734 lines
23 KiB
C
734 lines
23 KiB
C
/*
|
|
* This is work is derived from material Copyright RSA Data Security, Inc.
|
|
*
|
|
* The RSA copyright statement and Licence for that original material is
|
|
* included below. This is followed by the Apache copyright statement and
|
|
* licence for the modifications made to that material.
|
|
*/
|
|
|
|
/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
|
|
*/
|
|
|
|
/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
|
|
rights reserved.
|
|
|
|
License to copy and use this software is granted provided that it
|
|
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
|
|
Algorithm" in all material mentioning or referencing this software
|
|
or this function.
|
|
|
|
License is also granted to make and use derivative works provided
|
|
that such works are identified as "derived from the RSA Data
|
|
Security, Inc. MD5 Message-Digest Algorithm" in all material
|
|
mentioning or referencing the derived work.
|
|
|
|
RSA Data Security, Inc. makes no representations concerning either
|
|
the merchantability of this software or the suitability of this
|
|
software for any particular purpose. It is provided "as is"
|
|
without express or implied warranty of any kind.
|
|
|
|
These notices must be retained in any copies of any part of this
|
|
documentation and/or software.
|
|
*/
|
|
|
|
/* Copyright 2000-2005 The Apache Software Foundation or its licensors, as
|
|
* applicable.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* The apr_md5_encode() routine uses much code obtained from the FreeBSD 3.0
|
|
* MD5 crypt() function, which is licenced as follows:
|
|
* ----------------------------------------------------------------------------
|
|
* "THE BEER-WARE LICENSE" (Revision 42):
|
|
* <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
|
|
* can do whatever you want with this stuff. If we meet some day, and you think
|
|
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
|
|
* ----------------------------------------------------------------------------
|
|
*/
|
|
#include "apr_strings.h"
|
|
#include "apr_md5.h"
|
|
#include "apr_lib.h"
|
|
#include "apu_config.h"
|
|
#include "apr_sha1.h"
|
|
|
|
#if APR_HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
#if APR_HAVE_CRYPT_H
|
|
#include <crypt.h>
|
|
#endif
|
|
#if APR_HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#if APR_HAVE_PTHREAD_H
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
/* Constants for MD5Transform routine.
|
|
*/
|
|
|
|
#define S11 7
|
|
#define S12 12
|
|
#define S13 17
|
|
#define S14 22
|
|
#define S21 5
|
|
#define S22 9
|
|
#define S23 14
|
|
#define S24 20
|
|
#define S31 4
|
|
#define S32 11
|
|
#define S33 16
|
|
#define S34 23
|
|
#define S41 6
|
|
#define S42 10
|
|
#define S43 15
|
|
#define S44 21
|
|
|
|
static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64]);
|
|
static void Encode(unsigned char *output, const apr_uint32_t *input,
|
|
unsigned int len);
|
|
static void Decode(apr_uint32_t *output, const unsigned char *input,
|
|
unsigned int len);
|
|
|
|
static unsigned char PADDING[64] =
|
|
{
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
#if APR_CHARSET_EBCDIC
|
|
static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md5_encode() */
|
|
#endif
|
|
|
|
/* F, G, H and I are basic MD5 functions.
|
|
*/
|
|
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
|
|
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
#define I(x, y, z) ((y) ^ ((x) | (~z)))
|
|
|
|
/* ROTATE_LEFT rotates x left n bits.
|
|
*/
|
|
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
|
|
|
|
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
|
|
* Rotation is separate from addition to prevent recomputation.
|
|
*/
|
|
#define FF(a, b, c, d, x, s, ac) { \
|
|
(a) += F ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define GG(a, b, c, d, x, s, ac) { \
|
|
(a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define HH(a, b, c, d, x, s, ac) { \
|
|
(a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define II(a, b, c, d, x, s, ac) { \
|
|
(a) += I ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
|
|
/* MD5 initialization. Begins an MD5 operation, writing a new context.
|
|
*/
|
|
APU_DECLARE(apr_status_t) apr_md5_init(apr_md5_ctx_t *context)
|
|
{
|
|
context->count[0] = context->count[1] = 0;
|
|
|
|
/* Load magic initialization constants. */
|
|
context->state[0] = 0x67452301;
|
|
context->state[1] = 0xefcdab89;
|
|
context->state[2] = 0x98badcfe;
|
|
context->state[3] = 0x10325476;
|
|
context->xlate = NULL;
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/* MD5 translation setup. Provides the APR translation handle
|
|
* to be used for translating the content before calculating the
|
|
* digest.
|
|
*/
|
|
APU_DECLARE(apr_status_t) apr_md5_set_xlate(apr_md5_ctx_t *context,
|
|
apr_xlate_t *xlate)
|
|
{
|
|
#if APR_HAS_XLATE
|
|
apr_status_t rv;
|
|
int is_sb;
|
|
|
|
/* TODO: remove the single-byte-only restriction from this code
|
|
*/
|
|
rv = apr_xlate_sb_get(xlate, &is_sb);
|
|
if (rv != APR_SUCCESS) {
|
|
return rv;
|
|
}
|
|
if (!is_sb) {
|
|
return APR_EINVAL;
|
|
}
|
|
context->xlate = xlate;
|
|
return APR_SUCCESS;
|
|
#else
|
|
return APR_ENOTIMPL;
|
|
#endif /* APR_HAS_XLATE */
|
|
}
|
|
|
|
/* MD5 block update operation. Continues an MD5 message-digest
|
|
* operation, processing another message block, and updating the
|
|
* context.
|
|
*/
|
|
APU_DECLARE(apr_status_t) apr_md5_update(apr_md5_ctx_t *context,
|
|
const void *_input,
|
|
apr_size_t inputLen)
|
|
{
|
|
const unsigned char *input = _input;
|
|
unsigned int i, idx, partLen;
|
|
#if APR_HAS_XLATE
|
|
apr_size_t inbytes_left, outbytes_left;
|
|
#endif
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
|
|
|
|
/* Update number of bits */
|
|
if ((context->count[0] += ((apr_uint32_t)inputLen << 3))
|
|
< ((apr_uint32_t)inputLen << 3))
|
|
context->count[1]++;
|
|
context->count[1] += (apr_uint32_t)inputLen >> 29;
|
|
|
|
partLen = 64 - idx;
|
|
|
|
/* Transform as many times as possible. */
|
|
#if !APR_HAS_XLATE
|
|
if (inputLen >= partLen) {
|
|
memcpy(&context->buffer[idx], input, partLen);
|
|
MD5Transform(context->state, context->buffer);
|
|
|
|
for (i = partLen; i + 63 < inputLen; i += 64)
|
|
MD5Transform(context->state, &input[i]);
|
|
|
|
idx = 0;
|
|
}
|
|
else
|
|
i = 0;
|
|
|
|
/* Buffer remaining input */
|
|
memcpy(&context->buffer[idx], &input[i], inputLen - i);
|
|
#else /*APR_HAS_XLATE*/
|
|
if (inputLen >= partLen) {
|
|
if (context->xlate) {
|
|
inbytes_left = outbytes_left = partLen;
|
|
apr_xlate_conv_buffer(context->xlate, (const char *)input,
|
|
&inbytes_left,
|
|
(char *)&context->buffer[idx],
|
|
&outbytes_left);
|
|
}
|
|
else {
|
|
memcpy(&context->buffer[idx], input, partLen);
|
|
}
|
|
MD5Transform(context->state, context->buffer);
|
|
|
|
for (i = partLen; i + 63 < inputLen; i += 64) {
|
|
if (context->xlate) {
|
|
unsigned char inp_tmp[64];
|
|
inbytes_left = outbytes_left = 64;
|
|
apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
|
|
&inbytes_left, (char *)inp_tmp,
|
|
&outbytes_left);
|
|
MD5Transform(context->state, inp_tmp);
|
|
}
|
|
else {
|
|
MD5Transform(context->state, &input[i]);
|
|
}
|
|
}
|
|
|
|
idx = 0;
|
|
}
|
|
else
|
|
i = 0;
|
|
|
|
/* Buffer remaining input */
|
|
if (context->xlate) {
|
|
inbytes_left = outbytes_left = inputLen - i;
|
|
apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
|
|
&inbytes_left, (char *)&context->buffer[idx],
|
|
&outbytes_left);
|
|
}
|
|
else {
|
|
memcpy(&context->buffer[idx], &input[i], inputLen - i);
|
|
}
|
|
#endif /*APR_HAS_XLATE*/
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/* MD5 finalization. Ends an MD5 message-digest operation, writing the
|
|
* the message digest and zeroizing the context.
|
|
*/
|
|
APU_DECLARE(apr_status_t) apr_md5_final(unsigned char digest[APR_MD5_DIGESTSIZE],
|
|
apr_md5_ctx_t *context)
|
|
{
|
|
unsigned char bits[8];
|
|
unsigned int idx, padLen;
|
|
|
|
/* Save number of bits */
|
|
Encode(bits, context->count, 8);
|
|
|
|
#if APR_HAS_XLATE
|
|
/* apr_md5_update() should not translate for this final round. */
|
|
context->xlate = NULL;
|
|
#endif /*APR_HAS_XLATE*/
|
|
|
|
/* Pad out to 56 mod 64. */
|
|
idx = (unsigned int)((context->count[0] >> 3) & 0x3f);
|
|
padLen = (idx < 56) ? (56 - idx) : (120 - idx);
|
|
apr_md5_update(context, PADDING, padLen);
|
|
|
|
/* Append length (before padding) */
|
|
apr_md5_update(context, bits, 8);
|
|
|
|
/* Store state in digest */
|
|
Encode(digest, context->state, APR_MD5_DIGESTSIZE);
|
|
|
|
/* Zeroize sensitive information. */
|
|
memset(context, 0, sizeof(*context));
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/* MD5 in one step (init, update, final)
|
|
*/
|
|
APU_DECLARE(apr_status_t) apr_md5(unsigned char digest[APR_MD5_DIGESTSIZE],
|
|
const void *_input,
|
|
apr_size_t inputLen)
|
|
{
|
|
const unsigned char *input = _input;
|
|
apr_md5_ctx_t ctx;
|
|
apr_status_t rv;
|
|
|
|
apr_md5_init(&ctx);
|
|
|
|
if ((rv = apr_md5_update(&ctx, input, inputLen)) != APR_SUCCESS)
|
|
return rv;
|
|
|
|
return apr_md5_final(digest, &ctx);
|
|
}
|
|
|
|
/* MD5 basic transformation. Transforms state based on block. */
|
|
static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64])
|
|
{
|
|
apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3],
|
|
x[APR_MD5_DIGESTSIZE];
|
|
|
|
Decode(x, block, 64);
|
|
|
|
/* Round 1 */
|
|
FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
|
|
FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
|
|
FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
|
|
FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
|
|
FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
|
|
FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
|
|
FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
|
|
FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
|
|
FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
|
|
FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
|
|
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
|
|
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
|
|
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
|
|
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
|
|
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
|
|
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
|
|
|
|
/* Round 2 */
|
|
GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
|
|
GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
|
|
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
|
|
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
|
|
GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
|
|
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
|
|
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
|
|
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
|
|
GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
|
|
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
|
|
GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
|
|
GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
|
|
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
|
|
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
|
|
GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
|
|
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
|
|
|
|
/* Round 3 */
|
|
HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
|
|
HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
|
|
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
|
|
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
|
|
HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
|
|
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
|
|
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
|
|
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
|
|
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
|
|
HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
|
|
HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
|
|
HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
|
|
HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
|
|
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
|
|
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
|
|
HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
|
|
|
|
/* Round 4 */
|
|
II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
|
|
II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
|
|
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
|
|
II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
|
|
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
|
|
II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
|
|
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
|
|
II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
|
|
II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
|
|
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
|
|
II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
|
|
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
|
|
II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
|
|
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
|
|
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
|
|
II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
|
|
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
|
|
/* Zeroize sensitive information. */
|
|
memset(x, 0, sizeof(x));
|
|
}
|
|
|
|
/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is
|
|
* a multiple of 4.
|
|
*/
|
|
static void Encode(unsigned char *output, const apr_uint32_t *input,
|
|
unsigned int len)
|
|
{
|
|
unsigned int i, j;
|
|
apr_uint32_t k;
|
|
|
|
for (i = 0, j = 0; j < len; i++, j += 4) {
|
|
k = input[i];
|
|
output[j] = (unsigned char)(k & 0xff);
|
|
output[j + 1] = (unsigned char)((k >> 8) & 0xff);
|
|
output[j + 2] = (unsigned char)((k >> 16) & 0xff);
|
|
output[j + 3] = (unsigned char)((k >> 24) & 0xff);
|
|
}
|
|
}
|
|
|
|
/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is
|
|
* a multiple of 4.
|
|
*/
|
|
static void Decode(apr_uint32_t *output, const unsigned char *input,
|
|
unsigned int len)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for (i = 0, j = 0; j < len; i++, j += 4)
|
|
output[i] = ((apr_uint32_t)input[j]) |
|
|
(((apr_uint32_t)input[j + 1]) << 8) |
|
|
(((apr_uint32_t)input[j + 2]) << 16) |
|
|
(((apr_uint32_t)input[j + 3]) << 24);
|
|
}
|
|
|
|
#if APR_CHARSET_EBCDIC
|
|
APU_DECLARE(apr_status_t) apr_MD5InitEBCDIC(apr_xlate_t *xlate)
|
|
{
|
|
xlate_ebcdic_to_ascii = xlate;
|
|
return APR_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Define the Magic String prefix that identifies a password as being
|
|
* hashed using our algorithm.
|
|
*/
|
|
static const char *apr1_id = "$apr1$";
|
|
|
|
/*
|
|
* The following MD5 password encryption code was largely borrowed from
|
|
* the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is
|
|
* licenced as stated at the top of this file.
|
|
*/
|
|
|
|
static void to64(char *s, unsigned long v, int n)
|
|
{
|
|
static unsigned char itoa64[] = /* 0 ... 63 => ASCII - 64 */
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
while (--n >= 0) {
|
|
*s++ = itoa64[v&0x3f];
|
|
v >>= 6;
|
|
}
|
|
}
|
|
|
|
APU_DECLARE(apr_status_t) apr_md5_encode(const char *pw, const char *salt,
|
|
char *result, apr_size_t nbytes)
|
|
{
|
|
/*
|
|
* Minimum size is 8 bytes for salt, plus 1 for the trailing NUL,
|
|
* plus 4 for the '$' separators, plus the password hash itself.
|
|
* Let's leave a goodly amount of leeway.
|
|
*/
|
|
|
|
char passwd[120], *p;
|
|
const char *sp, *ep;
|
|
unsigned char final[APR_MD5_DIGESTSIZE];
|
|
apr_ssize_t sl, pl, i;
|
|
apr_md5_ctx_t ctx, ctx1;
|
|
unsigned long l;
|
|
|
|
/*
|
|
* Refine the salt first. It's possible we were given an already-hashed
|
|
* string as the salt argument, so extract the actual salt value from it
|
|
* if so. Otherwise just use the string up to the first '$' as the salt.
|
|
*/
|
|
sp = salt;
|
|
|
|
/*
|
|
* If it starts with the magic string, then skip that.
|
|
*/
|
|
if (!strncmp(sp, apr1_id, strlen(apr1_id))) {
|
|
sp += strlen(apr1_id);
|
|
}
|
|
|
|
/*
|
|
* It stops at the first '$' or 8 chars, whichever comes first
|
|
*/
|
|
for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Get the length of the true salt
|
|
*/
|
|
sl = ep - sp;
|
|
|
|
/*
|
|
* 'Time to make the doughnuts..'
|
|
*/
|
|
apr_md5_init(&ctx);
|
|
#if APR_CHARSET_EBCDIC
|
|
apr_md5_set_xlate(&ctx, xlate_ebcdic_to_ascii);
|
|
#endif
|
|
|
|
/*
|
|
* The password first, since that is what is most unknown
|
|
*/
|
|
apr_md5_update(&ctx, pw, strlen(pw));
|
|
|
|
/*
|
|
* Then our magic string
|
|
*/
|
|
apr_md5_update(&ctx, apr1_id, strlen(apr1_id));
|
|
|
|
/*
|
|
* Then the raw salt
|
|
*/
|
|
apr_md5_update(&ctx, sp, sl);
|
|
|
|
/*
|
|
* Then just as many characters of the MD5(pw, salt, pw)
|
|
*/
|
|
apr_md5_init(&ctx1);
|
|
apr_md5_update(&ctx1, pw, strlen(pw));
|
|
apr_md5_update(&ctx1, sp, sl);
|
|
apr_md5_update(&ctx1, pw, strlen(pw));
|
|
apr_md5_final(final, &ctx1);
|
|
for (pl = strlen(pw); pl > 0; pl -= APR_MD5_DIGESTSIZE) {
|
|
apr_md5_update(&ctx, final,
|
|
(pl > APR_MD5_DIGESTSIZE) ? APR_MD5_DIGESTSIZE : pl);
|
|
}
|
|
|
|
/*
|
|
* Don't leave anything around in vm they could use.
|
|
*/
|
|
memset(final, 0, sizeof(final));
|
|
|
|
/*
|
|
* Then something really weird...
|
|
*/
|
|
for (i = strlen(pw); i != 0; i >>= 1) {
|
|
if (i & 1) {
|
|
apr_md5_update(&ctx, final, 1);
|
|
}
|
|
else {
|
|
apr_md5_update(&ctx, pw, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now make the output string. We know our limitations, so we
|
|
* can use the string routines without bounds checking.
|
|
*/
|
|
strcpy(passwd, apr1_id);
|
|
strncat(passwd, sp, sl);
|
|
strcat(passwd, "$");
|
|
|
|
apr_md5_final(final, &ctx);
|
|
|
|
/*
|
|
* And now, just to make sure things don't run too fast..
|
|
* On a 60 Mhz Pentium this takes 34 msec, so you would
|
|
* need 30 seconds to build a 1000 entry dictionary...
|
|
*/
|
|
for (i = 0; i < 1000; i++) {
|
|
apr_md5_init(&ctx1);
|
|
if (i & 1) {
|
|
apr_md5_update(&ctx1, pw, strlen(pw));
|
|
}
|
|
else {
|
|
apr_md5_update(&ctx1, final, APR_MD5_DIGESTSIZE);
|
|
}
|
|
if (i % 3) {
|
|
apr_md5_update(&ctx1, sp, sl);
|
|
}
|
|
|
|
if (i % 7) {
|
|
apr_md5_update(&ctx1, pw, strlen(pw));
|
|
}
|
|
|
|
if (i & 1) {
|
|
apr_md5_update(&ctx1, final, APR_MD5_DIGESTSIZE);
|
|
}
|
|
else {
|
|
apr_md5_update(&ctx1, pw, strlen(pw));
|
|
}
|
|
apr_md5_final(final,&ctx1);
|
|
}
|
|
|
|
p = passwd + strlen(passwd);
|
|
|
|
l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p, l, 4); p += 4;
|
|
l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p, l, 4); p += 4;
|
|
l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p, l, 4); p += 4;
|
|
l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p, l, 4); p += 4;
|
|
l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p, l, 4); p += 4;
|
|
l = final[11] ; to64(p, l, 2); p += 2;
|
|
*p = '\0';
|
|
|
|
/*
|
|
* Don't leave anything around in vm they could use.
|
|
*/
|
|
memset(final, 0, sizeof(final));
|
|
|
|
apr_cpystrn(result, passwd, nbytes - 1);
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
#if !defined(WIN32) && !defined(BEOS) && !defined(NETWARE)
|
|
#if defined(APU_CRYPT_THREADSAFE) || !APR_HAS_THREADS || \
|
|
defined(CRYPT_R_CRYPTD) || defined(CRYPT_R_STRUCT_CRYPT_DATA)
|
|
|
|
#define crypt_mutex_lock()
|
|
#define crypt_mutex_unlock()
|
|
|
|
#elif APR_HAVE_PTHREAD_H && defined(PTHREAD_MUTEX_INITIALIZER)
|
|
|
|
static pthread_mutex_t crypt_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static void crypt_mutex_lock(void)
|
|
{
|
|
pthread_mutex_lock(&crypt_mutex);
|
|
}
|
|
|
|
static void crypt_mutex_unlock(void)
|
|
{
|
|
pthread_mutex_unlock(&crypt_mutex);
|
|
}
|
|
|
|
#else
|
|
|
|
#error apr_password_validate() is not threadsafe. rebuild APR without thread support.
|
|
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Validate a plaintext password against a smashed one. Uses either
|
|
* crypt() (if available) or apr_md5_encode() or apr_sha1_base64(), depending
|
|
* upon the format of the smashed input password. Returns APR_SUCCESS if
|
|
* they match, or APR_EMISMATCH if they don't. If the platform doesn't
|
|
* support crypt, then the default check is against a clear text string.
|
|
*/
|
|
APU_DECLARE(apr_status_t) apr_password_validate(const char *passwd,
|
|
const char *hash)
|
|
{
|
|
char sample[120];
|
|
#if !defined(WIN32) && !defined(BEOS) && !defined(NETWARE)
|
|
char *crypt_pw;
|
|
#endif
|
|
if (!strncmp(hash, apr1_id, strlen(apr1_id))) {
|
|
/*
|
|
* The hash was created using our custom algorithm.
|
|
*/
|
|
apr_md5_encode(passwd, hash, sample, sizeof(sample));
|
|
}
|
|
else if (!strncmp(hash, APR_SHA1PW_ID, APR_SHA1PW_IDLEN)) {
|
|
apr_sha1_base64(passwd, strlen(passwd), sample);
|
|
}
|
|
else {
|
|
/*
|
|
* It's not our algorithm, so feed it to crypt() if possible.
|
|
*/
|
|
#if defined(WIN32) || defined(BEOS) || defined(NETWARE)
|
|
apr_cpystrn(sample, passwd, sizeof(sample) - 1);
|
|
#elif defined(CRYPT_R_CRYPTD)
|
|
CRYPTD buffer;
|
|
|
|
crypt_pw = crypt_r(passwd, hash, &buffer);
|
|
apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);
|
|
#elif defined(CRYPT_R_STRUCT_CRYPT_DATA)
|
|
struct crypt_data buffer;
|
|
|
|
/* having to clear this seems bogus... GNU doc is
|
|
* confusing... user report found from google says
|
|
* the crypt_data struct had to be cleared to get
|
|
* the same result as plain crypt()
|
|
*/
|
|
memset(&buffer, 0, sizeof(buffer));
|
|
crypt_pw = crypt_r(passwd, hash, &buffer);
|
|
apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);
|
|
#else
|
|
/* Do a bit of sanity checking since we know that crypt_r()
|
|
* should always be used for threaded builds on AIX, and
|
|
* problems in configure logic can result in the wrong
|
|
* choice being made.
|
|
*/
|
|
#if defined(_AIX) && APR_HAS_THREADS
|
|
#error Configuration error! crypt_r() should have been selected!
|
|
#endif
|
|
|
|
/* Handle thread safety issues by holding a mutex around the
|
|
* call to crypt().
|
|
*/
|
|
crypt_mutex_lock();
|
|
crypt_pw = crypt(passwd, hash);
|
|
apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);
|
|
crypt_mutex_unlock();
|
|
#endif
|
|
}
|
|
return (strcmp(sample, hash) == 0) ? APR_SUCCESS : APR_EMISMATCH;
|
|
}
|