2012-12-20 20:08:42 -06:00

920 lines
26 KiB
C

/*---------------------------------------------------------------------------*\
FILE........: c2sim.c
AUTHOR......: David Rowe
DATE CREATED: 20/8/2010
Codec2 simulation. Combines encoder and decoder and allows
switching in and out various algorithms and quantisation steps. Used
for algorithm development.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2009 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <unistd.h>
#include <getopt.h>
#include "defines.h"
#include "sine.h"
#include "nlp.h"
#include "dump.h"
#include "lpc.h"
#include "lsp.h"
#include "quantise.h"
#include "phase.h"
#include "postfilter.h"
#include "interp.h"
#include "ampexp.h"
#include "phaseexp.h"
void synth_one_frame(kiss_fft_cfg fft_inv_cfg, short buf[], MODEL *model, float Sn_[], float Pn[], int prede, float *de_mem, float gain);
void print_help(const struct option *long_options, int num_opts, char* argv[]);
/*---------------------------------------------------------------------------*\
MAIN
\*---------------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
FILE *fout = NULL; /* output speech file */
FILE *fin; /* input speech file */
short buf[N]; /* input/output buffer */
float Sn[M]; /* float input speech samples */
float Sn_pre[M]; /* pre-emphasised input speech samples */
COMP Sw[FFT_ENC]; /* DFT of Sn[] */
kiss_fft_cfg fft_fwd_cfg;
kiss_fft_cfg fft_inv_cfg;
float w[M]; /* time domain hamming window */
COMP W[FFT_ENC]; /* DFT of w[] */
MODEL model;
float Pn[2*N]; /* trapezoidal synthesis window */
float Sn_[2*N]; /* synthesised speech */
int i; /* loop variable */
int frames;
float prev_Wo, prev__Wo, uq_Wo, prev_uq_Wo;
float pitch;
int voiced1 = 0;
char out_file[MAX_STR];
char ampexp_arg[MAX_STR];
char phaseexp_arg[MAX_STR];
float snr;
float sum_snr;
int lpc_model = 0, order = LPC_ORD;
int lsp = 0, lspd = 0, lspvq = 0;
int lspres = 0;
int lspdt = 0, lspdt_mode = LSPDT_ALL;
int dt = 0, lspjvm = 0, lspanssi = 0, lspjnd = 0, lspmel = 0;
int prede = 0;
float pre_mem = 0.0, de_mem = 0.0;
float ak[LPC_MAX];
COMP Sw_[FFT_ENC];
COMP Ew[FFT_ENC];
int phase0 = 0;
float ex_phase[MAX_AMP+1];
int postfilt;
float bg_est;
int hand_voicing = 0, phaseexp = 0, ampexp = 0, hi = 0, simlpcpf = 0;
int lpcpf = 0;
FILE *fvoicing = 0;
MODEL prev_model, interp_model;
int decimate = 0;
float lsps[LPC_MAX];
float prev_lsps[LPC_MAX], prev_lsps_[LPC_MAX];
float lsps__prev[LPC_MAX];
float lsps__prev2[LPC_MAX];
float e, prev_e;
float ak_interp[LPC_MAX];
int lsp_indexes[LPC_MAX];
float lsps_[LPC_MAX];
float Woe_[2];
void *nlp_states;
float hpf_states[2];
int scalar_quant_Wo_e = 0;
int vector_quant_Wo_e = 0;
int dump_pitch_e = 0;
FILE *fjvm = NULL;
#ifdef DUMP
int dump;
#endif
struct PEXP *pexp = NULL;
struct AEXP *aexp = NULL;
float gain = 1.0;
char* opt_string = "ho:";
struct option long_options[] = {
{ "lpc", required_argument, &lpc_model, 1 },
{ "lspjnd", no_argument, &lspjnd, 1 },
{ "lspmel", no_argument, &lspmel, 1 },
{ "lsp", no_argument, &lsp, 1 },
{ "lspd", no_argument, &lspd, 1 },
{ "lspvq", no_argument, &lspvq, 1 },
{ "lspres", no_argument, &lspres, 1 },
{ "lspdt", no_argument, &lspdt, 1 },
{ "lspdt_mode", required_argument, NULL, 0 },
{ "lspjvm", no_argument, &lspjvm, 1 },
{ "lspanssi", no_argument, &lspanssi, 1 },
{ "phase0", no_argument, &phase0, 1 },
{ "phaseexp", required_argument, &phaseexp, 1 },
{ "ampexp", required_argument, &ampexp, 1 },
{ "postfilter", no_argument, &postfilt, 1 },
{ "hand_voicing", required_argument, &hand_voicing, 1 },
{ "dec", no_argument, &decimate, 1 },
{ "dt", no_argument, &dt, 1 },
{ "hi", no_argument, &hi, 1 },
{ "simlpcpf", no_argument, &simlpcpf, 1 },
{ "lpcpf", no_argument, &lpcpf, 1 },
{ "prede", no_argument, &prede, 1 },
{ "dump_pitch_e", required_argument, &dump_pitch_e, 1 },
{ "sq_pitch_e", no_argument, &scalar_quant_Wo_e, 1 },
{ "vq_pitch_e", no_argument, &vector_quant_Wo_e, 1 },
{ "rate", required_argument, NULL, 0 },
{ "gain", required_argument, NULL, 0 },
#ifdef DUMP
{ "dump", required_argument, &dump, 1 },
#endif
{ "help", no_argument, NULL, 'h' },
{ NULL, no_argument, NULL, 0 }
};
int num_opts=sizeof(long_options)/sizeof(struct option);
for(i=0; i<M; i++) {
Sn[i] = 1.0;
Sn_pre[i] = 1.0;
}
for(i=0; i<2*N; i++)
Sn_[i] = 0;
prev_uq_Wo = prev_Wo = prev__Wo = TWO_PI/P_MAX;
prev_model.Wo = TWO_PI/P_MIN;
prev_model.L = floor(PI/prev_model.Wo);
for(i=1; i<=prev_model.L; i++) {
prev_model.A[i] = 0.0;
prev_model.phi[i] = 0.0;
}
for(i=1; i<=MAX_AMP; i++) {
//ex_phase[i] = (PI/3)*(float)rand()/RAND_MAX;
ex_phase[i] = 0.0;
}
for(i=0; i<LPC_ORD; i++) {
lsps_[i] = prev_lsps[i] = prev_lsps_[i] = i*PI/(LPC_ORD+1);
lsps__prev[i] = lsps__prev2[i] = i*PI/(LPC_ORD+1);
}
e = prev_e = 1;
hpf_states[0] = hpf_states[1] = 0.0;
nlp_states = nlp_create();
if (argc < 2) {
print_help(long_options, num_opts, argv);
}
/*----------------------------------------------------------------*\
Interpret Command Line Arguments
\*----------------------------------------------------------------*/
while(1) {
int option_index = 0;
int opt = getopt_long(argc, argv, opt_string,
long_options, &option_index);
if (opt == -1)
break;
switch (opt) {
case 0:
if(strcmp(long_options[option_index].name, "lpc") == 0) {
order = atoi(optarg);
if((order < 4) || (order > 20)) {
fprintf(stderr, "Error in LPC order: %s\n", optarg);
exit(1);
}
#ifdef DUMP
} else if(strcmp(long_options[option_index].name, "dump") == 0) {
if (dump)
dump_on(optarg);
#endif
} else if(strcmp(long_options[option_index].name, "lsp") == 0
|| strcmp(long_options[option_index].name, "lspd") == 0
|| strcmp(long_options[option_index].name, "lspvq") == 0) {
assert(order == LPC_ORD);
} else if(strcmp(long_options[option_index].name, "lspdt_mode") == 0) {
if (strcmp(optarg,"all") == 0)
lspdt_mode = LSPDT_ALL;
else if (strcmp(optarg,"low") == 0)
lspdt_mode = LSPDT_LOW;
else if (strcmp(optarg,"high") == 0)
lspdt_mode = LSPDT_HIGH;
else {
fprintf(stderr, "Error in lspdt_mode: %s\n", optarg);
exit(1);
}
} else if(strcmp(long_options[option_index].name, "hand_voicing") == 0) {
if ((fvoicing = fopen(optarg,"rt")) == NULL) {
fprintf(stderr, "Error opening voicing file: %s: %s.\n",
optarg, strerror(errno));
exit(1);
}
} else if(strcmp(long_options[option_index].name, "dump_pitch_e") == 0) {
if ((fjvm = fopen(optarg,"wt")) == NULL) {
fprintf(stderr, "Error opening pitch & energy dump file: %s: %s.\n",
optarg, strerror(errno));
exit(1);
}
} else if(strcmp(long_options[option_index].name, "phaseexp") == 0) {
strcpy(phaseexp_arg, optarg);
} else if(strcmp(long_options[option_index].name, "ampexp") == 0) {
strcpy(ampexp_arg, optarg);
} else if(strcmp(long_options[option_index].name, "gain") == 0) {
gain = atof(optarg);
} else if(strcmp(long_options[option_index].name, "rate") == 0) {
if(strcmp(optarg,"3200") == 0) {
lpc_model = 1; order = 10;
scalar_quant_Wo_e = 1;
lspd = 1;
phase0 = 1;
postfilt = 1;
decimate = 1;
lpcpf = 1;
} else if(strcmp(optarg,"2400") == 0) {
lpc_model = 1; order = 10;
vector_quant_Wo_e = 1;
lsp = 1;
phase0 = 1;
postfilt = 1;
decimate = 1;
lpcpf = 1;
} else if(strcmp(optarg,"1400") == 0) {
lpc_model = 1; order = 10;
vector_quant_Wo_e = 1;
lsp = 1; lspdt = 1;
phase0 = 1;
postfilt = 1;
decimate = 1;
dt = 1;
lpcpf = 1;
} else if(strcmp(optarg,"1200") == 0) {
lpc_model = 1; order = 10;
scalar_quant_Wo_e = 1;
lspjvm = 1; lspdt = 1;
phase0 = 1;
postfilt = 1;
decimate = 1;
dt = 1;
lpcpf = 1;
} else {
fprintf(stderr, "Error: invalid output rate %s\n", optarg);
exit(1);
}
}
break;
case 'h':
print_help(long_options, num_opts, argv);
break;
case 'o':
if (strcmp(optarg, "-") == 0) fout = stdout;
else if ((fout = fopen(optarg,"wb")) == NULL) {
fprintf(stderr, "Error opening output speech file: %s: %s.\n",
optarg, strerror(errno));
exit(1);
}
strcpy(out_file,optarg);
break;
default:
/* This will never be reached */
break;
}
}
/* Input file */
if ((fin = fopen(argv[optind],"rb")) == NULL) {
fprintf(stderr, "Error opening input speech file: %s: %s.\n",
argv[optind], strerror(errno));
exit(1);
}
ex_phase[0] = 0;
bg_est = 0.0;
Woe_[0] = Woe_[1] = 1.0;
/*
printf("lspd: %d lspdt: %d lspdt_mode: %d phase0: %d postfilt: %d "
"decimate: %d dt: %d\n",lspd,lspdt,lspdt_mode,phase0,postfilt,
decimate,dt);
*/
/* Initialise ------------------------------------------------------------*/
fft_fwd_cfg = kiss_fft_alloc(FFT_ENC, 0, NULL, NULL); /* fwd FFT,used in several places */
fft_inv_cfg = kiss_fft_alloc(FFT_DEC, 1, NULL, NULL); /* inverse FFT, used just for synth */
make_analysis_window(fft_fwd_cfg, w, W);
make_synthesis_window(Pn);
quantise_init();
if (phaseexp)
pexp = phase_experiment_create();
if (ampexp)
aexp = amp_experiment_create();
/*----------------------------------------------------------------*\
Main Loop
\*----------------------------------------------------------------*/
frames = 0;
sum_snr = 0;
while(fread(buf,sizeof(short),N,fin)) {
frames++;
//printf("frame: %d ", frames);
/* Read input speech */
for(i=0; i<M-N; i++) {
Sn[i] = Sn[i+N];
Sn_pre[i] = Sn_pre[i+N];
}
for(i=0; i<N; i++)
Sn[i+M-N] = buf[i];
pre_emp(&Sn_pre[M-N], &Sn[M-N], &pre_mem, N);
/*------------------------------------------------------------*\
Estimate Sinusoidal Model Parameters
\*------------------------------------------------------------*/
nlp(nlp_states,Sn,N,M,P_MIN,P_MAX,&pitch,Sw,W,&prev_uq_Wo);
model.Wo = TWO_PI/pitch;
dft_speech(fft_fwd_cfg, Sw, Sn, w);
two_stage_pitch_refinement(&model, Sw);
estimate_amplitudes(&model, Sw, W);
uq_Wo = model.Wo;
#ifdef DUMP
dump_Sn(Sn); dump_Sw(Sw); dump_model(&model);
#endif
if (ampexp)
amp_experiment(aexp, &model, ampexp_arg);
if (phaseexp) {
#ifdef DUMP
dump_phase(&model.phi[0], model.L);
#endif
phase_experiment(pexp, &model, phaseexp_arg);
#ifdef DUMP
dump_phase_(&model.phi[0], model.L);
#endif
}
if (hi) {
int m;
for(m=1; m<model.L/2; m++)
model.A[m] = 0.0;
for(m=3*model.L/4; m<=model.L; m++)
model.A[m] = 0.0;
}
/*------------------------------------------------------------*\
Zero-phase modelling
\*------------------------------------------------------------*/
if (phase0) {
float Wn[M]; /* windowed speech samples */
float Rk[LPC_MAX+1]; /* autocorrelation coeffs */
int ret;
#ifdef DUMP
dump_phase(&model.phi[0], model.L);
#endif
/* find aks here, these are overwritten if LPC modelling is enabled */
if (prede) {
for(i=0; i<M; i++)
Wn[i] = Sn_pre[i]*w[i];
}
else {
for(i=0; i<M; i++)
Wn[i] = Sn[i]*w[i];
}
autocorrelate(Wn,Rk,M,order);
levinson_durbin(Rk,ak,order);
/* determine voicing */
snr = est_voicing_mbe(&model, Sw, W, Sw_, Ew, prev_uq_Wo);
if (dump_pitch_e)
fprintf(fjvm, "%f %f %d ", model.Wo, snr, model.voiced);
//printf("snr %3.2f v: %d Wo: %f prev_Wo: %f\n", snr, model.voiced,
// model.Wo, prev_uq_Wo);
#ifdef DUMP
dump_Sw_(Sw_);
dump_Ew(Ew);
dump_snr(snr);
#endif
/* just to make sure we are not cheating - kill all phases */
for(i=0; i<=MAX_AMP; i++)
model.phi[i] = 0;
if (hand_voicing) {
ret = fscanf(fvoicing,"%d\n",&model.voiced);
}
}
/*------------------------------------------------------------*\
LPC model amplitudes and LSP quantisation
\*------------------------------------------------------------*/
if (lpc_model) {
if (prede)
e = speech_to_uq_lsps(lsps, ak, Sn_pre, w, order);
else
e = speech_to_uq_lsps(lsps, ak, Sn, w, order);
#ifdef DUMP
dump_ak(ak, LPC_ORD);
#endif
/* tracking down -ve energy values with BW expansion */
/*
if (e < 0.0) {
int i;
FILE*f=fopen("x.txt","wt");
for(i=0; i<M; i++)
fprintf(f,"%f\n", Sn[i]);
fclose(f);
printf("e = %f frames = %d\n", e, frames);
for(i=0; i<order; i++)
printf("%f ", ak[i]);
exit(0);
}
*/
if (dump_pitch_e)
fprintf(fjvm, "%f\n", e);
#ifdef DUMP
/* dump order is different if we are decimating */
if (!decimate)
dump_lsp(lsps);
for(i=0; i<LPC_ORD; i++)
prev_lsps[i] = lsps[i];
#endif
/* various LSP quantisation schemes */
if (lsp) {
encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD);
decode_lsps_scalar(lsps_, lsp_indexes, LPC_ORD);
bw_expand_lsps(lsps_, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
if (lspd) {
encode_lspds_scalar(lsp_indexes, lsps, LPC_ORD);
decode_lspds_scalar(lsps_, lsp_indexes, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
if (lspvq) {
lspvq_quantise(lsps, lsps_, LPC_ORD);
bw_expand_lsps(lsps_, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
if (lspjvm) {
/* Jean-Marc's multi-stage, split VQ */
lspjvm_quantise(lsps, lsps_, LPC_ORD);
{
float lsps_bw[LPC_ORD];
memcpy(lsps_bw, lsps_, sizeof(float)*LPC_ORD);
bw_expand_lsps(lsps_bw, LPC_ORD);
lsp_to_lpc(lsps_bw, ak, LPC_ORD);
}
}
if (lspanssi) {
/* multi-stage VQ from Anssi Ramo OH3GDD */
lspanssi_quantise(lsps, lsps_, LPC_ORD, 5);
bw_expand_lsps(lsps_, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
/* experimenting with non-linear LSP spacing to see if
it's just noticable */
if (lspjnd) {
for(i=0; i<LPC_ORD; i++)
lsps_[i] = lsps[i];
locate_lsps_jnd_steps(lsps_, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
/* Another experiment with non-linear LSP spacing, this
time using a scaled version of mel frequency axis
warping. The scaling is such that the integer output
can be directly sent over the channel.
*/
if (lspmel) {
float f, f_;
int mel[LPC_ORD];
for(i=0; i<LPC_ORD; i++) {
f = (4000.0/PI)*lsps[i];
mel[i] = floor(100.0*log10(1.0 + f/700.0) + 0.5);
}
for(i=1; i<LPC_ORD; i++) {
if (mel[i] == mel[i-1])
mel[i]++;
}
for(i=0; i<LPC_ORD; i++) {
f_ = 700.0*( pow(10.0, (float)mel[i]/100.0) - 1.0);
lsps_[i] = f_*(PI/4000.0);
}
for(i=5; i<10; i++) {
lsps_[i] = lsps[i];
}
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
/* we need lsp__prev[] for lspdt and decimate. If no
other LSP quantisation is used we use original LSPs as
there is no quantised version available. TODO: this is
mess, we should have structures and standard
nomenclature for previous frames values, lsp_[]
shouldn't be overwritten as we may want to dump it for
analysis. Re-design some time.
*/
if (!lsp && !lspd && !lspvq && !lspres && !lspjvm && !lspanssi && !lspjnd && !lspmel)
for(i=0; i<LPC_ORD; i++)
lsps_[i] = lsps[i];
/* Odd frames are generated by quantising the difference
between the previous frames LSPs and this frames */
if (lspdt && !decimate) {
if (frames%2) {
lspdt_quantise(lsps, lsps_, lsps__prev, lspdt_mode);
bw_expand_lsps(lsps_, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
for(i=0; i<LPC_ORD; i++)
lsps__prev[i] = lsps_[i];
}
/*
When decimation is enabled we only send LSPs to the
decoder on odd frames. In the Delta-time LSPs case we
encode every second odd frame (i.e. every 3rd frame out
of 4) by quantising the difference between the 1st
frames LSPs and the 3rd frames:
10ms, frame 1: discard (interpolate at decoder)
20ms, frame 2: send "full" LSP frame
30ms, frame 3: discard (interpolate at decoder)
40ms, frame 4: send LSPs differences between frame 4 and frame 2
*/
if (lspdt && decimate) {
/* print previous LSPs to make sure we are using the right set */
if ((frames%4) == 0) {
//printf(" lspdt ");
//#define LSPDT
#ifdef LSPDT
lspdt_quantise(lsps, lsps_, lsps__prev2, lspdt_mode);
#else
for(i=0; i<LPC_ORD; i++)
lsps_[i] = lsps__prev2[i];
#endif
bw_expand_lsps(lsps_, LPC_ORD);
lsp_to_lpc(lsps_, ak, LPC_ORD);
}
for(i=0; i<LPC_ORD; i++) {
lsps__prev2[i] = lsps__prev[i];
lsps__prev[i] = lsps_[i];
}
}
#ifdef DUMP
/* if using decimated (20ms) frames we dump interp
LSPs below */
if (!decimate)
dump_lsp_(lsps_);
#endif
if (scalar_quant_Wo_e) {
e = decode_energy(encode_energy(e));
if (!decimate) {
/* we send params every 10ms, delta-time every 20ms */
if (dt && (frames % 2))
model.Wo = decode_Wo_dt(encode_Wo_dt(model.Wo, prev_Wo),prev_Wo);
else
model.Wo = decode_Wo(encode_Wo(model.Wo));
}
if (decimate) {
/* we send params every 20ms */
if (dt && ((frames % 4) == 0)) {
/* delta-time every 40ms */
model.Wo = decode_Wo_dt(encode_Wo_dt(model.Wo, prev__Wo),prev__Wo);
}
else
model.Wo = decode_Wo(encode_Wo(model.Wo));
}
model.L = PI/model.Wo; /* if we quantise Wo re-compute L */
}
if (vector_quant_Wo_e) {
/* JVM's experimental joint Wo & LPC energy quantiser */
//printf("\nWo %f e %f\n", model.Wo, e);
quantise_WoE(&model, &e, Woe_);
//printf("Wo %f e %f\n", model.Wo, e);
}
aks_to_M2(fft_fwd_cfg, ak, order, &model, e, &snr, 1, simlpcpf, lpcpf, 1, LPCPF_BETA, LPCPF_GAMMA);
apply_lpc_correction(&model);
#ifdef DUMP
dump_ak_(ak, LPC_ORD);
#endif
/* note SNR on interpolated frames can't be measured properly
by comparing Am as L has changed. We can dump interp lsps
and compare them,
*/
#ifdef DUMP
dump_lpc_snr(snr);
#endif
sum_snr += snr;
#ifdef DUMP
dump_quantised_model(&model);
#endif
}
/*------------------------------------------------------------*\
Decimation to 20ms frame rate
\*------------------------------------------------------------*/
if (decimate) {
float lsps_interp[LPC_ORD];
if (!phase0) {
printf("needs --phase0 to resample phase for interpolated Wo\n");
exit(0);
}
if (!lpc_model) {
printf("needs --lpc 10 to resample amplitudes\n");
exit(0);
}
/*
Each 20ms we synthesise two 10ms frames:
frame 1: discard except for voicing bit
frame 2: interpolate frame 1 LSPs from frame 2 and frame 0
synthesise frame 1 and frame 2 speech
frame 3: discard except for voicing bit
frame 4: interpolate frame 3 LSPs from frame 4 and frame 2
synthesise frame 3 and frame 4 speech
*/
if ((frames%2) == 0) {
//printf("frame: %d\n", frames);
/* decode interpolated frame */
interp_model.voiced = voiced1;
interpolate_lsp(fft_fwd_cfg, &interp_model, &prev_model, &model,
prev_lsps_, prev_e, lsps_, e, ak_interp, lsps_interp);
apply_lpc_correction(&interp_model);
/* used to compare with c2enc/c2dec version
printf(" Wo: %1.5f L: %d v1: %d prev_e: %f\n",
interp_model.Wo, interp_model.L, interp_model.voiced, prev_e);
printf(" lsps_interp: ");
for(i=0; i<LPC_ORD; i++)
printf("%5.3f ", lsps_interp[i]);
printf("\n A..........: ");
for(i=0; i<10; i++)
printf("%5.3f ",interp_model.A[i]);
printf("\n Wo: %1.5f L: %d e: %3.2f v2: %d\n",
model.Wo, model.L, e, model.voiced);
printf(" lsps_......: ");
for(i=0; i<LPC_ORD; i++)
printf("%5.3f ", lsps_[i]);
printf("\n A..........: ");
for(i=0; i<10; i++)
printf("%5.3f ",model.A[i]);
printf("\n");
*/
#ifdef DUMP
/* do dumping here so we get lsp dump file in correct order */
dump_lsp(prev_lsps);
dump_lsp(lsps_interp);
dump_lsp(lsps);
dump_lsp(lsps_);
#endif
if (phase0)
phase_synth_zero_order(fft_fwd_cfg, &interp_model, ak_interp, ex_phase,
order);
if (postfilt)
postfilter(&interp_model, &bg_est);
synth_one_frame(fft_inv_cfg, buf, &interp_model, Sn_, Pn, prede, &de_mem, gain);
//printf(" buf[0] %d\n", buf[0]);
if (fout != NULL)
fwrite(buf,sizeof(short),N,fout);
/* decode this frame */
if (phase0)
phase_synth_zero_order(fft_fwd_cfg, &model, ak, ex_phase, order);
if (postfilt)
postfilter(&model, &bg_est);
synth_one_frame(fft_inv_cfg, buf, &model, Sn_, Pn, prede, &de_mem, gain);
//printf(" buf[0] %d\n", buf[0]);
if (fout != NULL)
fwrite(buf,sizeof(short),N,fout);
/* update states for next time */
prev_model = model;
for(i=0; i<LPC_ORD; i++)
prev_lsps_[i] = lsps_[i];
prev_e = e;
}
else {
voiced1 = model.voiced;
}
}
else {
/* no decimation - sythesise each 10ms frame immediately */
if (phase0)
phase_synth_zero_order(fft_fwd_cfg, &model, ak, ex_phase, order);
if (postfilt)
postfilter(&model, &bg_est);
synth_one_frame(fft_inv_cfg, buf, &model, Sn_, Pn, prede, &de_mem, gain);
if (fout != NULL) fwrite(buf,sizeof(short),N,fout);
}
prev__Wo = prev_Wo;
prev_Wo = model.Wo;
prev_uq_Wo = uq_Wo;
//if (frames == 8) {
// exit(0);
//}
}
/*----------------------------------------------------------------*\
End Main Loop
\*----------------------------------------------------------------*/
fclose(fin);
if (fout != NULL)
fclose(fout);
if (lpc_model)
printf("SNR av = %5.2f dB\n", sum_snr/frames);
if (phaseexp)
phase_experiment_destroy(pexp);
if (ampexp)
amp_experiment_destroy(aexp);
#ifdef DUMP
if (dump)
dump_off();
#endif
if (hand_voicing)
fclose(fvoicing);
nlp_destroy(nlp_states);
return 0;
}
void synth_one_frame(kiss_fft_cfg fft_inv_cfg, short buf[], MODEL *model, float Sn_[], float Pn[], int prede, float *de_mem, float gain)
{
int i;
synthesise(fft_inv_cfg, Sn_, model, Pn, 1);
if (prede)
de_emp(Sn_, Sn_, de_mem, N);
for(i=0; i<N; i++) {
Sn_[i] *= gain;
if (Sn_[i] > 32767.0)
buf[i] = 32767;
else if (Sn_[i] < -32767.0)
buf[i] = -32767;
else
buf[i] = Sn_[i];
}
}
void print_help(const struct option* long_options, int num_opts, char* argv[])
{
int i;
char *option_parameters;
fprintf(stderr, "\nCodec2 - low bit rate speech codec - Simulation Program\n"
"\thttp://rowetel.com/codec2.html\n\n"
"usage: %s [OPTIONS] <InputFile>\n\n"
"Options:\n"
"\t-o <OutputFile>\n", argv[0]);
for(i=0; i<num_opts-1; i++) {
if(long_options[i].has_arg == no_argument) {
option_parameters="";
} else if (strcmp("lpc", long_options[i].name) == 0) {
option_parameters = " <Order>";
} else if (strcmp("lspdt_mode", long_options[i].name) == 0) {
option_parameters = " <all|high|low>";
} else if (strcmp("hand_voicing", long_options[i].name) == 0) {
option_parameters = " <VoicingFile>";
} else if (strcmp("dump_pitch_e", long_options[i].name) == 0) {
option_parameters = " <Dump File>";
} else if (strcmp("rate", long_options[i].name) == 0) {
option_parameters = " <4800|2400|1400|1200>";
} else if (strcmp("dump", long_options[i].name) == 0) {
option_parameters = " <DumpFilePrefix>";
} else {
option_parameters = " <UNDOCUMENTED parameter>";
}
fprintf(stderr, "\t--%s%s\n", long_options[i].name, option_parameters);
}
exit(1);
}