freeswitch/libs/libvpx/examples/vp9_spatial_svc_encoder.c

1257 lines
48 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This is an example demonstrating how to implement a multi-layer
* VP9 encoding scheme based on spatial scalability for video applications
* that benefit from a scalable bitstream.
*/
#include <math.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "../args.h"
#include "../tools_common.h"
#include "../video_writer.h"
#include "../vpx_ports/vpx_timer.h"
#include "./svc_context.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#include "../vpxstats.h"
#include "vp9/encoder/vp9_encoder.h"
#include "./y4minput.h"
#define OUTPUT_RC_STATS 1
#define SIMULCAST_MODE 0
static const arg_def_t outputfile =
ARG_DEF("o", "output", 1, "Output filename");
static const arg_def_t skip_frames_arg =
ARG_DEF("s", "skip-frames", 1, "input frames to skip");
static const arg_def_t frames_arg =
ARG_DEF("f", "frames", 1, "number of frames to encode");
static const arg_def_t threads_arg =
ARG_DEF("th", "threads", 1, "number of threads to use");
#if OUTPUT_RC_STATS
static const arg_def_t output_rc_stats_arg =
ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats");
#endif
static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width");
static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height");
static const arg_def_t timebase_arg =
ARG_DEF("t", "timebase", 1, "timebase (num/den)");
static const arg_def_t bitrate_arg = ARG_DEF(
"b", "target-bitrate", 1, "encoding bitrate, in kilobits per second");
static const arg_def_t spatial_layers_arg =
ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers");
static const arg_def_t temporal_layers_arg =
ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers");
static const arg_def_t temporal_layering_mode_arg =
ARG_DEF("tlm", "temporal-layering-mode", 1,
"temporal layering scheme."
"VP9E_TEMPORAL_LAYERING_MODE");
static const arg_def_t kf_dist_arg =
ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes");
static const arg_def_t scale_factors_arg =
ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)");
static const arg_def_t passes_arg =
ARG_DEF("p", "passes", 1, "Number of passes (1/2)");
static const arg_def_t pass_arg =
ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)");
static const arg_def_t fpf_name_arg =
ARG_DEF(NULL, "fpf", 1, "First pass statistics file name");
static const arg_def_t min_q_arg =
ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
static const arg_def_t max_q_arg =
ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
static const arg_def_t min_bitrate_arg =
ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate");
static const arg_def_t max_bitrate_arg =
ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate");
static const arg_def_t lag_in_frame_arg =
ARG_DEF(NULL, "lag-in-frames", 1,
"Number of frame to input before "
"generating any outputs");
static const arg_def_t rc_end_usage_arg =
ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q");
static const arg_def_t speed_arg =
ARG_DEF("sp", "speed", 1, "speed configuration");
static const arg_def_t aqmode_arg =
ARG_DEF("aq", "aqmode", 1, "aq-mode off/on");
static const arg_def_t bitrates_arg =
ARG_DEF("bl", "bitrates", 1, "bitrates[sl * num_tl + tl]");
static const arg_def_t dropframe_thresh_arg =
ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)");
static const struct arg_enum_list tune_content_enum[] = {
{ "default", VP9E_CONTENT_DEFAULT },
{ "screen", VP9E_CONTENT_SCREEN },
{ "film", VP9E_CONTENT_FILM },
{ NULL, 0 }
};
static const arg_def_t tune_content_arg = ARG_DEF_ENUM(
NULL, "tune-content", 1, "Tune content type", tune_content_enum);
static const arg_def_t inter_layer_pred_arg = ARG_DEF(
NULL, "inter-layer-pred", 1, "0 - 3: On, Off, Key-frames, Constrained");
#if CONFIG_VP9_HIGHBITDEPTH
static const struct arg_enum_list bitdepth_enum[] = {
{ "8", VPX_BITS_8 }, { "10", VPX_BITS_10 }, { "12", VPX_BITS_12 }, { NULL, 0 }
};
static const arg_def_t bitdepth_arg = ARG_DEF_ENUM(
"d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum);
#endif // CONFIG_VP9_HIGHBITDEPTH
static const arg_def_t *svc_args[] = { &frames_arg,
&outputfile,
&width_arg,
&height_arg,
&timebase_arg,
&bitrate_arg,
&skip_frames_arg,
&spatial_layers_arg,
&kf_dist_arg,
&scale_factors_arg,
&passes_arg,
&pass_arg,
&fpf_name_arg,
&min_q_arg,
&max_q_arg,
&min_bitrate_arg,
&max_bitrate_arg,
&temporal_layers_arg,
&temporal_layering_mode_arg,
&lag_in_frame_arg,
&threads_arg,
&aqmode_arg,
#if OUTPUT_RC_STATS
&output_rc_stats_arg,
#endif
#if CONFIG_VP9_HIGHBITDEPTH
&bitdepth_arg,
#endif
&speed_arg,
&rc_end_usage_arg,
&bitrates_arg,
&dropframe_thresh_arg,
&tune_content_arg,
&inter_layer_pred_arg,
NULL };
static const uint32_t default_frames_to_skip = 0;
static const uint32_t default_frames_to_code = 60 * 60;
static const uint32_t default_width = 1920;
static const uint32_t default_height = 1080;
static const uint32_t default_timebase_num = 1;
static const uint32_t default_timebase_den = 60;
static const uint32_t default_bitrate = 1000;
static const uint32_t default_spatial_layers = 5;
static const uint32_t default_temporal_layers = 1;
static const uint32_t default_kf_dist = 100;
static const uint32_t default_temporal_layering_mode = 0;
static const uint32_t default_output_rc_stats = 0;
static const int32_t default_speed = -1; // -1 means use library default.
static const uint32_t default_threads = 0; // zero means use library default.
typedef struct {
const char *output_filename;
uint32_t frames_to_code;
uint32_t frames_to_skip;
struct VpxInputContext input_ctx;
stats_io_t rc_stats;
int passes;
int pass;
int tune_content;
int inter_layer_pred;
} AppInput;
static const char *exec_name;
void usage_exit(void) {
fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n",
exec_name);
fprintf(stderr, "Options:\n");
arg_show_usage(stderr, svc_args);
exit(EXIT_FAILURE);
}
static void parse_command_line(int argc, const char **argv_,
AppInput *app_input, SvcContext *svc_ctx,
vpx_codec_enc_cfg_t *enc_cfg) {
struct arg arg;
char **argv = NULL;
char **argi = NULL;
char **argj = NULL;
vpx_codec_err_t res;
int passes = 0;
int pass = 0;
const char *fpf_file_name = NULL;
unsigned int min_bitrate = 0;
unsigned int max_bitrate = 0;
char string_options[1024] = { 0 };
// initialize SvcContext with parameters that will be passed to vpx_svc_init
svc_ctx->log_level = SVC_LOG_DEBUG;
svc_ctx->spatial_layers = default_spatial_layers;
svc_ctx->temporal_layers = default_temporal_layers;
svc_ctx->temporal_layering_mode = default_temporal_layering_mode;
#if OUTPUT_RC_STATS
svc_ctx->output_rc_stat = default_output_rc_stats;
#endif
svc_ctx->speed = default_speed;
svc_ctx->threads = default_threads;
// start with default encoder configuration
res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0);
if (res) {
die("Failed to get config: %s\n", vpx_codec_err_to_string(res));
}
// update enc_cfg with app default values
enc_cfg->g_w = default_width;
enc_cfg->g_h = default_height;
enc_cfg->g_timebase.num = default_timebase_num;
enc_cfg->g_timebase.den = default_timebase_den;
enc_cfg->rc_target_bitrate = default_bitrate;
enc_cfg->kf_min_dist = default_kf_dist;
enc_cfg->kf_max_dist = default_kf_dist;
enc_cfg->rc_end_usage = VPX_CQ;
// initialize AppInput with default values
app_input->frames_to_code = default_frames_to_code;
app_input->frames_to_skip = default_frames_to_skip;
// process command line options
argv = argv_dup(argc - 1, argv_ + 1);
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
arg.argv_step = 1;
if (arg_match(&arg, &frames_arg, argi)) {
app_input->frames_to_code = arg_parse_uint(&arg);
} else if (arg_match(&arg, &outputfile, argi)) {
app_input->output_filename = arg.val;
} else if (arg_match(&arg, &width_arg, argi)) {
enc_cfg->g_w = arg_parse_uint(&arg);
} else if (arg_match(&arg, &height_arg, argi)) {
enc_cfg->g_h = arg_parse_uint(&arg);
} else if (arg_match(&arg, &timebase_arg, argi)) {
enc_cfg->g_timebase = arg_parse_rational(&arg);
} else if (arg_match(&arg, &bitrate_arg, argi)) {
enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
} else if (arg_match(&arg, &skip_frames_arg, argi)) {
app_input->frames_to_skip = arg_parse_uint(&arg);
} else if (arg_match(&arg, &spatial_layers_arg, argi)) {
svc_ctx->spatial_layers = arg_parse_uint(&arg);
} else if (arg_match(&arg, &temporal_layers_arg, argi)) {
svc_ctx->temporal_layers = arg_parse_uint(&arg);
#if OUTPUT_RC_STATS
} else if (arg_match(&arg, &output_rc_stats_arg, argi)) {
svc_ctx->output_rc_stat = arg_parse_uint(&arg);
#endif
} else if (arg_match(&arg, &speed_arg, argi)) {
svc_ctx->speed = arg_parse_uint(&arg);
if (svc_ctx->speed > 9) {
warn("Mapping speed %d to speed 9.\n", svc_ctx->speed);
}
} else if (arg_match(&arg, &aqmode_arg, argi)) {
svc_ctx->aqmode = arg_parse_uint(&arg);
} else if (arg_match(&arg, &threads_arg, argi)) {
svc_ctx->threads = arg_parse_uint(&arg);
} else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) {
svc_ctx->temporal_layering_mode = enc_cfg->temporal_layering_mode =
arg_parse_int(&arg);
if (svc_ctx->temporal_layering_mode) {
enc_cfg->g_error_resilient = 1;
}
} else if (arg_match(&arg, &kf_dist_arg, argi)) {
enc_cfg->kf_min_dist = arg_parse_uint(&arg);
enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
} else if (arg_match(&arg, &scale_factors_arg, argi)) {
strncat(string_options, " scale-factors=",
sizeof(string_options) - strlen(string_options) - 1);
strncat(string_options, arg.val,
sizeof(string_options) - strlen(string_options) - 1);
} else if (arg_match(&arg, &bitrates_arg, argi)) {
strncat(string_options, " bitrates=",
sizeof(string_options) - strlen(string_options) - 1);
strncat(string_options, arg.val,
sizeof(string_options) - strlen(string_options) - 1);
} else if (arg_match(&arg, &passes_arg, argi)) {
passes = arg_parse_uint(&arg);
if (passes < 1 || passes > 2) {
die("Error: Invalid number of passes (%d)\n", passes);
}
} else if (arg_match(&arg, &pass_arg, argi)) {
pass = arg_parse_uint(&arg);
if (pass < 1 || pass > 2) {
die("Error: Invalid pass selected (%d)\n", pass);
}
} else if (arg_match(&arg, &fpf_name_arg, argi)) {
fpf_file_name = arg.val;
} else if (arg_match(&arg, &min_q_arg, argi)) {
strncat(string_options, " min-quantizers=",
sizeof(string_options) - strlen(string_options) - 1);
strncat(string_options, arg.val,
sizeof(string_options) - strlen(string_options) - 1);
} else if (arg_match(&arg, &max_q_arg, argi)) {
strncat(string_options, " max-quantizers=",
sizeof(string_options) - strlen(string_options) - 1);
strncat(string_options, arg.val,
sizeof(string_options) - strlen(string_options) - 1);
} else if (arg_match(&arg, &min_bitrate_arg, argi)) {
min_bitrate = arg_parse_uint(&arg);
} else if (arg_match(&arg, &max_bitrate_arg, argi)) {
max_bitrate = arg_parse_uint(&arg);
} else if (arg_match(&arg, &lag_in_frame_arg, argi)) {
enc_cfg->g_lag_in_frames = arg_parse_uint(&arg);
} else if (arg_match(&arg, &rc_end_usage_arg, argi)) {
enc_cfg->rc_end_usage = arg_parse_uint(&arg);
#if CONFIG_VP9_HIGHBITDEPTH
} else if (arg_match(&arg, &bitdepth_arg, argi)) {
enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg);
switch (enc_cfg->g_bit_depth) {
case VPX_BITS_8:
enc_cfg->g_input_bit_depth = 8;
enc_cfg->g_profile = 0;
break;
case VPX_BITS_10:
enc_cfg->g_input_bit_depth = 10;
enc_cfg->g_profile = 2;
break;
case VPX_BITS_12:
enc_cfg->g_input_bit_depth = 12;
enc_cfg->g_profile = 2;
break;
default:
die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
break;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else if (arg_match(&arg, &dropframe_thresh_arg, argi)) {
enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg);
} else if (arg_match(&arg, &tune_content_arg, argi)) {
app_input->tune_content = arg_parse_uint(&arg);
} else if (arg_match(&arg, &inter_layer_pred_arg, argi)) {
app_input->inter_layer_pred = arg_parse_uint(&arg);
} else {
++argj;
}
}
// There will be a space in front of the string options
if (strlen(string_options) > 0)
vpx_svc_set_options(svc_ctx, string_options + 1);
if (passes == 0 || passes == 1) {
if (pass) {
fprintf(stderr, "pass is ignored since there's only one pass\n");
}
enc_cfg->g_pass = VPX_RC_ONE_PASS;
} else {
if (pass == 0) {
die("pass must be specified when passes is 2\n");
}
if (fpf_file_name == NULL) {
die("fpf must be specified when passes is 2\n");
}
if (pass == 1) {
enc_cfg->g_pass = VPX_RC_FIRST_PASS;
if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 0)) {
fatal("Failed to open statistics store");
}
} else {
enc_cfg->g_pass = VPX_RC_LAST_PASS;
if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 1)) {
fatal("Failed to open statistics store");
}
enc_cfg->rc_twopass_stats_in = stats_get(&app_input->rc_stats);
}
app_input->passes = passes;
app_input->pass = pass;
}
if (enc_cfg->rc_target_bitrate > 0) {
if (min_bitrate > 0) {
enc_cfg->rc_2pass_vbr_minsection_pct =
min_bitrate * 100 / enc_cfg->rc_target_bitrate;
}
if (max_bitrate > 0) {
enc_cfg->rc_2pass_vbr_maxsection_pct =
max_bitrate * 100 / enc_cfg->rc_target_bitrate;
}
}
// Check for unrecognized options
for (argi = argv; *argi; ++argi)
if (argi[0][0] == '-' && strlen(argi[0]) > 1)
die("Error: Unrecognized option %s\n", *argi);
if (argv[0] == NULL) {
usage_exit();
}
app_input->input_ctx.filename = argv[0];
free(argv);
open_input_file(&app_input->input_ctx);
if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) {
enc_cfg->g_w = app_input->input_ctx.width;
enc_cfg->g_h = app_input->input_ctx.height;
}
if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
enc_cfg->g_h % 2)
die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);
printf(
"Codec %s\nframes: %d, skip: %d\n"
"layers: %d\n"
"width %d, height: %d,\n"
"num: %d, den: %d, bitrate: %d,\n"
"gop size: %d\n",
vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code,
app_input->frames_to_skip, svc_ctx->spatial_layers, enc_cfg->g_w,
enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
}
#if OUTPUT_RC_STATS
// For rate control encoding stats.
struct RateControlStats {
// Number of input frames per layer.
int layer_input_frames[VPX_MAX_LAYERS];
// Total (cumulative) number of encoded frames per layer.
int layer_tot_enc_frames[VPX_MAX_LAYERS];
// Number of encoded non-key frames per layer.
int layer_enc_frames[VPX_MAX_LAYERS];
// Framerate per layer (cumulative).
double layer_framerate[VPX_MAX_LAYERS];
// Target average frame size per layer (per-frame-bandwidth per layer).
double layer_pfb[VPX_MAX_LAYERS];
// Actual average frame size per layer.
double layer_avg_frame_size[VPX_MAX_LAYERS];
// Average rate mismatch per layer (|target - actual| / target).
double layer_avg_rate_mismatch[VPX_MAX_LAYERS];
// Actual encoding bitrate per layer (cumulative).
double layer_encoding_bitrate[VPX_MAX_LAYERS];
// Average of the short-time encoder actual bitrate.
// TODO(marpan): Should we add these short-time stats for each layer?
double avg_st_encoding_bitrate;
// Variance of the short-time encoder actual bitrate.
double variance_st_encoding_bitrate;
// Window (number of frames) for computing short-time encoding bitrate.
int window_size;
// Number of window measurements.
int window_count;
};
// Note: these rate control stats assume only 1 key frame in the
// sequence (i.e., first frame only).
static void set_rate_control_stats(struct RateControlStats *rc,
vpx_codec_enc_cfg_t *cfg) {
unsigned int sl, tl;
// Set the layer (cumulative) framerate and the target layer (non-cumulative)
// per-frame-bandwidth, for the rate control encoding stats below.
const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
const int layer = sl * cfg->ts_number_layers + tl;
if (cfg->ts_number_layers == 1)
rc->layer_framerate[layer] = framerate;
else
rc->layer_framerate[layer] = framerate / cfg->ts_rate_decimator[tl];
if (tl > 0) {
rc->layer_pfb[layer] =
1000.0 *
(cfg->layer_target_bitrate[layer] -
cfg->layer_target_bitrate[layer - 1]) /
(rc->layer_framerate[layer] - rc->layer_framerate[layer - 1]);
} else {
rc->layer_pfb[layer] = 1000.0 * cfg->layer_target_bitrate[layer] /
rc->layer_framerate[layer];
}
rc->layer_input_frames[layer] = 0;
rc->layer_enc_frames[layer] = 0;
rc->layer_tot_enc_frames[layer] = 0;
rc->layer_encoding_bitrate[layer] = 0.0;
rc->layer_avg_frame_size[layer] = 0.0;
rc->layer_avg_rate_mismatch[layer] = 0.0;
}
}
rc->window_count = 0;
rc->window_size = 15;
rc->avg_st_encoding_bitrate = 0.0;
rc->variance_st_encoding_bitrate = 0.0;
}
static void printout_rate_control_summary(struct RateControlStats *rc,
vpx_codec_enc_cfg_t *cfg,
int frame_cnt) {
unsigned int sl, tl;
double perc_fluctuation = 0.0;
int tot_num_frames = 0;
printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
printf("Rate control layer stats for sl%d tl%d layer(s):\n\n",
cfg->ss_number_layers, cfg->ts_number_layers);
for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
tot_num_frames = 0;
for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
const int layer = sl * cfg->ts_number_layers + tl;
const int num_dropped =
(tl > 0)
? (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer])
: (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] -
1);
tot_num_frames += rc->layer_input_frames[layer];
rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] *
rc->layer_encoding_bitrate[layer] /
tot_num_frames;
rc->layer_avg_frame_size[layer] =
rc->layer_avg_frame_size[layer] / rc->layer_enc_frames[layer];
rc->layer_avg_rate_mismatch[layer] = 100.0 *
rc->layer_avg_rate_mismatch[layer] /
rc->layer_enc_frames[layer];
printf("For layer#: sl%d tl%d \n", sl, tl);
printf("Bitrate (target vs actual): %d %f.0 kbps\n",
cfg->layer_target_bitrate[layer],
rc->layer_encoding_bitrate[layer]);
printf("Average frame size (target vs actual): %f %f bits\n",
rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]);
printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[layer]);
printf(
"Number of input frames, encoded (non-key) frames, "
"and percent dropped frames: %d %d %f.0 \n",
rc->layer_input_frames[layer], rc->layer_enc_frames[layer],
100.0 * num_dropped / rc->layer_input_frames[layer]);
printf("\n");
}
}
rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
rc->variance_st_encoding_bitrate =
rc->variance_st_encoding_bitrate / rc->window_count -
(rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
rc->avg_st_encoding_bitrate;
printf("Short-time stats, for window of %d frames: \n", rc->window_size);
printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
perc_fluctuation);
printf("Num of input, num of encoded (super) frames: %d %d \n", frame_cnt,
tot_num_frames);
}
static vpx_codec_err_t parse_superframe_index(const uint8_t *data,
size_t data_sz, uint64_t sizes[8],
int *count) {
// A chunk ending with a byte matching 0xc0 is an invalid chunk unless
// it is a super frame index. If the last byte of real video compression
// data is 0xc0 the encoder must add a 0 byte. If we have the marker but
// not the associated matching marker byte at the front of the index we have
// an invalid bitstream and need to return an error.
uint8_t marker;
marker = *(data + data_sz - 1);
*count = 0;
if ((marker & 0xe0) == 0xc0) {
const uint32_t frames = (marker & 0x7) + 1;
const uint32_t mag = ((marker >> 3) & 0x3) + 1;
const size_t index_sz = 2 + mag * frames;
// This chunk is marked as having a superframe index but doesn't have
// enough data for it, thus it's an invalid superframe index.
if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME;
{
const uint8_t marker2 = *(data + data_sz - index_sz);
// This chunk is marked as having a superframe index but doesn't have
// the matching marker byte at the front of the index therefore it's an
// invalid chunk.
if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME;
}
{
// Found a valid superframe index.
uint32_t i, j;
const uint8_t *x = &data[data_sz - index_sz + 1];
for (i = 0; i < frames; ++i) {
uint32_t this_sz = 0;
for (j = 0; j < mag; ++j) this_sz |= (*x++) << (j * 8);
sizes[i] = this_sz;
}
*count = frames;
}
}
return VPX_CODEC_OK;
}
#endif
// Example pattern for spatial layers and 2 temporal layers used in the
// bypass/flexible mode. The pattern corresponds to the pattern
// VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in
// non-flexible mode.
static void set_frame_flags_bypass_mode_ex0(
int tl, int num_spatial_layers, int is_key_frame,
vpx_svc_ref_frame_config_t *ref_frame_config) {
int sl;
for (sl = 0; sl < num_spatial_layers; ++sl)
ref_frame_config->update_buffer_slot[sl] = 0;
for (sl = 0; sl < num_spatial_layers; ++sl) {
// Set the buffer idx.
if (tl == 0) {
ref_frame_config->lst_fb_idx[sl] = sl;
if (sl) {
if (is_key_frame) {
ref_frame_config->lst_fb_idx[sl] = sl - 1;
ref_frame_config->gld_fb_idx[sl] = sl;
} else {
ref_frame_config->gld_fb_idx[sl] = sl - 1;
}
} else {
ref_frame_config->gld_fb_idx[sl] = 0;
}
ref_frame_config->alt_fb_idx[sl] = 0;
} else if (tl == 1) {
ref_frame_config->lst_fb_idx[sl] = sl;
ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1;
ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl;
}
// Set the reference and update flags.
if (!tl) {
if (!sl) {
// Base spatial and base temporal (sl = 0, tl = 0)
ref_frame_config->reference_last[sl] = 1;
ref_frame_config->reference_golden[sl] = 0;
ref_frame_config->reference_alt_ref[sl] = 0;
ref_frame_config->update_buffer_slot[sl] |=
1 << ref_frame_config->lst_fb_idx[sl];
} else {
if (is_key_frame) {
ref_frame_config->reference_last[sl] = 1;
ref_frame_config->reference_golden[sl] = 0;
ref_frame_config->reference_alt_ref[sl] = 0;
ref_frame_config->update_buffer_slot[sl] |=
1 << ref_frame_config->gld_fb_idx[sl];
} else {
// Non-zero spatiall layer.
ref_frame_config->reference_last[sl] = 1;
ref_frame_config->reference_golden[sl] = 1;
ref_frame_config->reference_alt_ref[sl] = 1;
ref_frame_config->update_buffer_slot[sl] |=
1 << ref_frame_config->lst_fb_idx[sl];
}
}
} else if (tl == 1) {
if (!sl) {
// Base spatial and top temporal (tl = 1)
ref_frame_config->reference_last[sl] = 1;
ref_frame_config->reference_golden[sl] = 0;
ref_frame_config->reference_alt_ref[sl] = 0;
ref_frame_config->update_buffer_slot[sl] |=
1 << ref_frame_config->alt_fb_idx[sl];
} else {
// Non-zero spatial.
if (sl < num_spatial_layers - 1) {
ref_frame_config->reference_last[sl] = 1;
ref_frame_config->reference_golden[sl] = 1;
ref_frame_config->reference_alt_ref[sl] = 0;
ref_frame_config->update_buffer_slot[sl] |=
1 << ref_frame_config->alt_fb_idx[sl];
} else if (sl == num_spatial_layers - 1) {
// Top spatial and top temporal (non-reference -- doesn't update any
// reference buffers)
ref_frame_config->reference_last[sl] = 1;
ref_frame_config->reference_golden[sl] = 1;
ref_frame_config->reference_alt_ref[sl] = 0;
}
}
}
}
}
// Example pattern for 2 spatial layers and 2 temporal layers used in the
// bypass/flexible mode, except only 1 spatial layer when temporal_layer_id = 1.
static void set_frame_flags_bypass_mode_ex1(
int tl, int num_spatial_layers, int is_key_frame,
vpx_svc_ref_frame_config_t *ref_frame_config) {
int sl;
for (sl = 0; sl < num_spatial_layers; ++sl)
ref_frame_config->update_buffer_slot[sl] = 0;
if (tl == 0) {
if (is_key_frame) {
ref_frame_config->lst_fb_idx[1] = 0;
ref_frame_config->gld_fb_idx[1] = 1;
} else {
ref_frame_config->lst_fb_idx[1] = 1;
ref_frame_config->gld_fb_idx[1] = 0;
}
ref_frame_config->alt_fb_idx[1] = 0;
ref_frame_config->lst_fb_idx[0] = 0;
ref_frame_config->gld_fb_idx[0] = 0;
ref_frame_config->alt_fb_idx[0] = 0;
}
if (tl == 1) {
ref_frame_config->lst_fb_idx[0] = 0;
ref_frame_config->gld_fb_idx[0] = 1;
ref_frame_config->alt_fb_idx[0] = 2;
ref_frame_config->lst_fb_idx[1] = 1;
ref_frame_config->gld_fb_idx[1] = 2;
ref_frame_config->alt_fb_idx[1] = 3;
}
// Set the reference and update flags.
if (tl == 0) {
// Base spatial and base temporal (sl = 0, tl = 0)
ref_frame_config->reference_last[0] = 1;
ref_frame_config->reference_golden[0] = 0;
ref_frame_config->reference_alt_ref[0] = 0;
ref_frame_config->update_buffer_slot[0] |=
1 << ref_frame_config->lst_fb_idx[0];
if (is_key_frame) {
ref_frame_config->reference_last[1] = 1;
ref_frame_config->reference_golden[1] = 0;
ref_frame_config->reference_alt_ref[1] = 0;
ref_frame_config->update_buffer_slot[1] |=
1 << ref_frame_config->gld_fb_idx[1];
} else {
// Non-zero spatiall layer.
ref_frame_config->reference_last[1] = 1;
ref_frame_config->reference_golden[1] = 1;
ref_frame_config->reference_alt_ref[1] = 1;
ref_frame_config->update_buffer_slot[1] |=
1 << ref_frame_config->lst_fb_idx[1];
}
}
if (tl == 1) {
// Top spatial and top temporal (non-reference -- doesn't update any
// reference buffers)
ref_frame_config->reference_last[1] = 1;
ref_frame_config->reference_golden[1] = 0;
ref_frame_config->reference_alt_ref[1] = 0;
}
}
#if CONFIG_VP9_DECODER && !SIMULCAST_MODE
static void test_decode(vpx_codec_ctx_t *encoder, vpx_codec_ctx_t *decoder,
const int frames_out, int *mismatch_seen) {
vpx_image_t enc_img, dec_img;
struct vp9_ref_frame ref_enc, ref_dec;
if (*mismatch_seen) return;
/* Get the internal reference frame */
ref_enc.idx = 0;
ref_dec.idx = 0;
vpx_codec_control(encoder, VP9_GET_REFERENCE, &ref_enc);
enc_img = ref_enc.img;
vpx_codec_control(decoder, VP9_GET_REFERENCE, &ref_dec);
dec_img = ref_dec.img;
#if CONFIG_VP9_HIGHBITDEPTH
if ((enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) !=
(dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH)) {
if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
vpx_img_alloc(&enc_img, enc_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH,
enc_img.d_w, enc_img.d_h, 16);
vpx_img_truncate_16_to_8(&enc_img, &ref_enc.img);
}
if (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
vpx_img_alloc(&dec_img, dec_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH,
dec_img.d_w, dec_img.d_h, 16);
vpx_img_truncate_16_to_8(&dec_img, &ref_dec.img);
}
}
#endif
if (!compare_img(&enc_img, &dec_img)) {
int y[4], u[4], v[4];
#if CONFIG_VP9_HIGHBITDEPTH
if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
find_mismatch_high(&enc_img, &dec_img, y, u, v);
} else {
find_mismatch(&enc_img, &dec_img, y, u, v);
}
#else
find_mismatch(&enc_img, &dec_img, y, u, v);
#endif
decoder->err = 1;
printf(
"Encode/decode mismatch on frame %d at"
" Y[%d, %d] {%d/%d},"
" U[%d, %d] {%d/%d},"
" V[%d, %d] {%d/%d}\n",
frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1],
v[2], v[3]);
*mismatch_seen = frames_out;
}
vpx_img_free(&enc_img);
vpx_img_free(&dec_img);
}
#endif
#if OUTPUT_RC_STATS
static void svc_output_rc_stats(
vpx_codec_ctx_t *codec, vpx_codec_enc_cfg_t *enc_cfg,
vpx_svc_layer_id_t *layer_id, const vpx_codec_cx_pkt_t *cx_pkt,
struct RateControlStats *rc, VpxVideoWriter **outfile,
const uint32_t frame_cnt, const double framerate) {
int num_layers_encoded = 0;
unsigned int sl, tl;
uint64_t sizes[8];
uint64_t sizes_parsed[8];
int count = 0;
double sum_bitrate = 0.0;
double sum_bitrate2 = 0.0;
vp9_zero(sizes);
vp9_zero(sizes_parsed);
vpx_codec_control(codec, VP9E_GET_SVC_LAYER_ID, layer_id);
parse_superframe_index(cx_pkt->data.frame.buf, cx_pkt->data.frame.sz,
sizes_parsed, &count);
if (enc_cfg->ss_number_layers == 1) sizes[0] = cx_pkt->data.frame.sz;
for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
sizes[sl] = 0;
if (cx_pkt->data.frame.spatial_layer_encoded[sl]) {
sizes[sl] = sizes_parsed[num_layers_encoded];
num_layers_encoded++;
}
}
for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
unsigned int sl2;
uint64_t tot_size = 0;
#if SIMULCAST_MODE
for (sl2 = 0; sl2 < sl; ++sl2) {
if (cx_pkt->data.frame.spatial_layer_encoded[sl2]) tot_size += sizes[sl2];
}
vpx_video_writer_write_frame(outfile[sl],
(uint8_t *)(cx_pkt->data.frame.buf) + tot_size,
(size_t)(sizes[sl]), cx_pkt->data.frame.pts);
#else
for (sl2 = 0; sl2 <= sl; ++sl2) {
if (cx_pkt->data.frame.spatial_layer_encoded[sl2]) tot_size += sizes[sl2];
}
if (tot_size > 0)
vpx_video_writer_write_frame(outfile[sl], cx_pkt->data.frame.buf,
(size_t)(tot_size), cx_pkt->data.frame.pts);
#endif // SIMULCAST_MODE
}
for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
if (cx_pkt->data.frame.spatial_layer_encoded[sl]) {
for (tl = layer_id->temporal_layer_id; tl < enc_cfg->ts_number_layers;
++tl) {
const int layer = sl * enc_cfg->ts_number_layers + tl;
++rc->layer_tot_enc_frames[layer];
rc->layer_encoding_bitrate[layer] += 8.0 * sizes[sl];
// Keep count of rate control stats per layer, for non-key
// frames.
if (tl == (unsigned int)layer_id->temporal_layer_id &&
!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
rc->layer_avg_frame_size[layer] += 8.0 * sizes[sl];
rc->layer_avg_rate_mismatch[layer] +=
fabs(8.0 * sizes[sl] - rc->layer_pfb[layer]) /
rc->layer_pfb[layer];
++rc->layer_enc_frames[layer];
}
}
}
}
// Update for short-time encoding bitrate states, for moving
// window of size rc->window, shifted by rc->window / 2.
// Ignore first window segment, due to key frame.
if (frame_cnt > (unsigned int)rc->window_size) {
for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
if (cx_pkt->data.frame.spatial_layer_encoded[sl])
sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate;
}
if (frame_cnt % rc->window_size == 0) {
rc->window_count += 1;
rc->avg_st_encoding_bitrate += sum_bitrate / rc->window_size;
rc->variance_st_encoding_bitrate +=
(sum_bitrate / rc->window_size) * (sum_bitrate / rc->window_size);
}
}
// Second shifted window.
if (frame_cnt > (unsigned int)(rc->window_size + rc->window_size / 2)) {
for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate;
}
if (frame_cnt > (unsigned int)(2 * rc->window_size) &&
frame_cnt % rc->window_size == 0) {
rc->window_count += 1;
rc->avg_st_encoding_bitrate += sum_bitrate2 / rc->window_size;
rc->variance_st_encoding_bitrate +=
(sum_bitrate2 / rc->window_size) * (sum_bitrate2 / rc->window_size);
}
}
}
#endif
int main(int argc, const char **argv) {
AppInput app_input;
VpxVideoWriter *writer = NULL;
VpxVideoInfo info;
vpx_codec_ctx_t encoder;
vpx_codec_enc_cfg_t enc_cfg;
SvcContext svc_ctx;
vpx_svc_frame_drop_t svc_drop_frame;
uint32_t i;
uint32_t frame_cnt = 0;
vpx_image_t raw;
vpx_codec_err_t res;
int pts = 0; /* PTS starts at 0 */
int frame_duration = 1; /* 1 timebase tick per frame */
int end_of_stream = 0;
int frames_received = 0;
#if OUTPUT_RC_STATS
VpxVideoWriter *outfile[VPX_SS_MAX_LAYERS] = { NULL };
struct RateControlStats rc;
vpx_svc_layer_id_t layer_id;
vpx_svc_ref_frame_config_t ref_frame_config;
unsigned int sl;
double framerate = 30.0;
#endif
struct vpx_usec_timer timer;
int64_t cx_time = 0;
#if CONFIG_INTERNAL_STATS
FILE *f = fopen("opsnr.stt", "a");
#endif
#if CONFIG_VP9_DECODER && !SIMULCAST_MODE
int mismatch_seen = 0;
vpx_codec_ctx_t decoder;
#endif
memset(&svc_ctx, 0, sizeof(svc_ctx));
memset(&app_input, 0, sizeof(AppInput));
memset(&info, 0, sizeof(VpxVideoInfo));
memset(&layer_id, 0, sizeof(vpx_svc_layer_id_t));
memset(&rc, 0, sizeof(struct RateControlStats));
exec_name = argv[0];
/* Setup default input stream settings */
app_input.input_ctx.framerate.numerator = 30;
app_input.input_ctx.framerate.denominator = 1;
app_input.input_ctx.only_i420 = 1;
app_input.input_ctx.bit_depth = 0;
parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg);
// Y4M reader handles its own allocation.
if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
// Allocate image buffer
#if CONFIG_VP9_HIGHBITDEPTH
if (!vpx_img_alloc(&raw,
enc_cfg.g_input_bit_depth == 8 ? VPX_IMG_FMT_I420
: VPX_IMG_FMT_I42016,
enc_cfg.g_w, enc_cfg.g_h, 32)) {
die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
}
#else
if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) {
die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
// Initialize codec
if (vpx_svc_init(&svc_ctx, &encoder, vpx_codec_vp9_cx(), &enc_cfg) !=
VPX_CODEC_OK)
die("Failed to initialize encoder\n");
#if CONFIG_VP9_DECODER && !SIMULCAST_MODE
if (vpx_codec_dec_init(
&decoder, get_vpx_decoder_by_name("vp9")->codec_interface(), NULL, 0))
die("Failed to initialize decoder\n");
#endif
#if OUTPUT_RC_STATS
rc.window_count = 1;
rc.window_size = 15; // Silence a static analysis warning.
rc.avg_st_encoding_bitrate = 0.0;
rc.variance_st_encoding_bitrate = 0.0;
if (svc_ctx.output_rc_stat) {
set_rate_control_stats(&rc, &enc_cfg);
framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num;
}
#endif
info.codec_fourcc = VP9_FOURCC;
info.frame_width = enc_cfg.g_w;
info.frame_height = enc_cfg.g_h;
info.time_base.numerator = enc_cfg.g_timebase.num;
info.time_base.denominator = enc_cfg.g_timebase.den;
if (!(app_input.passes == 2 && app_input.pass == 1)) {
// We don't save the bitstream for the 1st pass on two pass rate control
writer =
vpx_video_writer_open(app_input.output_filename, kContainerIVF, &info);
if (!writer)
die("Failed to open %s for writing\n", app_input.output_filename);
}
#if OUTPUT_RC_STATS
// Write out spatial layer stream.
// TODO(marpan/jianj): allow for writing each spatial and temporal stream.
if (svc_ctx.output_rc_stat) {
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
char file_name[PATH_MAX];
snprintf(file_name, sizeof(file_name), "%s_s%d.ivf",
app_input.output_filename, sl);
outfile[sl] = vpx_video_writer_open(file_name, kContainerIVF, &info);
if (!outfile[sl]) die("Failed to open %s for writing", file_name);
}
}
#endif
// skip initial frames
for (i = 0; i < app_input.frames_to_skip; ++i)
read_frame(&app_input.input_ctx, &raw);
if (svc_ctx.speed != -1)
vpx_codec_control(&encoder, VP8E_SET_CPUUSED, svc_ctx.speed);
if (svc_ctx.threads) {
vpx_codec_control(&encoder, VP9E_SET_TILE_COLUMNS,
get_msb(svc_ctx.threads));
if (svc_ctx.threads > 1)
vpx_codec_control(&encoder, VP9E_SET_ROW_MT, 1);
else
vpx_codec_control(&encoder, VP9E_SET_ROW_MT, 0);
}
if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1)
vpx_codec_control(&encoder, VP9E_SET_AQ_MODE, 3);
if (svc_ctx.speed >= 5)
vpx_codec_control(&encoder, VP8E_SET_STATIC_THRESHOLD, 1);
vpx_codec_control(&encoder, VP8E_SET_MAX_INTRA_BITRATE_PCT, 900);
vpx_codec_control(&encoder, VP9E_SET_SVC_INTER_LAYER_PRED,
app_input.inter_layer_pred);
vpx_codec_control(&encoder, VP9E_SET_NOISE_SENSITIVITY, 0);
vpx_codec_control(&encoder, VP9E_SET_TUNE_CONTENT, app_input.tune_content);
svc_drop_frame.framedrop_mode = FULL_SUPERFRAME_DROP;
for (sl = 0; sl < (unsigned int)svc_ctx.spatial_layers; ++sl)
svc_drop_frame.framedrop_thresh[sl] = enc_cfg.rc_dropframe_thresh;
svc_drop_frame.max_consec_drop = INT_MAX;
vpx_codec_control(&encoder, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame);
// Encode frames
while (!end_of_stream) {
vpx_codec_iter_t iter = NULL;
const vpx_codec_cx_pkt_t *cx_pkt;
// Example patterns for bypass/flexible mode:
// example_pattern = 0: 2 temporal layers, and spatial_layers = 1,2,3. Exact
// to fixed SVC patterns. example_pattern = 1: 2 spatial and 2 temporal
// layers, with SL0 only has TL0, and SL1 has both TL0 and TL1. This example
// uses the extended API.
int example_pattern = 0;
if (frame_cnt >= app_input.frames_to_code ||
!read_frame(&app_input.input_ctx, &raw)) {
// We need one extra vpx_svc_encode call at end of stream to flush
// encoder and get remaining data
end_of_stream = 1;
}
// For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates)
// and the buffer indices for each spatial layer of the current
// (super)frame to be encoded. The spatial and temporal layer_id for the
// current frame also needs to be set.
// TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS"
// mode to "VP9E_LAYERING_MODE_BYPASS".
if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
layer_id.spatial_layer_id = 0;
// Example for 2 temporal layers.
if (frame_cnt % 2 == 0) {
layer_id.temporal_layer_id = 0;
for (i = 0; i < VPX_SS_MAX_LAYERS; i++)
layer_id.temporal_layer_id_per_spatial[i] = 0;
} else {
layer_id.temporal_layer_id = 1;
for (i = 0; i < VPX_SS_MAX_LAYERS; i++)
layer_id.temporal_layer_id_per_spatial[i] = 1;
}
if (example_pattern == 1) {
// example_pattern 1 is hard-coded for 2 spatial and 2 temporal layers.
assert(svc_ctx.spatial_layers == 2);
assert(svc_ctx.temporal_layers == 2);
if (frame_cnt % 2 == 0) {
// Spatial layer 0 and 1 are encoded.
layer_id.temporal_layer_id_per_spatial[0] = 0;
layer_id.temporal_layer_id_per_spatial[1] = 0;
layer_id.spatial_layer_id = 0;
} else {
// Only spatial layer 1 is encoded here.
layer_id.temporal_layer_id_per_spatial[1] = 1;
layer_id.spatial_layer_id = 1;
}
}
vpx_codec_control(&encoder, VP9E_SET_SVC_LAYER_ID, &layer_id);
// TODO(jianj): Fix the parameter passing for "is_key_frame" in
// set_frame_flags_bypass_model() for case of periodic key frames.
if (example_pattern == 0) {
set_frame_flags_bypass_mode_ex0(layer_id.temporal_layer_id,
svc_ctx.spatial_layers, frame_cnt == 0,
&ref_frame_config);
} else if (example_pattern == 1) {
set_frame_flags_bypass_mode_ex1(layer_id.temporal_layer_id,
svc_ctx.spatial_layers, frame_cnt == 0,
&ref_frame_config);
}
ref_frame_config.duration[0] = frame_duration * 1;
ref_frame_config.duration[1] = frame_duration * 1;
vpx_codec_control(&encoder, VP9E_SET_SVC_REF_FRAME_CONFIG,
&ref_frame_config);
// Keep track of input frames, to account for frame drops in rate control
// stats/metrics.
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
++rc.layer_input_frames[sl * enc_cfg.ts_number_layers +
layer_id.temporal_layer_id];
}
} else {
// For the fixed pattern SVC, temporal layer is given by superframe count.
unsigned int tl = 0;
if (enc_cfg.ts_number_layers == 2)
tl = (frame_cnt % 2 != 0);
else if (enc_cfg.ts_number_layers == 3) {
if (frame_cnt % 2 != 0) tl = 2;
if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0)) tl = 1;
}
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl)
++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + tl];
}
vpx_usec_timer_start(&timer);
res = vpx_svc_encode(
&svc_ctx, &encoder, (end_of_stream ? NULL : &raw), pts, frame_duration,
svc_ctx.speed >= 5 ? VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY);
vpx_usec_timer_mark(&timer);
cx_time += vpx_usec_timer_elapsed(&timer);
fflush(stdout);
if (res != VPX_CODEC_OK) {
die_codec(&encoder, "Failed to encode frame");
}
while ((cx_pkt = vpx_codec_get_cx_data(&encoder, &iter)) != NULL) {
switch (cx_pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
SvcInternal_t *const si = (SvcInternal_t *)svc_ctx.internal;
if (cx_pkt->data.frame.sz > 0) {
vpx_video_writer_write_frame(writer, cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz,
cx_pkt->data.frame.pts);
#if OUTPUT_RC_STATS
if (svc_ctx.output_rc_stat) {
svc_output_rc_stats(&encoder, &enc_cfg, &layer_id, cx_pkt, &rc,
outfile, frame_cnt, framerate);
}
#endif
}
/*
printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received,
!!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY),
(int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts);
*/
if (enc_cfg.ss_number_layers == 1 && enc_cfg.ts_number_layers == 1)
si->bytes_sum[0] += (int)cx_pkt->data.frame.sz;
++frames_received;
#if CONFIG_VP9_DECODER && !SIMULCAST_MODE
if (vpx_codec_decode(&decoder, cx_pkt->data.frame.buf,
(unsigned int)cx_pkt->data.frame.sz, NULL, 0))
die_codec(&decoder, "Failed to decode frame.");
#endif
break;
}
case VPX_CODEC_STATS_PKT: {
stats_write(&app_input.rc_stats, cx_pkt->data.twopass_stats.buf,
cx_pkt->data.twopass_stats.sz);
break;
}
default: { break; }
}
#if CONFIG_VP9_DECODER && !SIMULCAST_MODE
vpx_codec_control(&encoder, VP9E_GET_SVC_LAYER_ID, &layer_id);
// Don't look for mismatch on top spatial and top temporal layers as they
// are non reference frames.
if ((enc_cfg.ss_number_layers > 1 || enc_cfg.ts_number_layers > 1) &&
!(layer_id.temporal_layer_id > 0 &&
layer_id.temporal_layer_id == (int)enc_cfg.ts_number_layers - 1 &&
cx_pkt->data.frame
.spatial_layer_encoded[enc_cfg.ss_number_layers - 1])) {
test_decode(&encoder, &decoder, frame_cnt, &mismatch_seen);
}
#endif
}
if (!end_of_stream) {
++frame_cnt;
pts += frame_duration;
}
}
printf("Processed %d frames\n", frame_cnt);
close_input_file(&app_input.input_ctx);
#if OUTPUT_RC_STATS
if (svc_ctx.output_rc_stat) {
printout_rate_control_summary(&rc, &enc_cfg, frame_cnt);
printf("\n");
}
#endif
if (vpx_codec_destroy(&encoder))
die_codec(&encoder, "Failed to destroy codec");
if (app_input.passes == 2) stats_close(&app_input.rc_stats, 1);
if (writer) {
vpx_video_writer_close(writer);
}
#if OUTPUT_RC_STATS
if (svc_ctx.output_rc_stat) {
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
vpx_video_writer_close(outfile[sl]);
}
}
#endif
#if CONFIG_INTERNAL_STATS
if (mismatch_seen) {
fprintf(f, "First mismatch occurred in frame %d\n", mismatch_seen);
} else {
fprintf(f, "No mismatch detected in recon buffers\n");
}
fclose(f);
#endif
printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1000000 * (double)frame_cnt / (double)cx_time);
if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
vpx_img_free(&raw);
}
// display average size, psnr
vpx_svc_dump_statistics(&svc_ctx);
vpx_svc_release(&svc_ctx);
return EXIT_SUCCESS;
}