/* * Copyright (c) 1994, 1995 Colin Plumb. All rights reserved. * For licensing and other legal details, see the file legal.c. * * primetest.c - Test driver for prime generation. */ #include "first.h" #include #include /* For strtoul() */ #include "bn.h" #include "bnprint.h" #include "cputime.h" #include "prime.h" #include "noise.h" #include "kludge.h" #define bnPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n") /* * Generate a new RSA key, with the specified number of bits and * public exponent. The high two bits of each prime are always * set to make the number more difficult to factor by forcing the * number into the high end of the range. */ struct Progress { FILE *f; unsigned column; unsigned wrap; }; static int primeProgress(void *arg, int c) { struct Progress *p = arg; if (++p->column > p->wrap) { putc('\n', p->f); p->column = 1; } putc(c, p->f); fflush(p->f); return 0; } static int hextoval(char c) { if (c < '0') return -1; c -= '0'; if (c < 10) return c; c -= 'A'-'0'; c &= ~('a'-'A'); if (c >= 0 && c < 6) return c+10; return -1; } static int stringToBn(struct BigNum *bn, char const *string) { size_t len = strlen(string); char buf; int i, j; (void)bnSetQ(bn, 0); if (len & 1) { i = hextoval(*string++); if (i < 0) return 0; buf = i; if (bnInsertBigBytes(bn, &buf, len/2, 1) < 0) return -1; } len /= 2; while (len--) { i = hextoval(*string++); if (i < 0) return 0; j = hextoval(*string++); if (j < 0) return 0; buf = i*16 + j; if (bnInsertBigBytes(bn, &buf, len, 1) < 0) return -1; } return 1; /* Success */ } static int primeTest(char const *string) { int modexps = 0; struct BigNum bn; /* Temporary */ int i, j; struct Progress progress; #if CLOCK_AVAIL timetype start, stop; unsigned long curs, tots = 0; unsigned curms, totms = 0; #endif progress.f = stdout; progress.wrap = 78; bnBegin(&bn); /* Find p - choose a starting place */ i = stringToBn(&bn, string); if (i < 1) { if (i < 0) goto error; printf("Malformed string: \"%s\"\n", string); bnEnd(&bn); return 0; } /* And search for primes */ for (j = 0; j < 40; j++) { progress.column = 0; #if CLOCK_AVAIL gettime(&start); #endif i = primeGen(&bn, 0, primeProgress, &progress, 0); if (i < 0) goto error; #if CLOCK_AVAIL gettime(&stop); subtime(stop, start); tots += curs = sec(stop); totms += curms = msec(stop); #endif modexps += i; putchar('\n'); /* Signal done */ printf("%d modular exponentiations performed", i); #if CLOCK_AVAIL printf(" in %lu.%03u s", curs, curms); #endif putchar('\n'); bnPut("n = ", &bn); if (bnAddQ(&bn, 2) < 0) goto error; } bnEnd(&bn); printf("Total %d modular exponentiations performed", modexps); #if CLOCK_AVAIL tots += totms/1000; totms %= 1000; printf(" in %lu.%03u s\n", tots, totms); totms += 1000 * (tots % j); tots /= j; totms /= j; tots += totms / 1000; totms %= 1000; printf("Average time: %lu.%03u s", tots, totms); #endif putchar('\n'); /* And that's it... success! */ return 1; error: puts("\nError!"); bnEnd(&bn); return -1; } int main(int argc, char **argv) { if (argc < 2) { fprintf(stderr, "Usage: %s ...\n", argv[0]); fputs("\ This finds the next primes after the given hex strings.\n", stderr); return 1; } bnInit(); while (--argc) primeTest(*++argv); return 0; }