/* * SpanDSP - a series of DSP components for telephony * * v29tx.c - ITU V.29 modem transmit part * * Written by Steve Underwood * * Copyright (C) 2003 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #if defined(HAVE_TGMATH_H) #include #endif #if defined(HAVE_MATH_H) #include #endif #include "floating_fudge.h" #include "spandsp/telephony.h" #include "spandsp/fast_convert.h" #include "spandsp/logging.h" #include "spandsp/complex.h" #include "spandsp/vector_float.h" #include "spandsp/complex_vector_float.h" #include "spandsp/vector_int.h" #include "spandsp/complex_vector_int.h" #include "spandsp/async.h" #include "spandsp/dds.h" #include "spandsp/power_meter.h" #include "spandsp/v29tx.h" #include "spandsp/private/logging.h" #include "spandsp/private/v29tx.h" #include "v29tx_constellation_maps.h" #if defined(SPANDSP_USE_FIXED_POINT) #include "v29tx_fixed_rrc.h" #else #include "v29tx_floating_rrc.h" #endif /*! The nominal frequency of the carrier, in Hertz */ #define CARRIER_NOMINAL_FREQ 1700.0f /* Segments of the training sequence */ /*! The start of the optional TEP, that may preceed the actual training, in symbols */ #define V29_TRAINING_SEG_TEP 0 /*! The start of training segment 1, in symbols */ #define V29_TRAINING_SEG_1 (V29_TRAINING_SEG_TEP + 480) /*! The start of training segment 2, in symbols */ #define V29_TRAINING_SEG_2 (V29_TRAINING_SEG_1 + 48) /*! The start of training segment 3, in symbols */ #define V29_TRAINING_SEG_3 (V29_TRAINING_SEG_2 + 128) /*! The start of training segment 4, in symbols */ #define V29_TRAINING_SEG_4 (V29_TRAINING_SEG_3 + 384) /*! The end of the training, in symbols */ #define V29_TRAINING_END (V29_TRAINING_SEG_4 + 48) /*! The end of the shutdown sequence, in symbols */ #define V29_TRAINING_SHUTDOWN_END (V29_TRAINING_END + 32) static int fake_get_bit(void *user_data) { return 1; } /*- End of function --------------------------------------------------------*/ static __inline__ int get_scrambled_bit(v29_tx_state_t *s) { int bit; int out_bit; if ((bit = s->current_get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) { /* End of real data. Switch to the fake get_bit routine, until we have shut down completely. */ if (s->status_handler) s->status_handler(s->status_user_data, SIG_STATUS_END_OF_DATA); s->current_get_bit = fake_get_bit; s->in_training = TRUE; bit = 1; } out_bit = (bit ^ (s->scramble_reg >> (18 - 1)) ^ (s->scramble_reg >> (23 - 1))) & 1; s->scramble_reg = (s->scramble_reg << 1) | out_bit; return out_bit; } /*- End of function --------------------------------------------------------*/ #if defined(SPANDSP_USE_FIXED_POINT) static __inline__ complexi16_t getbaud(v29_tx_state_t *s) #else static __inline__ complexf_t getbaud(v29_tx_state_t *s) #endif { static const int phase_steps_9600[8] = { 1, 0, 2, 3, 6, 7, 5, 4 }; static const int phase_steps_4800[4] = { 0, 2, 6, 4 }; #if defined(SPANDSP_USE_FIXED_POINT) static const complexi16_t zero = {0, 0}; #else static const complexf_t zero = {0.0f, 0.0f}; #endif int bits; int amp; int bit; if (s->in_training) { /* Send the training sequence */ if (++s->training_step <= V29_TRAINING_SEG_4) { if (s->training_step <= V29_TRAINING_SEG_3) { if (s->training_step <= V29_TRAINING_SEG_1) { /* Optional segment: Unmodulated carrier (talker echo protection) */ return v29_9600_constellation[0]; } if (s->training_step <= V29_TRAINING_SEG_2) { /* Segment 1: silence */ return zero; } /* Segment 2: ABAB... */ return v29_abab_constellation[(s->training_step & 1) + s->training_offset]; } /* Segment 3: CDCD... */ /* Apply the 1 + x^-6 + x^-7 training scrambler */ bit = s->training_scramble_reg & 1; s->training_scramble_reg >>= 1; s->training_scramble_reg |= (((bit ^ s->training_scramble_reg) & 1) << 6); return v29_cdcd_constellation[bit + s->training_offset]; } /* We should be in the block of test ones, or shutdown ones, if we get here. */ /* There is no graceful shutdown procedure defined for V.29. Just send some ones, to ensure we get the real data bits through, even with bad ISI. */ if (s->training_step == V29_TRAINING_END + 1) { /* Switch from the fake get_bit routine, to the user supplied real one, and we are up and running. */ s->current_get_bit = s->get_bit; s->in_training = FALSE; } if (s->training_step == V29_TRAINING_SHUTDOWN_END) { if (s->status_handler) s->status_handler(s->status_user_data, SIG_STATUS_SHUTDOWN_COMPLETE); } } /* 9600bps uses the full constellation. 7200bps uses only the first half of the full constellation. 4800bps uses the smaller constellation. */ amp = 0; /* We only use an amplitude bit at 9600bps */ if (s->bit_rate == 9600 && get_scrambled_bit(s)) amp = 8; /*endif*/ bits = get_scrambled_bit(s); bits = (bits << 1) | get_scrambled_bit(s); if (s->bit_rate == 4800) { bits = phase_steps_4800[bits]; } else { bits = (bits << 1) | get_scrambled_bit(s); bits = phase_steps_9600[bits]; } s->constellation_state = (s->constellation_state + bits) & 7; return v29_9600_constellation[amp | s->constellation_state]; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE_NONSTD(int) v29_tx(v29_tx_state_t *s, int16_t amp[], int len) { #if defined(SPANDSP_USE_FIXED_POINT) complexi_t x; complexi_t z; #else complexf_t x; complexf_t z; #endif int i; int sample; if (s->training_step >= V29_TRAINING_SHUTDOWN_END) { /* Once we have sent the shutdown symbols, we stop sending completely. */ return 0; } for (sample = 0; sample < len; sample++) { if ((s->baud_phase += 3) >= 10) { s->baud_phase -= 10; s->rrc_filter[s->rrc_filter_step] = s->rrc_filter[s->rrc_filter_step + V29_TX_FILTER_STEPS] = getbaud(s); if (++s->rrc_filter_step >= V29_TX_FILTER_STEPS) s->rrc_filter_step = 0; } /* Root raised cosine pulse shaping at baseband */ #if defined(SPANDSP_USE_FIXED_POINT) x = complex_seti(0, 0); for (i = 0; i < V29_TX_FILTER_STEPS; i++) { x.re += (int32_t) tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].re; x.im += (int32_t) tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].im; } /* Now create and modulate the carrier */ x.re >>= 4; x.im >>= 4; z = dds_complexi(&(s->carrier_phase), s->carrier_phase_rate); /* Don't bother saturating. We should never clip. */ i = (x.re*z.re - x.im*z.im) >> 15; amp[sample] = (int16_t) ((i*s->gain) >> 15); #else x = complex_setf(0.0f, 0.0f); for (i = 0; i < V29_TX_FILTER_STEPS; i++) { x.re += tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].re; x.im += tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].im; } /* Now create and modulate the carrier */ z = dds_complexf(&(s->carrier_phase), s->carrier_phase_rate); /* Don't bother saturating. We should never clip. */ amp[sample] = (int16_t) lfastrintf((x.re*z.re - x.im*z.im)*s->gain); #endif } return sample; } /*- End of function --------------------------------------------------------*/ static void set_working_gain(v29_tx_state_t *s) { #if defined(SPANDSP_USE_FIXED_POINT) switch (s->bit_rate) { case 9600: s->gain = 0.387f*s->base_gain*16.0f*32767.0f/30672.52f; break; case 7200: s->gain = 0.605f*s->base_gain*16.0f*32767.0f/30672.52f; break; case 4800: s->gain = 0.470f*s->base_gain*16.0f*32767.0f/30672.52f; break; default: break; } #else switch (s->bit_rate) { case 9600: s->gain = 0.387f*s->base_gain; break; case 7200: s->gain = 0.605f*s->base_gain; break; case 4800: s->gain = 0.470f*s->base_gain; break; default: break; } #endif } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v29_tx_power(v29_tx_state_t *s, float power) { /* The constellation does not maintain constant average power as we change bit rates. We need to scale the gain we get here by a bit rate specific scaling factor each time we restart the modem. */ s->base_gain = powf(10.0f, (power - DBM0_MAX_POWER)/20.0f)*32768.0f/TX_PULSESHAPER_GAIN; set_working_gain(s); } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v29_tx_set_get_bit(v29_tx_state_t *s, get_bit_func_t get_bit, void *user_data) { if (s->get_bit == s->current_get_bit) s->current_get_bit = get_bit; s->get_bit = get_bit; s->get_bit_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v29_tx_set_modem_status_handler(v29_tx_state_t *s, modem_status_func_t handler, void *user_data) { s->status_handler = handler; s->status_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(logging_state_t *) v29_tx_get_logging_state(v29_tx_state_t *s) { return &s->logging; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v29_tx_restart(v29_tx_state_t *s, int bit_rate, int tep) { span_log(&s->logging, SPAN_LOG_FLOW, "Restarting V.29\n"); s->bit_rate = bit_rate; set_working_gain(s); switch (s->bit_rate) { case 9600: s->training_offset = 0; break; case 7200: s->training_offset = 2; break; case 4800: s->training_offset = 4; break; default: return -1; } #if defined(SPANDSP_USE_FIXED_POINT) cvec_zeroi16(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0])); #else cvec_zerof(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0])); #endif s->rrc_filter_step = 0; s->scramble_reg = 0; s->training_scramble_reg = 0x2A; s->in_training = TRUE; s->training_step = (tep) ? V29_TRAINING_SEG_TEP : V29_TRAINING_SEG_1; s->carrier_phase = 0; s->baud_phase = 0; s->constellation_state = 0; s->current_get_bit = fake_get_bit; return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(v29_tx_state_t *) v29_tx_init(v29_tx_state_t *s, int bit_rate, int tep, get_bit_func_t get_bit, void *user_data) { switch (bit_rate) { case 9600: case 7200: case 4800: break; default: return NULL; } if (s == NULL) { if ((s = (v29_tx_state_t *) malloc(sizeof(*s))) == NULL) return NULL; } memset(s, 0, sizeof(*s)); span_log_init(&s->logging, SPAN_LOG_NONE, NULL); span_log_set_protocol(&s->logging, "V.29 TX"); s->get_bit = get_bit; s->get_bit_user_data = user_data; s->carrier_phase_rate = dds_phase_ratef(CARRIER_NOMINAL_FREQ); v29_tx_power(s, -14.0f); v29_tx_restart(s, bit_rate, tep); return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v29_tx_release(v29_tx_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v29_tx_free(v29_tx_state_t *s) { free(s); return 0; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/