/* * sha1.c * * an implementation of the Secure Hash Algorithm v.1 (SHA-1), * specified in FIPS 180-1 * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2005, Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sha1.h" debug_module_t mod_sha1 = { 0, /* debugging is off by default */ "sha-1" /* printable module name */ }; /* SN == Rotate left N bits */ #define S1(X) ((X << 1) | (X >> 31)) #define S5(X) ((X << 5) | (X >> 27)) #define S30(X) ((X << 30) | (X >> 2)) #define f0(B,C,D) ((B & C) | (~B & D)) #define f1(B,C,D) (B ^ C ^ D) #define f2(B,C,D) ((B & C) | (B & D) | (C & D)) #define f3(B,C,D) (B ^ C ^ D) /* * nota bene: the variable K0 appears in the curses library, so we * give longer names to these variables to avoid spurious warnings * on systems that uses curses */ uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */ uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */ uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */ uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */ void sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5]) { sha1_ctx_t ctx; sha1_init(&ctx); sha1_update(&ctx, msg, octets_in_msg); sha1_final(&ctx, hash_value); } /* * sha1_core(M, H) computes the core compression function, where M is * the next part of the message (in network byte order) and H is the * intermediate state { H0, H1, ...} (in host byte order) * * this function does not do any of the padding required in the * complete SHA1 function * * this function is used in the SEAL 3.0 key setup routines * (crypto/cipher/seal.c) */ void sha1_core(const uint32_t M[16], uint32_t hash_value[5]) { uint32_t H0; uint32_t H1; uint32_t H2; uint32_t H3; uint32_t H4; uint32_t W[80]; uint32_t A, B, C, D, E, TEMP; int t; /* copy hash_value into H0, H1, H2, H3, H4 */ H0 = hash_value[0]; H1 = hash_value[1]; H2 = hash_value[2]; H3 = hash_value[3]; H4 = hash_value[4]; /* copy/xor message into array */ W[0] = be32_to_cpu(M[0]); W[1] = be32_to_cpu(M[1]); W[2] = be32_to_cpu(M[2]); W[3] = be32_to_cpu(M[3]); W[4] = be32_to_cpu(M[4]); W[5] = be32_to_cpu(M[5]); W[6] = be32_to_cpu(M[6]); W[7] = be32_to_cpu(M[7]); W[8] = be32_to_cpu(M[8]); W[9] = be32_to_cpu(M[9]); W[10] = be32_to_cpu(M[10]); W[11] = be32_to_cpu(M[11]); W[12] = be32_to_cpu(M[12]); W[13] = be32_to_cpu(M[13]); W[14] = be32_to_cpu(M[14]); W[15] = be32_to_cpu(M[15]); TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP); TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP); TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP); TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP); TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP); TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP); TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP); TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP); TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP); TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP); TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP); TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP); TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP); TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP); TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP); TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP); /* process the remainder of the array */ for (t=32; t < 80; t++) { TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; W[t] = S1(TEMP); } A = H0; B = H1; C = H2; D = H3; E = H4; for (t=0; t < 20; t++) { TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 40; t++) { TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 60; t++) { TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 80; t++) { TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; E = D; D = C; C = S30(B); B = A; A = TEMP; } hash_value[0] = H0 + A; hash_value[1] = H1 + B; hash_value[2] = H2 + C; hash_value[3] = H3 + D; hash_value[4] = H4 + E; return; } void sha1_init(sha1_ctx_t *ctx) { /* initialize state vector */ ctx->H[0] = 0x67452301; ctx->H[1] = 0xefcdab89; ctx->H[2] = 0x98badcfe; ctx->H[3] = 0x10325476; ctx->H[4] = 0xc3d2e1f0; /* indicate that message buffer is empty */ ctx->octets_in_buffer = 0; /* reset message bit-count to zero */ ctx->num_bits_in_msg = 0; } void sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) { int i; uint8_t *buf = (uint8_t *)ctx->M; /* update message bit-count */ ctx->num_bits_in_msg += octets_in_msg * 8; /* loop over 16-word blocks of M */ while (octets_in_msg > 0) { if (octets_in_msg + ctx->octets_in_buffer >= 64) { /* * copy words of M into msg buffer until that buffer is full, * converting them into host byte order as needed */ octets_in_msg -= (64 - ctx->octets_in_buffer); for (i=ctx->octets_in_buffer; i < 64; i++) buf[i] = *msg++; ctx->octets_in_buffer = 0; /* process a whole block */ debug_print(mod_sha1, "(update) running sha1_core()", NULL); sha1_core(ctx->M, ctx->H); } else { debug_print(mod_sha1, "(update) not running sha1_core()", NULL); for (i=ctx->octets_in_buffer; i < (ctx->octets_in_buffer + octets_in_msg); i++) buf[i] = *msg++; ctx->octets_in_buffer += octets_in_msg; octets_in_msg = 0; } } } /* * sha1_final(ctx, output) computes the result for ctx and copies it * into the twenty octets located at *output */ void sha1_final(sha1_ctx_t *ctx, uint32_t *output) { uint32_t A, B, C, D, E, TEMP; uint32_t W[80]; int i, t; /* * process the remaining octets_in_buffer, padding and terminating as * necessary */ { int tail = ctx->octets_in_buffer % 4; /* copy/xor message into array */ for (i=0; i < (ctx->octets_in_buffer+3)/4; i++) W[i] = be32_to_cpu(ctx->M[i]); /* set the high bit of the octet immediately following the message */ switch (tail) { case (3): W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80; W[i] = 0x0; break; case (2): W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000; W[i] = 0x0; break; case (1): W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000; W[i] = 0x0; break; case (0): W[i] = 0x80000000; break; } /* zeroize remaining words */ for (i++ ; i < 15; i++) W[i] = 0x0; /* * if there is room at the end of the word array, then set the * last word to the bit-length of the message; otherwise, set that * word to zero and then we need to do one more run of the * compression algo. */ if (ctx->octets_in_buffer < 56) W[15] = ctx->num_bits_in_msg; else if (ctx->octets_in_buffer < 60) W[15] = 0x0; /* process the word array */ for (t=16; t < 80; t++) { TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; W[t] = S1(TEMP); } A = ctx->H[0]; B = ctx->H[1]; C = ctx->H[2]; D = ctx->H[3]; E = ctx->H[4]; for (t=0; t < 20; t++) { TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 40; t++) { TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 60; t++) { TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 80; t++) { TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; E = D; D = C; C = S30(B); B = A; A = TEMP; } ctx->H[0] += A; ctx->H[1] += B; ctx->H[2] += C; ctx->H[3] += D; ctx->H[4] += E; } debug_print(mod_sha1, "(final) running sha1_core()", NULL); if (ctx->octets_in_buffer >= 56) { debug_print(mod_sha1, "(final) running sha1_core() again", NULL); /* we need to do one final run of the compression algo */ /* * set initial part of word array to zeros, and set the * final part to the number of bits in the message */ for (i=0; i < 15; i++) W[i] = 0x0; W[15] = ctx->num_bits_in_msg; /* process the word array */ for (t=16; t < 80; t++) { TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; W[t] = S1(TEMP); } A = ctx->H[0]; B = ctx->H[1]; C = ctx->H[2]; D = ctx->H[3]; E = ctx->H[4]; for (t=0; t < 20; t++) { TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 40; t++) { TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 60; t++) { TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; E = D; D = C; C = S30(B); B = A; A = TEMP; } for ( ; t < 80; t++) { TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; E = D; D = C; C = S30(B); B = A; A = TEMP; } ctx->H[0] += A; ctx->H[1] += B; ctx->H[2] += C; ctx->H[3] += D; ctx->H[4] += E; } /* copy result into output buffer */ output[0] = be32_to_cpu(ctx->H[0]); output[1] = be32_to_cpu(ctx->H[1]); output[2] = be32_to_cpu(ctx->H[2]); output[3] = be32_to_cpu(ctx->H[3]); output[4] = be32_to_cpu(ctx->H[4]); /* indicate that message buffer in context is empty */ ctx->octets_in_buffer = 0; return; }