freeswitch/libs/srtp/crypto/include/crypto_math.h

274 lines
6.4 KiB
C

/*
* math.h
*
* crypto math operations and data types
*
* David A. McGrew
* Cisco Systems, Inc.
*/
/*
*
* Copyright (c) 2001-2005 Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef MATH_H
#define MATH_H
#include "datatypes.h"
unsigned char
v32_weight(v32_t a);
unsigned char
v32_distance(v32_t x, v32_t y);
unsigned int
v32_dot_product(v32_t a, v32_t b);
char *
v16_bit_string(v16_t x);
char *
v32_bit_string(v32_t x);
char *
v64_bit_string(const v64_t *x);
char *
octet_hex_string(uint8_t x);
char *
v16_hex_string(v16_t x);
char *
v32_hex_string(v32_t x);
char *
v64_hex_string(const v64_t *x);
int
hex_char_to_nibble(uint8_t c);
int
is_hex_string(char *s);
v16_t
hex_string_to_v16(char *s);
v32_t
hex_string_to_v32(char *s);
v64_t
hex_string_to_v64(char *s);
/* the matrix A[] is stored in column format, i.e., A[i] is
the ith column of the matrix */
uint8_t
A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b);
void
v16_copy_octet_string(v16_t *x, const uint8_t s[2]);
void
v32_copy_octet_string(v32_t *x, const uint8_t s[4]);
void
v64_copy_octet_string(v64_t *x, const uint8_t s[8]);
void
v128_add(v128_t *z, v128_t *x, v128_t *y);
int
octet_string_is_eq(uint8_t *a, uint8_t *b, int len);
void
octet_string_set_to_zero(uint8_t *s, int len);
/*
* the matrix A[] is stored in column format, i.e., A[i] is the ith
* column of the matrix
*/
uint8_t
A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b);
#if 0
#if WORDS_BIGENDIAN
#define _v128_add(z, x, y) { \
uint64_t tmp; \
\
tmp = x->v32[3] + y->v32[3]; \
z->v32[3] = (uint32_t) tmp; \
\
tmp = x->v32[2] + y->v32[2] + (tmp >> 32); \
z->v32[2] = (uint32_t) tmp; \
\
tmp = x->v32[1] + y->v32[1] + (tmp >> 32); \
z->v32[1] = (uint32_t) tmp; \
\
tmp = x->v32[0] + y->v32[0] + (tmp >> 32); \
z->v32[0] = (uint32_t) tmp; \
}
#else /* assume little endian architecture */
#define _v128_add(z, x, y) { \
uint64_t tmp; \
\
tmp = htonl(x->v32[3]) + htonl(y->v32[3]); \
z->v32[3] = ntohl((uint32_t) tmp); \
\
tmp = htonl(x->v32[2]) + htonl(y->v32[2]) \
+ htonl(tmp >> 32); \
z->v32[2] = ntohl((uint32_t) tmp); \
\
tmp = htonl(x->v32[1]) + htonl(y->v32[1]) \
+ htonl(tmp >> 32); \
z->v32[1] = ntohl((uint32_t) tmp); \
\
tmp = htonl(x->v32[0]) + htonl(y->v32[0]) \
+ htonl(tmp >> 32); \
z->v32[0] = ntohl((uint32_t) tmp); \
}
#endif /* WORDS_BIGENDIAN */
#endif
#ifdef DATATYPES_USE_MACROS /* little functions are really macros */
#define v128_set_to_zero(z) _v128_set_to_zero(z)
#define v128_copy(z, x) _v128_copy(z, x)
#define v128_xor(z, x, y) _v128_xor(z, x, y)
#define v128_and(z, x, y) _v128_and(z, x, y)
#define v128_or(z, x, y) _v128_or(z, x, y)
#define v128_complement(x) _v128_complement(x)
#define v128_is_eq(x, y) _v128_is_eq(x, y)
#define v128_xor_eq(x, y) _v128_xor_eq(x, y)
#define v128_get_bit(x, i) _v128_get_bit(x, i)
#define v128_set_bit(x, i) _v128_set_bit(x, i)
#define v128_clear_bit(x, i) _v128_clear_bit(x, i)
#define v128_set_bit_to(x, i, y) _v128_set_bit_to(x, i, y)
#else
void
v128_set_to_zero(v128_t *x);
int
v128_is_eq(const v128_t *x, const v128_t *y);
void
v128_copy(v128_t *x, const v128_t *y);
void
v128_xor(v128_t *z, v128_t *x, v128_t *y);
void
v128_and(v128_t *z, v128_t *x, v128_t *y);
void
v128_or(v128_t *z, v128_t *x, v128_t *y);
void
v128_complement(v128_t *x);
int
v128_get_bit(const v128_t *x, int i);
void
v128_set_bit(v128_t *x, int i) ;
void
v128_clear_bit(v128_t *x, int i);
void
v128_set_bit_to(v128_t *x, int i, int y);
#endif /* DATATYPES_USE_MACROS */
/*
* octet_string_is_eq(a,b, len) returns 1 if the length len strings a
* and b are not equal, returns 0 otherwise
*/
int
octet_string_is_eq(uint8_t *a, uint8_t *b, int len);
void
octet_string_set_to_zero(uint8_t *s, int len);
/*
* functions manipulating bit_vector_t
*
* A bitvector_t consists of an array of words and an integer
* representing the number of significant bits stored in the array.
* The bits are packed as follows: the least significant bit is that
* of word[0], while the most significant bit is the nth most
* significant bit of word[m], where length = bits_per_word * m + n.
*
*/
#define bits_per_word 32
#define bytes_per_word 4
typedef struct {
uint32_t length;
uint32_t *word;
} bitvector_t;
int
bitvector_alloc(bitvector_t *v, unsigned long length);
void
bitvector_set_bit(bitvector_t *v, int bit_index);
int
bitvector_get_bit(const bitvector_t *v, int bit_index);
int
bitvector_print_hex(const bitvector_t *v, FILE *stream);
int
bitvector_set_from_hex(bitvector_t *v, char *string);
#endif /* MATH_H */