freeswitch/libs/libvpx/tools/tiny_ssim.c

803 lines
26 KiB
C

/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
#include "./y4minput.h"
#include "vpx_dsp/ssim.h"
#include "vpx_ports/mem.h"
static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2
static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2
static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2
static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2
#if CONFIG_VP9_HIGHBITDEPTH
static uint64_t calc_plane_error16(uint16_t *orig, int orig_stride,
uint16_t *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row < rows; row++) {
for (col = 0; col < cols; col++) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
#endif
static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, uint8_t *recon,
int recon_stride, unsigned int cols,
unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row < rows; row++) {
for (col = 0; col < cols; col++) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
#define MAX_PSNR 100
static double mse2psnr(double samples, double peak, double mse) {
double psnr;
if (mse > 0.0)
psnr = 10.0 * log10(peak * peak * samples / mse);
else
psnr = MAX_PSNR; // Limit to prevent / 0
if (psnr > MAX_PSNR) psnr = MAX_PSNR;
return psnr;
}
typedef enum { RAW_YUV, Y4M } input_file_type;
typedef struct input_file {
FILE *file;
input_file_type type;
unsigned char *buf;
y4m_input y4m;
vpx_image_t img;
int w;
int h;
int bit_depth;
} input_file_t;
// Open a file and determine if its y4m or raw. If y4m get the header.
static int open_input_file(const char *file_name, input_file_t *input, int w,
int h, int bit_depth) {
char y4m_buf[4];
size_t r1;
input->type = RAW_YUV;
input->buf = NULL;
input->file = strcmp(file_name, "-") ? fopen(file_name, "rb") : stdin;
if (input->file == NULL) return -1;
r1 = fread(y4m_buf, 1, 4, input->file);
if (r1 == 4) {
if (memcmp(y4m_buf, "YUV4", 4) == 0) input->type = Y4M;
switch (input->type) {
case Y4M:
y4m_input_open(&input->y4m, input->file, y4m_buf, 4, 0);
input->w = input->y4m.pic_w;
input->h = input->y4m.pic_h;
input->bit_depth = input->y4m.bit_depth;
// Y4M alloc's its own buf. Init this to avoid problems if we never
// read frames.
memset(&input->img, 0, sizeof(input->img));
break;
case RAW_YUV:
fseek(input->file, 0, SEEK_SET);
input->w = w;
input->h = h;
if (bit_depth < 9)
input->buf = malloc(w * h * 3 / 2);
else
input->buf = malloc(w * h * 3);
break;
}
}
return 0;
}
static void close_input_file(input_file_t *in) {
if (in->file) fclose(in->file);
if (in->type == Y4M) {
vpx_img_free(&in->img);
} else {
free(in->buf);
}
}
static size_t read_input_file(input_file_t *in, unsigned char **y,
unsigned char **u, unsigned char **v, int bd) {
size_t r1 = 0;
switch (in->type) {
case Y4M:
r1 = y4m_input_fetch_frame(&in->y4m, in->file, &in->img);
*y = in->img.planes[0];
*u = in->img.planes[1];
*v = in->img.planes[2];
break;
case RAW_YUV:
if (bd < 9) {
r1 = fread(in->buf, in->w * in->h * 3 / 2, 1, in->file);
*y = in->buf;
*u = in->buf + in->w * in->h;
*v = in->buf + 5 * in->w * in->h / 4;
} else {
r1 = fread(in->buf, in->w * in->h * 3, 1, in->file);
*y = in->buf;
*u = in->buf + in->w * in->h / 2;
*v = *u + in->w * in->h / 2;
}
break;
}
return r1;
}
void ssim_parms_16x16(const uint8_t *s, int sp, const uint8_t *r, int rp,
uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
uint32_t *sum_sq_r, uint32_t *sum_sxr) {
int i, j;
for (i = 0; i < 16; i++, s += sp, r += rp) {
for (j = 0; j < 16; j++) {
*sum_s += s[j];
*sum_r += r[j];
*sum_sq_s += s[j] * s[j];
*sum_sq_r += r[j] * r[j];
*sum_sxr += s[j] * r[j];
}
}
}
void ssim_parms_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp,
uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
uint32_t *sum_sq_r, uint32_t *sum_sxr) {
int i, j;
for (i = 0; i < 8; i++, s += sp, r += rp) {
for (j = 0; j < 8; j++) {
*sum_s += s[j];
*sum_r += r[j];
*sum_sq_s += s[j] * s[j];
*sum_sq_r += r[j] * r[j];
*sum_sxr += s[j] * r[j];
}
}
}
void highbd_ssim_parms_8x8(const uint16_t *s, int sp, const uint16_t *r, int rp,
uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
uint32_t *sum_sq_r, uint32_t *sum_sxr) {
int i, j;
for (i = 0; i < 8; i++, s += sp, r += rp) {
for (j = 0; j < 8; j++) {
*sum_s += s[j];
*sum_r += r[j];
*sum_sq_s += s[j] * s[j];
*sum_sq_r += r[j] * r[j];
*sum_sxr += s[j] * r[j];
}
}
}
static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
uint32_t sum_sq_r, uint32_t sum_sxr, int count,
uint32_t bd) {
int64_t ssim_n, ssim_d;
int64_t c1 = 0, c2 = 0;
if (bd == 8) {
// scale the constants by number of pixels
c1 = (cc1 * count * count) >> 12;
c2 = (cc2 * count * count) >> 12;
} else if (bd == 10) {
c1 = (cc1_10 * count * count) >> 12;
c2 = (cc2_10 * count * count) >> 12;
} else if (bd == 12) {
c1 = (cc1_12 * count * count) >> 12;
c2 = (cc2_12 * count * count) >> 12;
} else {
assert(0);
}
ssim_n = (2 * sum_s * sum_r + c1) *
((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);
ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
(int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);
return ssim_n * 1.0 / ssim_d;
}
static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, &sum_sxr);
return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
}
static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
int rp, uint32_t bd, uint32_t shift) {
uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
&sum_sxr);
return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
}
// We are using a 8x8 moving window with starting location of each 8x8 window
// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
// block boundaries to penalize blocking artifacts.
static double ssim2(const uint8_t *img1, const uint8_t *img2, int stride_img1,
int stride_img2, int width, int height) {
int i, j;
int samples = 0;
double ssim_total = 0;
// sample point start with each 4x4 location
for (i = 0; i <= height - 8;
i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
for (j = 0; j <= width - 8; j += 4) {
double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
ssim_total += v;
samples++;
}
}
ssim_total /= samples;
return ssim_total;
}
static double highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
int stride_img1, int stride_img2, int width,
int height, uint32_t bd, uint32_t shift) {
int i, j;
int samples = 0;
double ssim_total = 0;
// sample point start with each 4x4 location
for (i = 0; i <= height - 8;
i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
for (j = 0; j <= width - 8; j += 4) {
double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
shift);
ssim_total += v;
samples++;
}
}
ssim_total /= samples;
return ssim_total;
}
// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
//
// Re working out the math ->
//
// ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
// ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
//
// mean(x) = sum(x) / n
//
// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
//
// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
//
// ssim(x,y) =
// (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
// (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
// ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
// (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
//
// factoring out n*n
//
// ssim(x,y) =
// (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
// (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
// (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
//
// Replace c1 with n*n * c1 for the final step that leads to this code:
// The final step scales by 12 bits so we don't lose precision in the constants.
static double ssimv_similarity(const Ssimv *sv, int64_t n) {
// Scale the constants by number of pixels.
const int64_t c1 = (cc1 * n * n) >> 12;
const int64_t c2 = (cc2 * n * n) >> 12;
const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
(sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
// Since these variables are unsigned sums, convert to double so
// math is done in double arithmetic.
const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
(n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
return l * v;
}
// The first term of the ssim metric is a luminance factor.
//
// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
//
// This luminance factor is super sensitive to the dark side of luminance
// values and completely insensitive on the white side. check out 2 sets
// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
// 2*250*252/ (250^2+252^2) => .99999997
//
// As a result in this tweaked version of the calculation in which the
// luminance is taken as percentage off from peak possible.
//
// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
//
static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
// Scale the constants by number of pixels.
const int64_t c1 = (cc1 * n * n) >> 12;
const int64_t c2 = (cc2 * n * n) >> 12;
const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
// Since these variables are unsigned, sums convert to double so
// math is done in double arithmetic.
const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
(n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
return l * v;
}
static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
int img2_pitch, Ssimv *sv) {
ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
&sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
}
double get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
int img2_pitch, int width, int height, Ssimv *sv2,
Metrics *m, int do_inconsistency) {
double dssim_total = 0;
double ssim_total = 0;
double ssim2_total = 0;
double inconsistency_total = 0;
int i, j;
int c = 0;
double norm;
double old_ssim_total = 0;
// We can sample points as frequently as we like start with 1 per 4x4.
for (i = 0; i < height;
i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
for (j = 0; j < width; j += 4, ++c) {
Ssimv sv = { 0, 0, 0, 0, 0, 0 };
double ssim;
double ssim2;
double dssim;
uint32_t var_new;
uint32_t var_old;
uint32_t mean_new;
uint32_t mean_old;
double ssim_new;
double ssim_old;
// Not sure there's a great way to handle the edge pixels
// in ssim when using a window. Seems biased against edge pixels
// however you handle this. This uses only samples that are
// fully in the frame.
if (j + 8 <= width && i + 8 <= height) {
ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
}
ssim = ssimv_similarity(&sv, 64);
ssim2 = ssimv_similarity2(&sv, 64);
sv.ssim = ssim2;
// dssim is calculated to use as an actual error metric and
// is scaled up to the same range as sum square error.
// Since we are subsampling every 16th point maybe this should be
// *16 ?
dssim = 255 * 255 * (1 - ssim2) / 2;
// Here I introduce a new error metric: consistency-weighted
// SSIM-inconsistency. This metric isolates frames where the
// SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
// sharper or blurrier than the others. Higher values indicate a
// temporally inconsistent SSIM. There are two ideas at work:
//
// 1) 'SSIM-inconsistency': the total inconsistency value
// reflects how much SSIM values are changing between this
// source / reference frame pair and the previous pair.
//
// 2) 'consistency-weighted': weights de-emphasize areas in the
// frame where the scene content has changed. Changes in scene
// content are detected via changes in local variance and local
// mean.
//
// Thus the overall measure reflects how inconsistent the SSIM
// values are, over consistent regions of the frame.
//
// The metric has three terms:
//
// term 1 -> uses change in scene Variance to weight error score
// 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
// larger changes from one frame to the next mean we care
// less about consistency.
//
// term 2 -> uses change in local scene luminance to weight error
// 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
// larger changes from one frame to the next mean we care
// less about consistency.
//
// term3 -> measures inconsistency in ssim scores between frames
// 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
//
// This term compares the ssim score for the same location in 2
// subsequent frames.
var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
mean_new = sv.sum_s;
mean_old = sv2[c].sum_s;
ssim_new = sv.ssim;
ssim_old = sv2[c].ssim;
if (do_inconsistency) {
// We do the metric once for every 4x4 block in the image. Since
// we are scaling the error to SSE for use in a psnr calculation
// 1.0 = 4x4x255x255 the worst error we can possibly have.
static const double kScaling = 4. * 4 * 255 * 255;
// The constants have to be non 0 to avoid potential divide by 0
// issues other than that they affect kind of a weighting between
// the terms. No testing of what the right terms should be has been
// done.
static const double c1 = 1, c2 = 1, c3 = 1;
// This measures how much consistent variance is in two consecutive
// source frames. 1.0 means they have exactly the same variance.
const double variance_term =
(2.0 * var_old * var_new + c1) /
(1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
// This measures how consistent the local mean are between two
// consecutive frames. 1.0 means they have exactly the same mean.
const double mean_term =
(2.0 * mean_old * mean_new + c2) /
(1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
// This measures how consistent the ssims of two
// consecutive frames is. 1.0 means they are exactly the same.
double ssim_term =
pow((2.0 * ssim_old * ssim_new + c3) /
(ssim_old * ssim_old + ssim_new * ssim_new + c3),
5);
double this_inconsistency;
// Floating point math sometimes makes this > 1 by a tiny bit.
// We want the metric to scale between 0 and 1.0 so we can convert
// it to an snr scaled value.
if (ssim_term > 1) ssim_term = 1;
// This converts the consistency metric to an inconsistency metric
// ( so we can scale it like psnr to something like sum square error.
// The reason for the variance and mean terms is the assumption that
// if there are big changes in the source we shouldn't penalize
// inconsistency in ssim scores a bit less as it will be less visible
// to the user.
this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
this_inconsistency *= kScaling;
inconsistency_total += this_inconsistency;
}
sv2[c] = sv;
ssim_total += ssim;
ssim2_total += ssim2;
dssim_total += dssim;
old_ssim_total += ssim_old;
}
old_ssim_total += 0;
}
norm = 1. / (width / 4) / (height / 4);
ssim_total *= norm;
ssim2_total *= norm;
m->ssim2 = ssim2_total;
m->ssim = ssim_total;
if (old_ssim_total == 0) inconsistency_total = 0;
m->ssimc = inconsistency_total;
m->dssim = dssim_total;
return inconsistency_total;
}
double highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
const YV12_BUFFER_CONFIG *dest, double *weight,
uint32_t bd, uint32_t in_bd) {
double a, b, c;
double ssimv;
uint32_t shift = 0;
assert(bd >= in_bd);
shift = bd - in_bd;
a = highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
dest->y_stride, source->y_crop_width, source->y_crop_height,
in_bd, shift);
b = highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
dest->uv_stride, source->uv_crop_width,
source->uv_crop_height, in_bd, shift);
c = highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
dest->uv_stride, source->uv_crop_width,
source->uv_crop_height, in_bd, shift);
ssimv = a * .8 + .1 * (b + c);
*weight = 1;
return ssimv;
}
int main(int argc, char *argv[]) {
FILE *framestats = NULL;
int bit_depth = 8;
int w = 0, h = 0, tl_skip = 0, tl_skips_remaining = 0;
double ssimavg = 0, ssimyavg = 0, ssimuavg = 0, ssimvavg = 0;
double psnrglb = 0, psnryglb = 0, psnruglb = 0, psnrvglb = 0;
double psnravg = 0, psnryavg = 0, psnruavg = 0, psnrvavg = 0;
double *ssimy = NULL, *ssimu = NULL, *ssimv = NULL;
uint64_t *psnry = NULL, *psnru = NULL, *psnrv = NULL;
size_t i, n_frames = 0, allocated_frames = 0;
int return_value = 0;
input_file_t in[2];
double peak = 255.0;
if (argc < 2) {
fprintf(stderr,
"Usage: %s file1.{yuv|y4m} file2.{yuv|y4m}"
"[WxH tl_skip={0,1,3} frame_stats_file bits]\n",
argv[0]);
return_value = 1;
goto clean_up;
}
if (argc > 3) {
sscanf(argv[3], "%dx%d", &w, &h);
}
if (argc > 6) {
sscanf(argv[6], "%d", &bit_depth);
}
if (open_input_file(argv[1], &in[0], w, h, bit_depth) < 0) {
fprintf(stderr, "File %s can't be opened or parsed!\n", argv[2]);
goto clean_up;
}
if (w == 0 && h == 0) {
// If a y4m is the first file and w, h is not set grab from first file.
w = in[0].w;
h = in[0].h;
bit_depth = in[0].bit_depth;
}
if (bit_depth == 10) peak = 1023.0;
if (bit_depth == 12) peak = 4095;
if (open_input_file(argv[2], &in[1], w, h, bit_depth) < 0) {
fprintf(stderr, "File %s can't be opened or parsed!\n", argv[2]);
goto clean_up;
}
if (in[0].w != in[1].w || in[0].h != in[1].h || in[0].w != w ||
in[0].h != h || w == 0 || h == 0) {
fprintf(stderr,
"Failing: Image dimensions don't match or are unspecified!\n");
return_value = 1;
goto clean_up;
}
// Number of frames to skip from file1.yuv for every frame used. Normal values
// 0, 1 and 3 correspond to TL2, TL1 and TL0 respectively for a 3TL encoding
// in mode 10. 7 would be reasonable for comparing TL0 of a 4-layer encoding.
if (argc > 4) {
sscanf(argv[4], "%d", &tl_skip);
if (argc > 5) {
framestats = fopen(argv[5], "w");
if (!framestats) {
fprintf(stderr, "Could not open \"%s\" for writing: %s\n", argv[5],
strerror(errno));
return_value = 1;
goto clean_up;
}
}
}
if (w & 1 || h & 1) {
fprintf(stderr, "Invalid size %dx%d\n", w, h);
return_value = 1;
goto clean_up;
}
while (1) {
size_t r1, r2;
unsigned char *y[2], *u[2], *v[2];
r1 = read_input_file(&in[0], &y[0], &u[0], &v[0], bit_depth);
if (r1) {
// Reading parts of file1.yuv that were not used in temporal layer.
if (tl_skips_remaining > 0) {
--tl_skips_remaining;
continue;
}
// Use frame, but skip |tl_skip| after it.
tl_skips_remaining = tl_skip;
}
r2 = read_input_file(&in[1], &y[1], &u[1], &v[1], bit_depth);
if (r1 && r2 && r1 != r2) {
fprintf(stderr, "Failed to read data: %s [%d/%d]\n", strerror(errno),
(int)r1, (int)r2);
return_value = 1;
goto clean_up;
} else if (r1 == 0 || r2 == 0) {
break;
}
#if CONFIG_VP9_HIGHBITDEPTH
#define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \
if (bit_depth < 9) { \
ssim = ssim2(buf0, buf1, w, w, w, h); \
psnr = calc_plane_error(buf0, w, buf1, w, w, h); \
} else { \
ssim = highbd_ssim2(CONVERT_TO_BYTEPTR(buf0), CONVERT_TO_BYTEPTR(buf1), w, \
w, w, h, bit_depth, bit_depth - 8); \
psnr = calc_plane_error16(CAST_TO_SHORTPTR(buf0), w, \
CAST_TO_SHORTPTR(buf1), w, w, h); \
}
#else
#define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \
ssim = ssim2(buf0, buf1, w, w, w, h); \
psnr = calc_plane_error(buf0, w, buf1, w, w, h);
#endif
if (n_frames == allocated_frames) {
allocated_frames = allocated_frames == 0 ? 1024 : allocated_frames * 2;
ssimy = realloc(ssimy, allocated_frames * sizeof(*ssimy));
ssimu = realloc(ssimu, allocated_frames * sizeof(*ssimu));
ssimv = realloc(ssimv, allocated_frames * sizeof(*ssimv));
psnry = realloc(psnry, allocated_frames * sizeof(*psnry));
psnru = realloc(psnru, allocated_frames * sizeof(*psnru));
psnrv = realloc(psnrv, allocated_frames * sizeof(*psnrv));
}
psnr_and_ssim(ssimy[n_frames], psnry[n_frames], y[0], y[1], w, h);
psnr_and_ssim(ssimu[n_frames], psnru[n_frames], u[0], u[1], w / 2, h / 2);
psnr_and_ssim(ssimv[n_frames], psnrv[n_frames], v[0], v[1], w / 2, h / 2);
n_frames++;
}
if (framestats) {
fprintf(framestats,
"ssim,ssim-y,ssim-u,ssim-v,psnr,psnr-y,psnr-u,psnr-v\n");
}
for (i = 0; i < n_frames; ++i) {
double frame_ssim;
double frame_psnr, frame_psnry, frame_psnru, frame_psnrv;
frame_ssim = 0.8 * ssimy[i] + 0.1 * (ssimu[i] + ssimv[i]);
ssimavg += frame_ssim;
ssimyavg += ssimy[i];
ssimuavg += ssimu[i];
ssimvavg += ssimv[i];
frame_psnr =
mse2psnr(w * h * 6 / 4, peak, (double)psnry[i] + psnru[i] + psnrv[i]);
frame_psnry = mse2psnr(w * h * 4 / 4, peak, (double)psnry[i]);
frame_psnru = mse2psnr(w * h * 1 / 4, peak, (double)psnru[i]);
frame_psnrv = mse2psnr(w * h * 1 / 4, peak, (double)psnrv[i]);
psnravg += frame_psnr;
psnryavg += frame_psnry;
psnruavg += frame_psnru;
psnrvavg += frame_psnrv;
psnryglb += psnry[i];
psnruglb += psnru[i];
psnrvglb += psnrv[i];
if (framestats) {
fprintf(framestats, "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf\n", frame_ssim,
ssimy[i], ssimu[i], ssimv[i], frame_psnr, frame_psnry,
frame_psnru, frame_psnrv);
}
}
ssimavg /= n_frames;
ssimyavg /= n_frames;
ssimuavg /= n_frames;
ssimvavg /= n_frames;
printf("VpxSSIM: %lf\n", 100 * pow(ssimavg, 8.0));
printf("SSIM: %lf\n", ssimavg);
printf("SSIM-Y: %lf\n", ssimyavg);
printf("SSIM-U: %lf\n", ssimuavg);
printf("SSIM-V: %lf\n", ssimvavg);
puts("");
psnravg /= n_frames;
psnryavg /= n_frames;
psnruavg /= n_frames;
psnrvavg /= n_frames;
printf("AvgPSNR: %lf\n", psnravg);
printf("AvgPSNR-Y: %lf\n", psnryavg);
printf("AvgPSNR-U: %lf\n", psnruavg);
printf("AvgPSNR-V: %lf\n", psnrvavg);
puts("");
psnrglb = psnryglb + psnruglb + psnrvglb;
psnrglb = mse2psnr((double)n_frames * w * h * 6 / 4, peak, psnrglb);
psnryglb = mse2psnr((double)n_frames * w * h * 4 / 4, peak, psnryglb);
psnruglb = mse2psnr((double)n_frames * w * h * 1 / 4, peak, psnruglb);
psnrvglb = mse2psnr((double)n_frames * w * h * 1 / 4, peak, psnrvglb);
printf("GlbPSNR: %lf\n", psnrglb);
printf("GlbPSNR-Y: %lf\n", psnryglb);
printf("GlbPSNR-U: %lf\n", psnruglb);
printf("GlbPSNR-V: %lf\n", psnrvglb);
puts("");
printf("Nframes: %d\n", (int)n_frames);
clean_up:
close_input_file(&in[0]);
close_input_file(&in[1]);
if (framestats) fclose(framestats);
free(ssimy);
free(ssimu);
free(ssimv);
free(psnry);
free(psnru);
free(psnrv);
return return_value;
}