/* * SpanDSP - a series of DSP components for telephony * * sig_tone_tests.c * * Written by Steve Underwood * * Copyright (C) 2004 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ /*! \page sig_tone_tests_page The 2280/2400/2600Hz signalling tone Rx/Tx tests \section sig_tone_tests_sec_1 What does it do? ???. \section sig_tone_tests_sec_2 How does it work? ???. */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #include #include "spandsp.h" #include "spandsp-sim.h" #define OUT_FILE_NAME "sig_tone.wav" #define SAMPLES_PER_CHUNK 160 #define MITEL_DIR "../test-data/mitel/" #define BELLCORE_DIR "../test-data/bellcore/" const char *bellcore_files[] = { MITEL_DIR "mitel-cm7291-talkoff.wav", BELLCORE_DIR "tr-tsy-00763-1.wav", BELLCORE_DIR "tr-tsy-00763-2.wav", BELLCORE_DIR "tr-tsy-00763-3.wav", BELLCORE_DIR "tr-tsy-00763-4.wav", BELLCORE_DIR "tr-tsy-00763-5.wav", BELLCORE_DIR "tr-tsy-00763-6.wav", "" }; typedef struct { double freq; double min_level; double max_level; } template_t; static int number_of_tones = 1; static int sampleno = 0; static int tone_1_present = 0; static int tone_2_present = 0; static int tx_section = 0; static int dial_pulses = 0; static int rx_handler_callbacks = 0; static int tx_handler_callbacks = 0; static int use_gui = FALSE; static void plot_frequency_response(void) { FILE *gnucmd; if ((gnucmd = popen("gnuplot", "w")) == NULL) { exit(2); } fprintf(gnucmd, "set autoscale\n"); fprintf(gnucmd, "unset log\n"); fprintf(gnucmd, "unset label\n"); fprintf(gnucmd, "set xtic auto\n"); fprintf(gnucmd, "set ytic auto\n"); fprintf(gnucmd, "set title 'Notch filter frequency response'\n"); fprintf(gnucmd, "set xlabel 'Frequency (Hz)'\n"); fprintf(gnucmd, "set ylabel 'Gain (dB)'\n"); fprintf(gnucmd, "plot 'sig_tone_notch' using 1:3 title 'min' with lines," "'sig_tone_notch' using 1:6 title 'actual' with lines," "'sig_tone_notch' using 1:9 title 'max' with lines\n"); fflush(gnucmd); getchar(); if (pclose(gnucmd) == -1) { exit(2); } } /*- End of function --------------------------------------------------------*/ static void tx_handler(void *user_data, int what, int level, int duration) { sig_tone_tx_state_t *s; int tone; int time; static const int pattern_1_tone[][2] = { {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {600, SIG_TONE_1_PRESENT}, {0, 0} }; static const int pattern_2_tones[][2] = { #if 0 {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, {33, SIG_TONE_1_PRESENT}, {67, 0}, #endif {100, SIG_TONE_1_PRESENT}, {100, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT}, {100, SIG_TONE_2_PRESENT}, #if 0 {100, 0}, {100, SIG_TONE_2_PRESENT}, {100, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT}, {100, SIG_TONE_1_PRESENT}, #endif {0, 0} }; s = (sig_tone_tx_state_t *) user_data; tx_handler_callbacks++; //printf("What - %d, duration - %d\n", what, duration); if ((what & SIG_TONE_TX_UPDATE_REQUEST)) { /* The sig tone transmit side wants to know what to do next */ printf("Tx: update request\n"); if (number_of_tones == 1) { time = pattern_1_tone[tx_section][0]; tone = pattern_1_tone[tx_section][1]; } else { time = pattern_2_tones[tx_section][0]; tone = pattern_2_tones[tx_section][1]; } if (time) { printf("Tx: [%04x] %s %s for %d samples (%dms)\n", tone, (tone & SIG_TONE_1_PRESENT) ? "on " : "off", (tone & SIG_TONE_2_PRESENT) ? "on " : "off", ms_to_samples(time), time); sig_tone_tx_set_mode(s, tone, ms_to_samples(time)); tx_section++; } else { printf("End of sequence\n"); } } /*endif*/ } /*- End of function --------------------------------------------------------*/ static void rx_handler(void *user_data, int what, int level, int duration) { float ms; int x; rx_handler_callbacks++; ms = 1000.0f*(float) duration/(float) SAMPLE_RATE; printf("Rx: [%04x]", what); x = what & SIG_TONE_1_PRESENT; if ((what & SIG_TONE_1_CHANGE)) { printf(" %s", (x) ? "on " : "off"); if (x == tone_1_present) exit(2); tone_1_present = x; } else { printf(" ---"); if (x != tone_1_present) exit(2); } /*endif*/ x = what & SIG_TONE_2_PRESENT; if ((what & SIG_TONE_2_CHANGE)) { printf(" %s", (x) ? "on " : "off"); if (x == tone_2_present) exit(2); tone_2_present = x; } else { if (x != tone_2_present) exit(2); printf(" ---"); } /*endif*/ printf(" after %d samples (%.3fms)\n", duration, ms); } /*- End of function --------------------------------------------------------*/ static void map_frequency_response(sig_tone_rx_state_t *s, template_t template[]) { int16_t buf[SAMPLES_PER_CHUNK]; int i; int len; double sumin; double sumout; swept_tone_state_t *swept; double freq; double gain; int template_entry; FILE *file; /* Things like noise don't highlight the frequency response of the high Q notch very well. We use a slowly swept frequency to check it. */ printf("Frequency response test\n"); sig_tone_rx_set_mode(s, SIG_TONE_RX_PASSTHROUGH | SIG_TONE_RX_FILTER_TONE, 0); swept = swept_tone_init(NULL, 200.0f, 3900.0f, -10.0f, 120*SAMPLE_RATE, 0); template_entry = 0; file = fopen("sig_tone_notch", "wb"); for (;;) { if ((len = swept_tone(swept, buf, SAMPLES_PER_CHUNK)) <= 0) break; /*endif*/ sumin = 0.0; for (i = 0; i < len; i++) sumin += (double) buf[i]*(double) buf[i]; /*endfor*/ sig_tone_rx(s, buf, len); sumout = 0.0; for (i = 0; i < len; i++) sumout += (double) buf[i]*(double) buf[i]; /*endfor*/ freq = swept_tone_current_frequency(swept); gain = (sumin != 0.0) ? 10.0*log10(sumout/sumin + 1.0e-10) : 0.0; printf("%7.1f Hz %.3f dBm0 < %.3f dBm0 < %.3f dBm0\n", freq, template[template_entry].min_level, gain, template[template_entry].max_level); if (file) { fprintf(file, "%7.1f Hz %.3f dBm0 < %.3f dBm0 < %.3f dBm0\n", freq, template[template_entry].min_level, gain, template[template_entry].max_level); } /*endif*/ if (gain < template[template_entry].min_level || gain > template[template_entry].max_level) { printf("Expected: %.3f dBm0 to %.3f dBm0\n", template[template_entry].min_level, template[template_entry].max_level); printf(" Failed\n"); exit(2); } /*endif*/ if (freq > template[template_entry].freq) template_entry++; } /*endfor*/ swept_tone_free(swept); if (file) { fclose(file); if (use_gui) plot_frequency_response(); /*endif*/ } /*endif*/ printf(" Passed\n"); } /*- End of function --------------------------------------------------------*/ static void speech_immunity_tests(sig_tone_rx_state_t *s) { int j; int total_hits; SNDFILE *inhandle; int16_t amp[SAMPLE_RATE]; int frames; printf("Speech immunity test\n"); total_hits = 0; for (j = 0; bellcore_files[j][0]; j++) { /* Push some silence through, so we should be in the tone off state */ vec_zeroi16(amp, SAMPLE_RATE); sig_tone_rx(s, amp, SAMPLE_RATE); rx_handler_callbacks = 0; if ((inhandle = sf_open_telephony_read(bellcore_files[j], 1)) == NULL) { printf(" Cannot open speech file '%s'\n", bellcore_files[j]); exit(2); } /*endif*/ while ((frames = sf_readf_short(inhandle, amp, SAMPLE_RATE))) { sig_tone_rx(s, amp, frames); } /*endwhile*/ if (sf_close_telephony(inhandle)) { printf(" Cannot close speech file '%s'\n", bellcore_files[j]); exit(2); } /*endif*/ printf(" File %d gave %d false hits.\n", j + 1, rx_handler_callbacks); total_hits += rx_handler_callbacks; } /*endfor*/ printf(" %d hits in total\n", total_hits); if (total_hits > 0) { printf(" Failed\n"); exit(2); } /*endif*/ printf(" Passed\n"); } /*- End of function --------------------------------------------------------*/ static void level_and_ratio_tests(sig_tone_rx_state_t *s, double pitch[2]) { awgn_state_t noise_source; int32_t phase_rate[2]; uint32_t phase[2]; int16_t gain; int16_t amp[SAMPLE_RATE]; int i; int j; int k; int l; float noise_level; float tone_level; power_meter_t noise_meter; power_meter_t tone_meter; int16_t noise; int16_t tone; printf("Acceptable level and ratio test - %.2f Hz + %.2f Hz\n", pitch[0], pitch[1]); for (l = 0; l < 2; l++) { phase[l] = 0; phase_rate[l] = (pitch[l] != 0.0) ? dds_phase_rate(pitch[l]) : 0; } for (k = -25; k > -60; k--) { noise_level = k; awgn_init_dbm0(&noise_source, 1234567, noise_level); tone_level = noise_level; /* Push some silence through, so we should be in the tone off state */ vec_zeroi16(amp, SAMPLE_RATE); sig_tone_rx(s, amp, SAMPLE_RATE); power_meter_init(&noise_meter, 6); power_meter_init(&tone_meter, 6); for (j = 0; j < 20; j++) { rx_handler_callbacks = 0; gain = dds_scaling_dbm0(tone_level); for (i = 0; i < SAMPLES_PER_CHUNK; i++) { noise = awgn(&noise_source); tone = dds_mod(&phase[0], phase_rate[0], gain, 0); if (phase_rate[1]) tone += dds_mod(&phase[1], phase_rate[1], gain, 0); power_meter_update(&noise_meter, noise); power_meter_update(&tone_meter, tone); amp[i] = noise + tone; } /*endfor*/ sig_tone_rx(s, amp, SAMPLES_PER_CHUNK); if (rx_handler_callbacks) { printf("Hit at tone = %.2fdBm0, noise = %.2fdBm0\n", tone_level, noise_level); printf("Measured tone = %.2fdBm0, noise = %.2fdBm0\n", power_meter_current_dbm0(&tone_meter), power_meter_current_dbm0(&noise_meter)); if (rx_handler_callbacks != 1) printf("Callbacks = %d\n", rx_handler_callbacks); } /*endif*/ tone_level += 1.0f; } /*endfor*/ } /*endfor*/ printf(" Passed\n"); } /*- End of function --------------------------------------------------------*/ static void sequence_tests(sig_tone_tx_state_t *tx_state, sig_tone_rx_state_t *rx_state, codec_munge_state_t *munge) { int i; awgn_state_t noise_source; SNDFILE *outhandle; int16_t amp[SAMPLES_PER_CHUNK]; int16_t out_amp[2*SAMPLES_PER_CHUNK]; int outframes; int rx_samples; int tx_samples; printf("Signalling sequence test\n"); tx_section = 0; if ((outhandle = sf_open_telephony_write(OUT_FILE_NAME, 2)) == NULL) { fprintf(stderr, " Cannot create audio file '%s'\n", OUT_FILE_NAME); exit(2); } /*endif*/ awgn_init_dbm0(&noise_source, 1234567, -20.0f); sig_tone_tx_set_mode(tx_state, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT | SIG_TONE_TX_PASSTHROUGH, 0); sig_tone_rx_set_mode(rx_state, SIG_TONE_RX_PASSTHROUGH, 0); for (sampleno = 0; sampleno < 4000; sampleno += SAMPLES_PER_CHUNK) { if (sampleno == 800) { /* 100ms seize */ printf("Tx: [0000] off off for %d samples (%dms)\n", ms_to_samples(100), 100); dial_pulses = 0; sig_tone_tx_set_mode(tx_state, 0, ms_to_samples(100)); } /*endif*/ for (i = 0; i < SAMPLES_PER_CHUNK; i++) amp[i] = awgn(&noise_source); /*endfor*/ tx_samples = sig_tone_tx(tx_state, amp, SAMPLES_PER_CHUNK); for (i = 0; i < tx_samples; i++) out_amp[2*i] = amp[i]; /*endfor*/ codec_munge(munge, amp, tx_samples); rx_samples = sig_tone_rx(rx_state, amp, tx_samples); for (i = 0; i < rx_samples; i++) out_amp[2*i + 1] = amp[i]; /*endfor*/ outframes = sf_writef_short(outhandle, out_amp, rx_samples); if (outframes != rx_samples) { fprintf(stderr, " Error writing audio file\n"); exit(2); } /*endif*/ } /*endfor*/ if (sf_close_telephony(outhandle)) { fprintf(stderr, " Cannot close audio file '%s'\n", OUT_FILE_NAME); exit(2); } /*endif*/ } /*- End of function --------------------------------------------------------*/ int main(int argc, char *argv[]) { int type; sig_tone_tx_state_t tx_state; sig_tone_rx_state_t rx_state; codec_munge_state_t *munge; double fc[2]; int i; template_t template[10]; int opt; use_gui = FALSE; while ((opt = getopt(argc, argv, "g")) != -1) { switch (opt) { case 'g': use_gui = TRUE; break; default: //usage(); exit(2); break; } } for (type = 1; type <= 3; type++) { sampleno = 0; tone_1_present = 0; tone_2_present = 0; munge = NULL; for (i = 0; i < 10; i++) { template[i].freq = 0.0; template[i].min_level = 0.0; template[i].max_level = 0.0; } fc[0] = fc[1] = 0.0; switch (type) { case 1: printf("2280Hz tests.\n"); munge = codec_munge_init(MUNGE_CODEC_ALAW, 0); sig_tone_tx_init(&tx_state, SIG_TONE_2280HZ, tx_handler, &tx_state); sig_tone_rx_init(&rx_state, SIG_TONE_2280HZ, rx_handler, &rx_state); number_of_tones = 1; fc[0] = 2280.0; /* From BTNR 181 2.3.3.1 */ template[0].freq = 1150.0; template[0].min_level = -0.2; template[0].max_level = 0.0; template[1].freq = 1880.0; template[1].min_level = -0.5; template[1].max_level = 0.0; template[2].freq = 2080.0; template[2].min_level = -5.0; template[2].max_level = 0.0; template[3].freq = 2280.0 - 20.0; template[3].min_level = -99.0; template[3].max_level = 0.0; template[4].freq = 2280.0 + 20.0; template[4].min_level = -99.0; template[4].max_level = -30.0; template[5].freq = 2480.0; template[5].min_level = -99.0; template[5].max_level = 0.0; template[6].freq = 2680.0; template[6].min_level = -5.0; template[6].max_level = 0.0; template[7].freq = 4000.0; template[7].min_level = -0.5; template[7].max_level = 0.0; break; case 2: printf("2600Hz tests.\n"); munge = codec_munge_init(MUNGE_CODEC_ULAW, 0); sig_tone_tx_init(&tx_state, SIG_TONE_2600HZ, tx_handler, &tx_state); sig_tone_rx_init(&rx_state, SIG_TONE_2600HZ, rx_handler, &rx_state); number_of_tones = 1; fc[0] = 2600.0; template[0].freq = 2600.0 - 200.0; template[0].min_level = -1.0; template[0].max_level = 0.0; template[1].freq = 2600.0 - 20.0; template[1].min_level = -99.0; template[1].max_level = 0.0; template[2].freq = 2600.0 + 20.0; template[2].min_level = -99.0; template[2].max_level = -30.0; template[3].freq = 2600.0 + 200.0; template[3].min_level = -99.0; template[3].max_level = 0.0; template[4].freq = 4000.0; template[4].min_level = -1.0; template[4].max_level = 0.0; break; case 3: printf("2400Hz/2600Hz tests.\n"); munge = codec_munge_init(MUNGE_CODEC_ULAW, 0); sig_tone_tx_init(&tx_state, SIG_TONE_2400HZ_2600HZ, tx_handler, &tx_state); sig_tone_rx_init(&rx_state, SIG_TONE_2400HZ_2600HZ, rx_handler, &rx_state); number_of_tones = 2; fc[0] = 2400.0; fc[1] = 2600.0; template[0].freq = 2400.0 - 200.0; template[0].min_level = -1.0; template[0].max_level = 0.0; template[1].freq = 2400.0 - 20.0; template[1].min_level = -99.0; template[1].max_level = 0.0; template[2].freq = 2400.0 + 20.0; template[2].min_level = -99.0; template[2].max_level = -30.0; template[3].freq = 2600.0 - 20.0; template[3].min_level = -99.0; template[3].max_level = 0.0; template[4].freq = 2600.0 + 20.0; template[4].min_level = -99.0; template[4].max_level = -30.0; template[5].freq = 2600.0 + 200.0; template[5].min_level = -99.0; template[5].max_level = 0.0; template[6].freq = 4000.0; template[6].min_level = -1.0; template[6].max_level = 0.0; break; } /*endswitch*/ map_frequency_response(&rx_state, template); speech_immunity_tests(&rx_state); level_and_ratio_tests(&rx_state, fc); sequence_tests(&tx_state, &rx_state, munge); } /*endfor*/ printf("Tests completed.\n"); return 0; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/