/* * SpanDSP - a series of DSP components for telephony * * ima_adpcm_tests.c - Test the IMA/DVI/Intel ADPCM encode and decode * software. * * Written by Steve Underwood * * Copyright (C) 2004 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ /*! \page ima_adpcm_tests_page IMA ADPCM tests \section ima_adpcm_tests_page_sec_1 What does it do? To perform a general audio quality test, ima_adpcm_tests should be run. The test file ../test-data/local/short_nb_voice.wav will be compressed to the specified bit rate, decompressed, and the resulting audio stored in post_ima_adpcm.wav. A simple SNR test is automatically performed. Listening tests may be used for a more detailed evaluation of the degradation in quality caused by the compression. \section ima_adpcm_tests_page_sec_2 How is it used? */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #include #include #include #include "spandsp.h" #include "spandsp-sim.h" #define IN_FILE_NAME "../test-data/local/short_nb_voice.wav" #define OUT_FILE_NAME "post_ima_adpcm.wav" #define HIST_LEN 2000 int main(int argc, char *argv[]) { int i; SNDFILE *inhandle; SNDFILE *outhandle; int frames; int dec_frames; int ima_bytes; double pre_energy; double post_energy; double diff_energy; int16_t pre_amp[HIST_LEN]; int16_t post_amp[HIST_LEN]; uint8_t ima_data[HIST_LEN]; int16_t history[HIST_LEN]; int hist_in; int hist_out; ima_adpcm_state_t *ima_enc_state; ima_adpcm_state_t *ima_dec_state; int xx; int total_pre_samples; int total_compressed_bytes; int total_post_samples; int variant; int chunk_size; int enc_chunk_size; int opt; bool log_encoded_data; const char *in_file_name; variant = IMA_ADPCM_DVI4; in_file_name = IN_FILE_NAME; chunk_size = 160; enc_chunk_size = 0; log_encoded_data = false; while ((opt = getopt(argc, argv, "ac:i:lv")) != -1) { switch (opt) { case 'a': variant = IMA_ADPCM_IMA4; chunk_size = 505; break; case 'c': enc_chunk_size = atoi(optarg); break; case 'i': in_file_name = optarg; break; case 'l': log_encoded_data = true; break; case 'v': variant = IMA_ADPCM_VDVI; break; default: //usage(); exit(2); break; } } if ((inhandle = sf_open_telephony_read(in_file_name, 1)) == NULL) { fprintf(stderr, " Cannot open audio file '%s'\n", in_file_name); exit(2); } if ((outhandle = sf_open_telephony_write(OUT_FILE_NAME, 1)) == NULL) { fprintf(stderr, " Cannot create audio file '%s'\n", OUT_FILE_NAME); exit(2); } if ((ima_enc_state = ima_adpcm_init(NULL, variant, enc_chunk_size)) == NULL) { fprintf(stderr, " Cannot create encoder\n"); exit(2); } if ((ima_dec_state = ima_adpcm_init(NULL, variant, enc_chunk_size)) == NULL) { fprintf(stderr, " Cannot create decoder\n"); exit(2); } hist_in = 0; hist_out = 0; pre_energy = 0.0; post_energy = 0.0; diff_energy = 0.0; total_pre_samples = 0; total_compressed_bytes = 0; total_post_samples = 0; while ((frames = sf_readf_short(inhandle, pre_amp, chunk_size))) { total_pre_samples += frames; ima_bytes = ima_adpcm_encode(ima_enc_state, ima_data, pre_amp, frames); if (log_encoded_data) write(1, ima_data, ima_bytes); total_compressed_bytes += ima_bytes; dec_frames = ima_adpcm_decode(ima_dec_state, post_amp, ima_data, ima_bytes); total_post_samples += dec_frames; for (i = 0; i < frames; i++) { history[hist_in++] = pre_amp[i]; if (hist_in >= HIST_LEN) hist_in = 0; pre_energy += (double) pre_amp[i] * (double) pre_amp[i]; } for (i = 0; i < dec_frames; i++) { post_energy += (double) post_amp[i] * (double) post_amp[i]; xx = post_amp[i] - history[hist_out++]; if (hist_out >= HIST_LEN) hist_out = 0; diff_energy += (double) xx * (double) xx; } sf_writef_short(outhandle, post_amp, dec_frames); } if (sf_close_telephony(inhandle)) { fprintf(stderr, " Cannot close audio file '%s'\n", in_file_name); exit(2); } if (sf_close_telephony(outhandle)) { fprintf(stderr, " Cannot close audio file '%s'\n", OUT_FILE_NAME); exit(2); } ima_adpcm_release(ima_enc_state); ima_adpcm_release(ima_dec_state); printf("Pre samples: %d\n", total_pre_samples); printf("Compressed bytes: %d\n", total_compressed_bytes); printf("Post samples: %d\n", total_post_samples); printf("Output energy is %f%% of input energy.\n", 100.0*post_energy/pre_energy); printf("Residual energy is %f%% of the total.\n", 100.0*diff_energy/post_energy); if (fabs(1.0 - post_energy/pre_energy) > 0.05 || fabs(diff_energy/post_energy) > 0.03) { printf("Tests failed.\n"); exit(2); } printf("Tests passed.\n"); return 0; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/