROP_SHARED, regexp_static_getProperty, regexp_static_getProperty}, {0,0,0,0,0} }; static void regexp_finalize(JSContext *cx, JSObject *obj) { JSRegExp *re; re = (JSRegExp *) JS_GetPrivate(cx, obj); if (!re) return; js_DestroyRegExp(cx, re); } /* Forward static prototype. */ static JSBool regexp_exec(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval); static JSBool regexp_call(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { return regexp_exec(cx, JSVAL_TO_OBJECT(argv[-2]), argc, argv, rval); } #if JS_HAS_XDR #include "jsxdrapi.h" static JSBool regexp_xdrObject(JSXDRState *xdr, JSObject **objp) { JSRegExp *re; JSString *source; uint32 flagsword; JSObject *obj; if (xdr->mode == JSXDR_ENCODE) { re = (JSRegExp *) JS_GetPrivate(xdr->cx, *objp); if (!re) return JS_FALSE; source = re->source; flagsword = ((uint32)re->cloneIndex << 16) | re->flags; } if (!JS_XDRString(xdr, &source) || !JS_XDRUint32(xdr, &flagsword)) { return JS_FALSE; } if (xdr->mode == JSXDR_DECODE) { obj = js_NewObject(xdr->cx, &js_RegExpClass, NULL, NULL); if (!obj) return JS_FALSE; re = js_NewRegExp(xdr->cx, NULL, source, (uint16)flagsword, JS_FALSE); if (!re) return JS_FALSE; if (!JS_SetPrivate(xdr->cx, obj, re) || !js_SetLastIndex(xdr->cx, obj, 0)) { js_DestroyRegExp(xdr->cx, re); return JS_FALSE; } re->cloneIndex = (uint16)(flagsword >> 16); *objp = obj; } return JS_TRUE; } #else /* !JS_HAS_XDR */ #define regexp_xdrObject NULL #endif /* !JS_HAS_XDR */ static uint32 regexp_mark(JSContext *cx, JSObject *obj, void *arg) { JSRegExp *re = (JSRegExp *) JS_GetPrivate(cx, obj); if (re) JS_MarkGCThing(cx, re->source, "source", arg); return 0; } JSClass js_RegExpClass = { js_RegExp_str, JSCLASS_HAS_PRIVATE | JSCLASS_HAS_RESERVED_SLOTS(1), JS_PropertyStub, JS_PropertyStub, regexp_getProperty, regexp_setProperty, JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, regexp_finalize, NULL, NULL, regexp_call, NULL, regexp_xdrObject, NULL, regexp_mark, 0 }; static const jschar empty_regexp_ucstr[] = {'(', '?', ':', ')', 0}; JSBool js_regexp_toString(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { JSRegExp *re; const jschar *source; jschar *chars; size_t length, nflags; uintN flags; JSString *str; if (!JS_InstanceOf(cx, obj, &js_RegExpClass, argv)) return JS_FALSE; JS_LOCK_OBJ(cx, obj); re = (JSRegExp *) JS_GetPrivate(cx, obj); if (!re) { JS_UNLOCK_OBJ(cx, obj); *rval = STRING_TO_JSVAL(cx->runtime->emptyString); return JS_TRUE; } source = JSSTRING_CHARS(re->source); length = JSSTRING_LENGTH(re->source); if (length == 0) { source = empty_regexp_ucstr; length = sizeof(empty_regexp_ucstr) / sizeof(jschar) - 1; } length += 2; nflags = 0; for (flags = re->flags; flags != 0; flags &= flags - 1) nflags++; chars = (jschar*) JS_malloc(cx, (length + nflags + 1) * sizeof(jschar)); if (!chars) { JS_UNLOCK_OBJ(cx, obj); return JS_FALSE; } chars[0] = '/'; js_strncpy(&chars[1], source, length - 2); chars[length-1] = '/'; if (nflags) { if (re->flags & JSREG_GLOB) chars[length++] = 'g'; if (re->flags & JSREG_FOLD) chars[length++] = 'i'; if (re->flags & JSREG_MULTILINE) chars[length++] = 'm'; } JS_UNLOCK_OBJ(cx, obj); chars[length] = 0; str = js_NewString(cx, chars, length, 0); if (!str) { JS_free(cx, chars); return JS_FALSE; } *rval = STRING_TO_JSVAL(str); return JS_TRUE; } static JSBool regexp_compile(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { JSString *opt, *str; JSRegExp *oldre, *re; JSBool ok, ok2; JSObject *obj2; size_t length, nbytes; const jschar *cp, *start, *end; jschar *nstart, *ncp, *tmp; if (!JS_InstanceOf(cx, obj, &js_RegExpClass, argv)) return JS_FALSE; opt = NULL; if (argc == 0) { str = cx->runtime->emptyString; } else { if (JSVAL_IS_OBJECT(argv[0])) { /* * If we get passed in a RegExp object we construct a new * RegExp that is a duplicate of it by re-compiling the * original source code. ECMA requires that it be an error * here if the flags are specified. (We must use the flags * from the original RegExp also). */ obj2 = JSVAL_TO_OBJECT(argv[0]); if (obj2 && OBJ_GET_CLASS(cx, obj2) == &js_RegExpClass) { if (argc >= 2 && !JSVAL_IS_VOID(argv[1])) { /* 'flags' passed */ JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_NEWREGEXP_FLAGGED); return JS_FALSE; } JS_LOCK_OBJ(cx, obj2); re = (JSRegExp *) JS_GetPrivate(cx, obj2); if (!re) { JS_UNLOCK_OBJ(cx, obj2); return JS_FALSE; } re = js_NewRegExp(cx, NULL, re->source, re->flags, JS_FALSE); JS_UNLOCK_OBJ(cx, obj2); goto created; } } str = js_ValueToString(cx, argv[0]); if (!str) return JS_FALSE; argv[0] = STRING_TO_JSVAL(str); if (argc > 1) { if (JSVAL_IS_VOID(argv[1])) { opt = NULL; } else { opt = js_ValueToString(cx, argv[1]); if (!opt) return JS_FALSE; argv[1] = STRING_TO_JSVAL(opt); } } /* Escape any naked slashes in the regexp source. */ length = JSSTRING_LENGTH(str); start = JSSTRING_CHARS(str); end = start + length; nstart = ncp = NULL; for (cp = start; cp < end; cp++) { if (*cp == '/' && (cp == start || cp[-1] != '\\')) { nbytes = (++length + 1) * sizeof(jschar); if (!nstart) { nstart = (jschar *) JS_malloc(cx, nbytes); if (!nstart) return JS_FALSE; ncp = nstart + (cp - start); js_strncpy(nstart, start, cp - start); } else { tmp = (jschar *) JS_realloc(cx, nstart, nbytes); if (!tmp) { JS_free(cx, nstart); return JS_FALSE; } ncp = tmp + (ncp - nstart); nstart = tmp; } *ncp++ = '\\'; } if (nstart) *ncp++ = *cp; } if (nstart) { /* Don't forget to store the backstop after the new string. */ JS_ASSERT((size_t)(ncp - nstart) == length); *ncp = 0; str = js_NewString(cx, nstart, length, 0); if (!str) { JS_free(cx, nstart); return JS_FALSE; } argv[0] = STRING_TO_JSVAL(str); } } re = js_NewRegExpOpt(cx, NULL, str, opt, JS_FALSE); created: if (!re) return JS_FALSE; JS_LOCK_OBJ(cx, obj); oldre = (JSRegExp *) JS_GetPrivate(cx, obj); ok = JS_SetPrivate(cx, obj, re); ok2 = js_SetLastIndex(cx, obj, 0); JS_UNLOCK_OBJ(cx, obj); if (!ok) { js_DestroyRegExp(cx, re); return JS_FALSE; } if (oldre) js_DestroyRegExp(cx, oldre); *rval = OBJECT_TO_JSVAL(obj); return ok2; } static JSBool regexp_exec_sub(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, JSBool test, jsval *rval) { JSBool ok; JSRegExp *re; jsdouble lastIndex; JSString *str; size_t i; ok = JS_InstanceOf(cx, obj, &js_RegExpClass, argv); if (!ok) return JS_FALSE; JS_LOCK_OBJ(cx, obj); re = (JSRegExp *) JS_GetPrivate(cx, obj); if (!re) { JS_UNLOCK_OBJ(cx, obj); return JS_TRUE; } /* NB: we must reach out: after this paragraph, in order to drop re. */ HOLD_REGEXP(cx, re); if (re->flags & JSREG_GLOB) { ok = js_GetLastIndex(cx, obj, &lastIndex); } else { lastIndex = 0; } JS_UNLOCK_OBJ(cx, obj); if (!ok) goto out; /* Now that obj is unlocked, it's safe to (potentially) grab the GC lock. */ if (argc == 0) { str = cx->regExpStatics.input; if (!str) { JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_NO_INPUT, JS_GetStringBytes(re->source), (re->flags & JSREG_GLOB) ? "g" : "", (re->flags & JSREG_FOLD) ? "i" : "", (re->flags & JSREG_MULTILINE) ? "m" : ""); ok = JS_FALSE; goto out; } } else { str = js_ValueToString(cx, argv[0]); if (!str) goto out; argv[0] = STRING_TO_JSVAL(str); } if (lastIndex < 0 || JSSTRING_LENGTH(str) < lastIndex) { ok = js_SetLastIndex(cx, obj, 0); *rval = JSVAL_NULL; } else { i = (size_t) lastIndex; ok = js_ExecuteRegExp(cx, re, str, &i, test, rval); if (ok && (re->flags & JSREG_GLOB)) ok = js_SetLastIndex(cx, obj, (*rval == JSVAL_NULL) ? 0 : i); } out: DROP_REGEXP(cx, re); return ok; } static JSBool regexp_exec(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { return regexp_exec_sub(cx, obj, argc, argv, JS_FALSE, rval); } static JSBool regexp_test(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { if (!regexp_exec_sub(cx, obj, argc, argv, JS_TRUE, rval)) return JS_FALSE; if (*rval != JSVAL_TRUE) *rval = JSVAL_FALSE; return JS_TRUE; } static JSFunctionSpec regexp_methods[] = { #if JS_HAS_TOSOURCE {js_toSource_str, js_regexp_toString, 0,0,0}, #endif {js_toString_str, js_regexp_toString, 0,0,0}, {"compile", regexp_compile, 1,0,0}, {"exec", regexp_exec, 0,0,0}, {"test", regexp_test, 0,0,0}, {0,0,0,0,0} }; static JSBool RegExp(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { if (!(cx->fp->flags & JSFRAME_CONSTRUCTING)) { /* * If first arg is regexp and no flags are given, just return the arg. * (regexp_compile detects the regexp + flags case and throws a * TypeError.) See 10.15.3.1. */ if ((argc < 2 || JSVAL_IS_VOID(argv[1])) && !JSVAL_IS_PRIMITIVE(argv[0]) && OBJ_GET_CLASS(cx, JSVAL_TO_OBJECT(argv[0])) == &js_RegExpClass) { *rval = argv[0]; return JS_TRUE; } /* Otherwise, replace obj with a new RegExp object. */ obj = js_NewObject(cx, &js_RegExpClass, NULL, NULL); if (!obj) return JS_FALSE; } return regexp_compile(cx, obj, argc, argv, rval); } JSObject * js_InitRegExpClass(JSContext *cx, JSObject *obj) { JSObject *proto, *ctor; jsval rval; proto = JS_InitClass(cx, obj, NULL, &js_RegExpClass, RegExp, 1, regexp_props, regexp_methods, regexp_static_props, NULL); if (!proto || !(ctor = JS_GetConstructor(cx, proto))) return NULL; if (!JS_AliasProperty(cx, ctor, "input", "$_") || !JS_AliasProperty(cx, ctor, "multiline", "$*") || !JS_AliasProperty(cx, ctor, "lastMatch", "$&") || !JS_AliasProperty(cx, ctor, "lastParen", "$+") || !JS_AliasProperty(cx, ctor, "leftContext", "$`") || !JS_AliasProperty(cx, ctor, "rightContext", "$'")) { goto bad; } /* Give RegExp.prototype private data so it matches the empty string. */ if (!regexp_compile(cx, proto, 0, NULL, &rval)) goto bad; return proto; bad: JS_DeleteProperty(cx, obj, js_RegExpClass.name); return NULL; } JSObject * js_NewRegExpObject(JSContext *cx, JSTokenStream *ts, jschar *chars, size_t length, uintN flags) { JSString *str; JSObject *obj; JSRegExp *re; JSTempValueRooter tvr; str = js_NewStringCopyN(cx, chars, length, 0); if (!str) return NULL; re = js_NewRegExp(cx, ts, str, flags, JS_FALSE); if (!re) return NULL; JS_PUSH_SINGLE_TEMP_ROOT(cx, STRING_TO_JSVAL(str), &tvr); obj = js_NewObject(cx, &js_RegExpClass, NULL, NULL); if (!obj || !JS_SetPrivate(cx, obj, re)) { js_DestroyRegExp(cx, re); obj = NULL; } if (obj && !js_SetLastIndex(cx, obj, 0)) obj = NULL; JS_POP_TEMP_ROOT(cx, &tvr); return obj; } JSObject * js_CloneRegExpObject(JSContext *cx, JSObject *obj, JSObject *parent) { JSObject *clone; JSRegExp *re; JS_ASSERT(OBJ_GET_CLASS(cx, obj) == &js_RegExpClass); clone = js_NewObject(cx, &js_RegExpClass, NULL, parent); if (!clone) return NULL; re = JS_GetPrivate(cx, obj); if (!JS_SetPrivate(cx, clone, re) || !js_SetLastIndex(cx, clone, 0)) { cx->newborn[GCX_OBJECT] = NULL; return NULL; } HOLD_REGEXP(cx, re); return clone; } JSBool js_GetLastIndex(JSContext *cx, JSObject *obj, jsdouble *lastIndex) { jsval v; return JS_GetReservedSlot(cx, obj, 0, &v) && js_ValueToNumber(cx, v, lastIndex); } JSBool js_SetLastIndex(JSContext *cx, JSObject *obj, jsdouble lastIndex) { jsval v; return js_NewNumberValue(cx, lastIndex, &v) && JS_SetReservedSlot(cx, obj, 0, v); } #endif /* JS_HAS_REGEXPS */