freeswitch/libs/libzrtp/third_party/bnlib/germtest.c

337 lines
8.3 KiB
C

/*
* Copyright (c) 1995 Colin Plumb. All rights reserved.
* For licensing and other legal details, see the file legal.c.
*
* germtest.c - Random Sophie Germain prime generator.
*
* This generates random Sophie Germain primes using the command line
* as a seed value. It uses George Marsaglia's "mother of all random
* number generators" to (using the command line as a seed) to pick the
* starting search value and then searches sequentially for the next
* Sophie Germain prime p (a prime such that 2*p+1 is also prime).
*
* This is a really good way to burn a lot of CPU cycles.
*/
#if HAVE_CONFIG_H
#include "bnconfig.h"
#endif
#include <stdio.h>
#if !NO_STRING_H
#include <string.h>
#elif HAVE_STRINGS_H
#include <strings.h>
#endif
#include <stdlib.h> /* For malloc() */
#include "bn.h"
#include "germain.h"
#include "sieve.h"
#include "cputime.h"
#define BNDEBUG 1
#include "bnprint.h"
#define bnPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")
/*
* Generate random numbers according to George Marsaglia's
* Mother Of All Random Number Generators. This has a
* period of 0x17768215025F82EA0378038A03A203CA7FFF,
* or decimal 2043908804452974490458343567652678881935359.
*/
static unsigned mstate[8];
static unsigned mcarry;
static unsigned mindex;
static unsigned
mRandom_16(void)
{
unsigned long t;
t = mcarry +
mstate[ mindex ] * 1941ul +
mstate[(mindex+1)&7] * 1860ul +
mstate[(mindex+2)&7] * 1812ul +
mstate[(mindex+3)&7] * 1776ul +
mstate[(mindex+4)&7] * 1492ul +
mstate[(mindex+5)&7] * 1215ul +
mstate[(mindex+6)&7] * 1066ul +
mstate[(mindex+7)&7] * 12013ul;
mcarry = (unsigned)(t >> 16); /* 0 <= mcarry <= 0x5a87 */
mindex = (mindex-1) & 7;
return mstate[mindex] = (unsigned)(t & 0xffff);
}
/*
* Initialize the RNG based on the given seed.
* A zero-length seed will produce pretty lousy numbers,
* but it will work.
*/
static void
mSeed(unsigned char const *seed, unsigned len)
{
unsigned i;
for (i = 0; i < 8; i++)
mstate[i] = 0;
mcarry = 1;
while (len--) {
mcarry += *seed++;
(void)mRandom_16();
}
}
/*
* Generate a bignum of a specified length, with the given
* high and low 8 bits. "High" is merged into the high 8 bits of the
* number. For example, set it to 0x80 to ensure that the number is
* exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits).
* "Low" is merged into the low 8 bits. For example, set it to
* 1 to ensure that you generate an odd number. "High" is merged
* into the high bits; set it to 0x80 to ensure that the high bit
* is set in the returned value.
*/
static int
genRandBn(struct BigNum *bn, unsigned bits, unsigned char high,
unsigned char low, unsigned char const *seed, unsigned len)
{
unsigned char buf[64];
unsigned bytes;
unsigned l = 0; /* Current position */
unsigned t, i;
bnSetQ(bn, 0);
if (bnPrealloc(bn, bits) < 0)
return -1;
mSeed(seed, len);
bytes = (bits+7) / 8; /* Number of bytes to use */
for (i = 0; i < sizeof(buf); i += 2) {
t = mRandom_16();
buf[i] = (unsigned char)(t >> 8);
buf[i+1] = (unsigned char)t;
}
buf[sizeof(buf)-1] |= low;
while (bytes > sizeof(buf)) {
bytes -= sizeof(buf);
/* Merge in low half of high bits, if necessary */
if (bytes == 1 && (bits & 7))
buf[0] |= high << (bits & 7);
if (bnInsertBigBytes(bn, buf, l, sizeof(buf)) < 0)
return -1;
l += sizeof(buf);
for (i = 0; i < sizeof(buf); i += 2) {
t = mRandom_16();
buf[i] = (unsigned char)t;
buf[i+1] = (unsigned char)(t >> 8);
}
}
/* Do the final "bytes"-long section, using the tail bytes in buf */
/* Mask off excess high bits */
buf[sizeof(buf)-bytes] &= 255 >> (-bits & 7);
/* Merge in specified high bits */
buf[sizeof(buf)-bytes] |= high >> (-bits & 7);
if (bytes > 1 && (bits & 7))
buf[sizeof(buf)-bytes+1] |= high << (bits & 7);
/* Merge in the appropriate bytes of the buffer */
if (bnInsertBigBytes(bn, buf+sizeof(buf)-bytes, l, bytes) < 0)
return -1;
return 0;
}
struct Progress {
FILE *f;
unsigned column;
unsigned wrap;
};
/* Print a progress indicator, with line-wrap */
static int
genProgress(void *arg, int c)
{
struct Progress *p = arg;
if (++p->column > p->wrap) {
putc('\n', p->f);
p->column = 1;
}
putc(c, p->f);
fflush(p->f);
return 0;
}
static int
genSophieGermain(struct BigNum *bn, unsigned bits, unsigned order,
unsigned char const *seed, unsigned len, FILE *f)
{
#if CLOCK_AVAIL
timetype start, stop;
unsigned long s;
#endif
int i;
#if BNDEBUG
unsigned char s1[1024], s2[1024];
#endif
char buf[40];
unsigned p1, p2;
struct BigNum step;
struct Progress progress;
if (f)
fprintf(f, "Generating a %u-bit order-%u Sophie Germain prime with \"%.*s\"\n",
bits, order, (int)len, (char *)seed);
progress.f = f;
progress.column = 0;
progress.wrap = 78;
/* Find p - choose a starting place */
if (genRandBn(bn, bits, 0xC0, 3, seed, len) < 0)
return -1;
#if BNDEBUG /* DEBUG - check that sieve works properly */
bnBegin(&step);
bnSetQ(&step, 2);
sieveBuild(s1, 1024, bn, 2, order);
sieveBuildBig(s2, 1024, bn, &step, order);
p1 = p2 = 0;
if (s1[0] != s2[0])
printf("Difference: s1[0] = %x s2[0] = %x\n", s1[0], s2[0]);
do {
p1 = sieveSearch(s1, 1024, p1);
p2 = sieveSearch(s2, 1024, p2);
if (p1 != p2)
printf("Difference: p1 = %u p2 = %u\n", p1, p2);
} while (p1 && p2);
bnEnd(&step);
#endif
/* And search for a prime */
#if CLOCK_AVAIL
gettime(&start);
#endif
i = germainPrimeGen(bn, order, f ? genProgress : 0, (void *)&progress);
if (i < 0)
return -1;
#if CLOCK_AVAIL
gettime(&stop);
#endif
if (f) {
putc('\n', f);
fprintf(f, "%d modular exponentiations performed.\n", i);
}
#if CLOCK_AVAIL
subtime(stop, start);
s = sec(stop);
printf("%u-bit time = %lu.%03u sec.", bits, s, msec(stop));
if (s > 60) {
putchar(' ');
putchar('(');
if (s > 3600)
printf("%u:%02u", (unsigned)(s/3600),
(unsigned)(s/60%60));
else
printf("%u", (unsigned)(s/60));
printf(":%02u)", (unsigned)(s%60));
}
putchar('\n');
#endif
bnPut(" p = ", bn);
for (p1 = 0; p1 < order; p1++) {
if (bnLShift(bn, 1) <0)
return -1;
(void)bnAddQ(bn, 1);
sprintf(buf, "%u*p+%u = ", 2u<<p1, (2u<<p1) - 1);
bnPut(buf, bn);
}
return 0;
}
/* Copy the command line to the buffer. */
static unsigned char *
copy(int argc, char **argv, size_t *lenp)
{
size_t len;
int i;
unsigned char *buf, *p;
len = argc > 2 ? (size_t)(argc-2) : 0;
for (i = 1; i < argc; i++)
len += strlen(argv[i]);
*lenp = len;
buf = malloc(len+!len); /* Can't malloc 0 bytes... */
if (buf) {
p = buf;
for (i = 1; i < argc; i++) {
if (i > 1)
*p++ = ' ';
len = strlen(argv[i]);
memcpy(p, argv[i], len);
p += len;
}
}
return buf;
}
int
main(int argc, char **argv)
{
unsigned len;
struct BigNum bn;
unsigned char *buf;
if (argc < 2) {
fprintf(stderr, "Usage: %s <seed>\n", argv[0]);
fputs("\
<seed> should be a a string of bytes to be hashed to seed the prime\n\
generator. Note that unquoted whitespace between words will be counted\n\
as a single space. To include multiple spaces, quote them.\n", stderr);
return 1;
}
buf = copy(argc, argv, &len);
if (!buf) {
fprintf(stderr, "Out of memory!\n");
return 1;
}
bnBegin(&bn);
genSophieGermain(&bn, 0x100, 0, buf, len, stdout);
genSophieGermain(&bn, 0x100, 1, buf, len, stdout);
genSophieGermain(&bn, 0x100, 2, buf, len, stdout);
genSophieGermain(&bn, 0x100, 3, buf, len, stdout);
genSophieGermain(&bn, 0x200, 0, buf, len, stdout);
genSophieGermain(&bn, 0x200, 1, buf, len, stdout);
genSophieGermain(&bn, 0x200, 2, buf, len, stdout);
genSophieGermain(&bn, 0x300, 0, buf, len, stdout);
genSophieGermain(&bn, 0x300, 1, buf, len, stdout);
genSophieGermain(&bn, 0x400, 0, buf, len, stdout);
genSophieGermain(&bn, 0x400, 1, buf, len, stdout);
genSophieGermain(&bn, 0x500, 0, buf, len, stdout);
genSophieGermain(&bn, 0x500, 1, buf, len, stdout);
genSophieGermain(&bn, 0x600, 0, buf, len, stdout);
genSophieGermain(&bn, 0x600, 1, buf, len, stdout);
#if 0
/* These get *really* slow */
genSophieGermain(&bn, 0x800, 0, buf, len, stdout);
genSophieGermain(&bn, 0x800, 1, buf, len, stdout);
genSophieGermain(&bn, 0xc00, 0, buf, len, stdout);
genSophieGermain(&bn, 0xc00, 1, buf, len, stdout);
/* Like, plan on a *week* or more for this one. */
genSophieGermain(&bn, 0x1000, 0, buf, len, stdout);
genSophieGermain(&bn, 0x1000, 1, buf, len, stdout);
#endif
bnEnd(&bn);
free(buf);
return 0;
}