Michael Jerris 749114b704 swap to new ilbc library
git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@12095 d0543943-73ff-0310-b7d9-9358b9ac24b2
2009-02-17 16:28:01 +00:00

270 lines
7.5 KiB
C

/*
* iLBC - a library for the iLBC codec
*
* lsf.c - The iLBC low bit rate speech codec.
*
* Adapted by Steve Underwood <steveu@coppice.org> from the reference
* iLBC code supplied in RFC3951.
*
* Original code Copyright (C) The Internet Society (2004).
* All changes to produce this version Copyright (C) 2008 by Steve Underwood
* All Rights Reserved.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* $Id: lsf.c,v 1.2 2008/03/06 12:27:38 steveu Exp $
*/
/*! \file */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include "iLBC_define.h"
#include "lsf.h"
/*----------------------------------------------------------------*
* conversion from lpc coefficients to lsf coefficients
*---------------------------------------------------------------*/
void a2lsf(float *freq, /* (o) lsf coefficients */
float *a) /* (i) lpc coefficients */
{
static const float steps[LSF_NUMBER_OF_STEPS] =
{
0.00635f, 0.003175f, 0.0015875f, 0.00079375f
};
float step;
int step_idx;
int lsp_index;
float p[LPC_HALFORDER];
float q[LPC_HALFORDER];
float p_pre[LPC_HALFORDER];
float q_pre[LPC_HALFORDER];
float old_p;
float old_q;
float *old;
float *pq_coef;
float omega;
float old_omega;
int i;
float hlp;
float hlp1;
float hlp2;
float hlp3;
float hlp4;
float hlp5;
for (i = 0; i < LPC_HALFORDER; i++)
{
p[i] = -1.0f*(a[i + 1] + a[ILBC_LPC_FILTERORDER - i]);
q[i] = a[ILBC_LPC_FILTERORDER - i] - a[i + 1];
}
p_pre[0] = -1.0f - p[0];
p_pre[1] = -p_pre[0] - p[1];
p_pre[2] = -p_pre[1] - p[2];
p_pre[3] = -p_pre[2] - p[3];
p_pre[4] = -p_pre[3] - p[4];
p_pre[4] = p_pre[4]/2.0f;
q_pre[0] = 1.0f - q[0];
q_pre[1] = q_pre[0] - q[1];
q_pre[2] = q_pre[1] - q[2];
q_pre[3] = q_pre[2] - q[3];
q_pre[4] = q_pre[3] - q[4];
q_pre[4] = q_pre[4]/2.0f;
omega = 0.0f;
old_omega = 0.0f;
old_p = FLOAT_MAX;
old_q = FLOAT_MAX;
/* Here we loop through lsp_index to find all the ILBC_LPC_FILTERORDER roots for omega. */
for (lsp_index = 0; lsp_index < ILBC_LPC_FILTERORDER; lsp_index++)
{
/* Depending on lsp_index being even or odd, we
alternatively solve the roots for the two LSP equations. */
if ((lsp_index & 0x1) == 0)
{
pq_coef = p_pre;
old = &old_p;
}
else
{
pq_coef = q_pre;
old = &old_q;
}
/* Start with low resolution grid */
for (step_idx = 0, step = steps[step_idx]; step_idx < LSF_NUMBER_OF_STEPS; )
{
/* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */
hlp = cosf(omega*TWO_PI);
hlp1 = 2.0f*hlp+pq_coef[0];
hlp2 = 2.0f*hlp*hlp1 - 1.0f + pq_coef[1];
hlp3 = 2.0f*hlp*hlp2 - hlp1 + pq_coef[2];
hlp4 = 2.0f*hlp*hlp3 - hlp2 + pq_coef[3];
hlp5 = hlp*hlp4 - hlp3 + pq_coef[4];
if (((hlp5 * (*old)) <= 0.0f) || (omega >= 0.5f))
{
if (step_idx == (LSF_NUMBER_OF_STEPS - 1))
{
if (fabsf(hlp5) >= fabsf(*old))
freq[lsp_index] = omega - step;
else
freq[lsp_index] = omega;
if ((*old) >= 0.0f)
*old = -1.0f*FLOAT_MAX;
else
*old = FLOAT_MAX;
omega = old_omega;
step_idx = 0;
step_idx = LSF_NUMBER_OF_STEPS;
}
else
{
if (step_idx == 0)
old_omega = omega;
step_idx++;
omega -= steps[step_idx];
/* Go back one grid step */
step = steps[step_idx];
}
}
else
{
/* increment omega until they are of different sign,
and we know there is at least one root between omega
and old_omega */
*old = hlp5;
omega += step;
}
}
}
for (i = 0; i < ILBC_LPC_FILTERORDER; i++)
freq[i] *= TWO_PI;
}
/*----------------------------------------------------------------*
* conversion from lsf coefficients to lpc coefficients
*---------------------------------------------------------------*/
void lsf2a(float *a_coef, /* (o) lpc coefficients */
float *freq) /* (i) lsf coefficients */
{
int i;
int j;
float hlp;
float p[LPC_HALFORDER];
float q[LPC_HALFORDER];
float a[LPC_HALFORDER + 1];
float a1[LPC_HALFORDER];
float a2[LPC_HALFORDER];
float b[LPC_HALFORDER + 1];
float b1[LPC_HALFORDER];
float b2[LPC_HALFORDER];
for (i = 0; i < ILBC_LPC_FILTERORDER; i++)
freq[i] *= PI2;
/* Check input for ill-conditioned cases. This part is not
found in the TIA standard. It involves the following 2 IF
blocks. If "freq" is judged ill-conditioned, then we first
modify freq[0] and freq[LPC_HALFORDER-1] (normally
LPC_HALFORDER = 10 for LPC applications), then we adjust
the other "freq" values slightly */
if ((freq[0] <= 0.0f) || (freq[ILBC_LPC_FILTERORDER - 1] >= 0.5f))
{
if (freq[0] <= 0.0f)
freq[0] = 0.022f;
if (freq[ILBC_LPC_FILTERORDER - 1] >= 0.5f)
freq[ILBC_LPC_FILTERORDER - 1] = 0.499f;
hlp = (freq[ILBC_LPC_FILTERORDER - 1] - freq[0])/(float) (ILBC_LPC_FILTERORDER - 1);
for (i = 1; i < ILBC_LPC_FILTERORDER; i++)
freq[i] = freq[i - 1] + hlp;
}
memset(a1, 0, LPC_HALFORDER*sizeof(float));
memset(a2, 0, LPC_HALFORDER*sizeof(float));
memset(b1, 0, LPC_HALFORDER*sizeof(float));
memset(b2, 0, LPC_HALFORDER*sizeof(float));
memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));
memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));
/* p[i] and q[i] compute cos(2*pi*omega_{2j}) and
cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.
Note that for this code p[i] specifies the coefficients
used in .Q_A(z) while q[i] specifies the coefficients used
in .P_A(z) */
for (i = 0; i < LPC_HALFORDER; i++)
{
p[i] = cosf(TWO_PI*freq[2*i]);
q[i] = cosf(TWO_PI*freq[2*i + 1]);
}
a[0] = 0.25f;
b[0] = 0.25f;
for (i = 0; i < LPC_HALFORDER; i++)
{
a[i + 1] = a[i] - 2*p[i]*a1[i] + a2[i];
b[i + 1] = b[i] - 2*q[i]*b1[i] + b2[i];
a2[i] = a1[i];
a1[i] = a[i];
b2[i] = b1[i];
b1[i] = b[i];
}
for (j = 0; j < ILBC_LPC_FILTERORDER; j++)
{
if (j == 0)
{
a[0] = 0.25f;
b[0] = -0.25f;
}
else
{
a[0] =
b[0] = 0.0f;
}
for (i = 0; i < LPC_HALFORDER; i++)
{
a[i + 1] = a[i] - 2.0f*p[i]*a1[i] + a2[i];
b[i + 1] = b[i] - 2.0f*q[i]*b1[i] + b2[i];
a2[i] = a1[i];
a1[i] = a[i];
b2[i] = b1[i];
b1[i] = b[i];
}
a_coef[j + 1] = 2.0f*(a[LPC_HALFORDER] + b[LPC_HALFORDER]);
}
a_coef[0] = 1.0f;
}