freeswitch/libs/sofia-sip/libsofia-sip-ua/su/su_time.c

465 lines
10 KiB
C

/*
* This file is part of the Sofia-SIP package
*
* Copyright (C) 2005,2006 Nokia Corporation.
*
* Contact: Pekka Pessi <pekka.pessi@nokia.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
/**@ingroup su_time
* @CFILE su_time.c
*
* @brief Implementation of OS-independent time functions.
*
* @author Pekka Pessi <Pekka.Pessi@nokia.com>
* @author Jari Selin <Jari.Selin@nokia.com>
* @author Kai Vehmanen <first.surname@nokia.com>
*
* @date Created: Thu Mar 18 19:40:51 1999 pessi
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "sofia-sip/su_types.h"
#include "sofia-sip/su_time.h"
#include "su_module_debug.h"
#if HAVE_SYS_TIME_H
#include <sys/time.h> /* Get struct timeval */
#endif
/**@defgroup su_time Time Handling
*
* OS-independent timing functions and types for the @b su library.
*
* The @b su library provides three different time formats with different
* ranges and epochs in the file @b su_time.h:
*
* - #su_time_t, second and microsecond as 32-bit values since 1900,
* - #su_duration_t, milliseconds between two times, and
* - #su_ntp_t, standard NTP timestamp (seconds since 1900 as
* a fixed-point 64-bit value with 32 bits representing subsecond
* value).
*/
/**
* Compare two timestamps.
*
* The function su_time_cmp() compares two su_time_t timestamps.
*
* @param t1 first NTP timestamp in su_time_t structure
* @param t2 second NTP timestamp in su_time_t structure
*
* @retval Negative, if @a t1 is before @a t2,
* @retval Zero, if @a t1 is same as @a t2, or
* @retval Positive, if @a t1 is after @a t2.
*
*/
long su_time_cmp(su_time_t const t1, su_time_t const t2)
{
long retval = 0;
if (t1.tv_sec > t2.tv_sec)
retval = 1;
else if (t1.tv_sec < t2.tv_sec)
retval = -1;
else {
if (t1.tv_usec > t2.tv_usec)
retval = 1;
else if (t1.tv_usec < t2.tv_usec)
retval = -1;
}
return retval;
}
/**@def SU_TIME_CMP(t1, t2)
*
* Compare two timestamps.
*
* The macro SU_TIME_CMP() compares two su_time_t timestamps.
*
* @param t1 first NTP timestamp in su_time_t structure
* @param t2 second NTP timestamp in su_time_t structure
*
* @retval negative, if t1 is before t2,
* @retval zero, if t1 is same as t2, or
* @retval positive, if t1 is after t2.
*
* @hideinitializer
*/
/** Difference between two timestamps.
*
* The function returns difference between two timestamps
* in seconds (t1 - t2).
*
* @param t1 first timeval
* @param t2 second timeval
*
* @return
* The difference between two timestamps in seconds as a double.
*/
double su_time_diff(su_time_t const t1, su_time_t const t2)
{
return
((double)t1.tv_sec - (double)t2.tv_sec)
+ (double)((long)t1.tv_usec - (long)t2.tv_usec) / 1000000.0;
}
/** Get current time.
*
* Return the current timestamp in su_time_t structure.
*
* @return
* The structure containing the current NTP timestamp.
*/
su_time_t su_now(void)
{
su_time_t retval;
su_time(&retval);
return retval;
}
/** Print su_time_t timestamp.
*
* This function prints a su_time_t timestamp as a decimal number to the
* given buffer.
*
* @param s pointer to buffer
* @param n buffer size
* @param tv pointer to the timeval object
*
* @return
* The number of characters printed, excluding the final @c NUL.
*/
int su_time_print(char *s, int n, su_time_t const *tv)
{
#ifdef _WIN32
return _snprintf(s, n, "%lu.%06lu", tv->tv_sec, tv->tv_usec);
#else
return snprintf(s, n, "%lu.%06lu", tv->tv_sec, tv->tv_usec);
#endif
}
/** Time difference in milliseconds.
*
* Calculates the duration from t2 to t1 in milliseconds.
*
* @param t1 after time
* @param t2 before time
*
* @return The duration in milliseconds between the two times.
* If the difference is bigger than #SU_DURATION_MAX, return #SU_DURATION_MAX
* instead.
* If the difference is smaller than -#SU_DURATION_MAX, return
* -#SU_DURATION_MAX.
*/
su_duration_t su_duration(su_time_t const t1, su_time_t const t2)
{
su_duration_t diff, udiff, tdiff;
diff = t1.tv_sec - t2.tv_sec;
udiff = t1.tv_usec - t2.tv_usec;
tdiff = diff * 1000 + udiff / 1000;
if (diff > (SU_DURATION_MAX / 1000) || (diff > 0 && diff > tdiff))
return SU_DURATION_MAX;
if (diff < (-SU_DURATION_MAX / 1000) || (diff < 0 && diff < tdiff))
return -SU_DURATION_MAX;
return tdiff;
}
typedef uint64_t su_t64_t; /* time with 64 bits */
const uint32_t su_res32 = 1000000UL;
const su_t64_t su_res64 = (su_t64_t)1000000UL;
#define SU_TIME_TO_T64(tv) \
(su_res64 * (su_t64_t)(tv).tv_sec + (su_t64_t)(tv).tv_usec)
#define SU_DUR_TO_T64(d) (1000 * (int64_t)(d))
/** Get NTP timestamp.
*
* The function su_ntp_now() returns the current NTP timestamp. NTP
* timestamp is seconds elapsed since January 1st, 1900.
*
* @return
* The current time as NTP timestamp is returned.
*/
su_ntp_t su_ntp_now(void)
{
su_time_t t;
uint32_t sec, usec;
su_time(&t);
sec = t.tv_sec;
usec = t.tv_usec;
/*
* Multiply usec by 4294.967296 (ie. 2**32 / 1E6)
*
* Utilize fact that 4294.967296 == 4295 - 511 / 15625
*/
usec = 4295 * usec - (511 * usec + 7812) / 15625;
return ((su_ntp_t)sec << 32) + (su_ntp_t)usec;
}
/** Get NTP seconds.
*
* The function su_ntp_sec() returns the seconds elapsed since January 1st,
* 1900.
*
* @return
* The current time as NTP seconds is returned.
*/
uint32_t su_ntp_sec(void)
{
su_time_t t;
su_time(&t);
return t.tv_sec;
}
/** High 32 bit of NTP timestamp.
*
* @param ntp 64bit NTP timestamp.
*
* @return The function su_ntp_hi() returns high 32 bits of NTP timestamp.
*/
uint32_t su_ntp_hi(su_ntp_t ntp)
{
return (uint32_t) (ntp >> 32) & 0xffffffffLU;
}
su_ntp_t su_ntp_hilo(uint32_t hi, uint32_t lo)
{
return ((((su_ntp_t)hi) << 32)) | lo;
}
/** Low 32 bit of NTP timestamp.
*
* @param ntp 64bit NTP timestamp.
*
* @return The function su_ntp_hi() returns low 32 bits of NTP timestamp.
*/
uint32_t su_ntp_lo(su_ntp_t ntp)
{
return (uint32_t) ntp & 0xffffffffLU;
}
/** Middle 32 bit of NTP timestamp.
*
* @param ntp 64bit NTP timestamp.
*
* @return The function su_ntp_mw() returns bits 48..16 (middle word) of NTP
* timestamp.
*/
uint32_t su_ntp_mw(su_ntp_t ntp)
{
return (uint32_t) (ntp >> 16) & 0xffffffffLU;
}
su_time_t su_t64_to_time(su_t64_t const us)
{
su_time_t tv;
tv.tv_sec = (unsigned long) (us / su_res64);
tv.tv_usec = (unsigned long) (us % su_res64);
return tv;
}
/**
* Add milliseconds to the time.
*
* @param t0 time in seconds and microseconds as @c su_time_t
* @param dur milliseconds to be added
*/
su_time_t su_time_add(su_time_t t0, su_duration_t dur)
{
return su_t64_to_time(SU_TIME_TO_T64(t0) + SU_DUR_TO_T64(dur));
}
/**
* Add seconds to the time.
*
* @param t0 time in seconds and microseconds as @c su_time_t
* @param sec seconds to be added
*
* @return
* New time as @c su_time_t.
*/
su_time_t su_time_dadd(su_time_t t0, double sec)
{
return su_t64_to_time(SU_TIME_TO_T64(t0) + (int64_t)(su_res32 * sec));
}
#ifdef WIN32
#include <windows.h>
uint64_t su_nanocounter(void)
{
static ULONGLONG counterfreq = 0; /*performance counter frequency*/
LARGE_INTEGER LargeIntCount = { 0, 0 };
ULONGLONG count;
if(!counterfreq) {
LARGE_INTEGER Freq = { 0, 0 };
if (!QueryPerformanceFrequency(&Freq)) {
SU_DEBUG_1(("su_counter: QueryPerformanceFrequency failed\n"));
return 0;
}
counterfreq = Freq.QuadPart;
}
if (!QueryPerformanceCounter(&LargeIntCount)) {
SU_DEBUG_1(("su_counter: QueryPeformanceCounter failed\n"));
return 0;
}
count = (ULONGLONG) LargeIntCount.QuadPart;
/* return value is in ns */
return ((count * 1000 * 1000 * 1000) / counterfreq) ;
}
uint64_t su_counter(void)
{
return su_nanocounter() / 1000U;
}
#elif HAVE_CLOCK_GETTIME
/** Return CPU counter value in nanoseconds.
*
* The function su_nanocounter() returns a CPU counter value in nanoseconds
* for timing purposes.
*
* Parameters:
*
* @return
* The current CPU counter value in nanoseconds
*/
uint64_t su_nanocounter(void)
{
struct timespec tp;
struct timeval tv;
static int init = 0;
static clockid_t cpu = CLOCK_REALTIME;
# define CLOCK_GETTIMEOFDAY 0xdedbeefUL
if (init == 0) {
init = 1;
if (0)
;
#if HAVE_CLOCK_GETCPUCLOCKID
else if (clock_getcpuclockid(0, &cpu) != -1 &&
clock_gettime(cpu, &tp) != -1)
;
#endif
#ifdef _POSIX_CPUTIME
else if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tp) >= 0)
cpu = CLOCK_PROCESS_CPUTIME_ID;
#endif
else if (clock_gettime(CLOCK_REALTIME, &tp) >= 0)
cpu = CLOCK_REALTIME;
else
cpu = CLOCK_GETTIMEOFDAY;
}
if (cpu == CLOCK_GETTIMEOFDAY) {
gettimeofday(&tv, NULL);
tp.tv_sec = tv.tv_sec, tp.tv_nsec = tv.tv_usec * 1000;
}
else if (clock_gettime(cpu, &tp) < 0)
perror("clock_gettime");
/* return value is in nanoseconds */
return
(uint64_t)((unsigned long)tp.tv_nsec) +
(uint64_t)((unsigned long)tp.tv_sec) * 1000000000ULL;
}
/** Return CPU counter value in microseconds.
*
* The function su_counter() returns the CPU counter value in microseconds
* for timing purposes.
*
* Parameters:
*
* @return
* The current CPU counter value in microseconds.
*/
uint64_t su_counter(void)
{
return su_nanocounter() / 1000U;
}
#elif HAVE_GETTIMEOFDAY
uint64_t su_counter(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
/* return value is in microseconds */
return
(uint64_t)((unsigned long)tv.tv_usec) +
(uint64_t)((unsigned long)tv.tv_sec) * 1000000ULL;
}
uint64_t su_nanocounter(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
/* return value is in nanoseconds */
return
(uint64_t)((unsigned long)tv.tv_usec) * 1000ULL +
(uint64_t)((unsigned long)tv.tv_sec) * 1000000000ULL;
}
#else
uint64_t su_counter(void)
{
return (uint64_t)clock();
}
uint64_t su_nanocounter(void)
{
return (uint64_t)clock() * 1000;
}
#endif /* WIN32 */