freeswitch/libs/sqlite/test/collate1.test

230 lines
6.1 KiB
Plaintext

#
# 2001 September 15
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. The
# focus of this script is page cache subsystem.
#
# $Id: collate1.test,v 1.4 2005/11/01 15:48:25 drh Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
#
# Tests are roughly organised as follows:
#
# collate1-1.* - Single-field ORDER BY with an explicit COLLATE clause.
# collate1-2.* - Multi-field ORDER BY with an explicit COLLATE clause.
# collate1-3.* - ORDER BY using a default collation type. Also that an
# explict collate type overrides a default collate type.
# collate1-4.* - ORDER BY using a data type.
#
#
# Collation type 'HEX'. If an argument can be interpreted as a hexadecimal
# number, then it is converted to one before the comparison is performed.
# Numbers are less than other strings. If neither argument is a number,
# [string compare] is used.
#
db collate HEX hex_collate
proc hex_collate {lhs rhs} {
set lhs_ishex [regexp {^(0x|)[1234567890abcdefABCDEF]+$} $lhs]
set rhs_ishex [regexp {^(0x|)[1234567890abcdefABCDEF]+$} $rhs]
if {$lhs_ishex && $rhs_ishex} {
set lhsx [scan $lhs %x]
set rhsx [scan $rhs %x]
if {$lhs < $rhs} {return -1}
if {$lhs == $rhs} {return 0}
if {$lhs > $rhs} {return 1}
}
if {$lhs_ishex} {
return -1;
}
if {$rhs_ishex} {
return 1;
}
return [string compare $lhs $rhs]
}
db function hex {format 0x%X}
# Mimic the SQLite 2 collation type NUMERIC.
db collate numeric numeric_collate
proc numeric_collate {lhs rhs} {
if {$lhs == $rhs} {return 0}
return [expr ($lhs>$rhs)?1:-1]
}
do_test collate1-1.0 {
execsql {
CREATE TABLE collate1t1(c1, c2);
INSERT INTO collate1t1 VALUES(45, hex(45));
INSERT INTO collate1t1 VALUES(NULL, NULL);
INSERT INTO collate1t1 VALUES(281, hex(281));
}
} {}
do_test collate1-1.1 {
execsql {
SELECT c2 FROM collate1t1 ORDER BY 1;
}
} {{} 0x119 0x2D}
do_test collate1-1.2 {
execsql {
SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex;
}
} {{} 0x2D 0x119}
do_test collate1-1.3 {
execsql {
SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex DESC;
}
} {0x119 0x2D {}}
do_test collate1-1.4 {
execsql {
SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex ASC;
}
} {{} 0x2D 0x119}
do_test collate1-1.5 {
execsql {
DROP TABLE collate1t1;
}
} {}
do_test collate1-2.0 {
execsql {
CREATE TABLE collate1t1(c1, c2);
INSERT INTO collate1t1 VALUES('5', '0x11');
INSERT INTO collate1t1 VALUES('5', '0xA');
INSERT INTO collate1t1 VALUES(NULL, NULL);
INSERT INTO collate1t1 VALUES('7', '0xA');
INSERT INTO collate1t1 VALUES('11', '0x11');
INSERT INTO collate1t1 VALUES('11', '0x101');
}
} {}
do_test collate1-2.2 {
execsql {
SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE numeric, 2 COLLATE hex;
}
} {{} {} 5 0xA 5 0x11 7 0xA 11 0x11 11 0x101}
do_test collate1-2.3 {
execsql {
SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE binary, 2 COLLATE hex;
}
} {{} {} 11 0x11 11 0x101 5 0xA 5 0x11 7 0xA}
do_test collate1-2.4 {
execsql {
SELECT c1, c2 FROM collate1t1 ORDER BY 1 COLLATE binary DESC, 2 COLLATE hex;
}
} {7 0xA 5 0xA 5 0x11 11 0x11 11 0x101 {} {}}
do_test collate1-2.5 {
execsql {
SELECT c1, c2 FROM collate1t1
ORDER BY 1 COLLATE binary DESC, 2 COLLATE hex DESC;
}
} {7 0xA 5 0x11 5 0xA 11 0x101 11 0x11 {} {}}
do_test collate1-2.6 {
execsql {
SELECT c1, c2 FROM collate1t1
ORDER BY 1 COLLATE binary ASC, 2 COLLATE hex ASC;
}
} {{} {} 11 0x11 11 0x101 5 0xA 5 0x11 7 0xA}
do_test collate1-2.7 {
execsql {
DROP TABLE collate1t1;
}
} {}
#
# These tests ensure that the default collation type for a column is used
# by an ORDER BY clause correctly. The focus is all the different ways
# the column can be referenced. i.e. a, collate2t1.a, main.collate2t1.a etc.
#
do_test collate1-3.0 {
execsql {
CREATE TABLE collate1t1(a COLLATE hex, b);
INSERT INTO collate1t1 VALUES( '0x5', 5 );
INSERT INTO collate1t1 VALUES( '1', 1 );
INSERT INTO collate1t1 VALUES( '0x45', 69 );
INSERT INTO collate1t1 VALUES( NULL, NULL );
SELECT * FROM collate1t1 ORDER BY a;
}
} {{} {} 1 1 0x5 5 0x45 69}
do_test collate1-3.1 {
execsql {
SELECT * FROM collate1t1 ORDER BY 1;
}
} {{} {} 1 1 0x5 5 0x45 69}
do_test collate1-3.2 {
execsql {
SELECT * FROM collate1t1 ORDER BY collate1t1.a;
}
} {{} {} 1 1 0x5 5 0x45 69}
do_test collate1-3.3 {
execsql {
SELECT * FROM collate1t1 ORDER BY main.collate1t1.a;
}
} {{} {} 1 1 0x5 5 0x45 69}
do_test collate1-3.4 {
execsql {
SELECT a as c1, b as c2 FROM collate1t1 ORDER BY c1;
}
} {{} {} 1 1 0x5 5 0x45 69}
do_test collate1-3.5 {
execsql {
SELECT a as c1, b as c2 FROM collate1t1 ORDER BY c1 COLLATE binary;
}
} {{} {} 0x45 69 0x5 5 1 1}
do_test collate1-3.6 {
execsql {
DROP TABLE collate1t1;
}
} {}
# Update for SQLite version 3. The collate1-4.* test cases were written
# before manifest types were introduced. The following test cases still
# work, due to the 'affinity' mechanism, but they don't prove anything
# about collation sequences.
#
do_test collate1-4.0 {
execsql {
CREATE TABLE collate1t1(c1 numeric, c2 text);
INSERT INTO collate1t1 VALUES(1, 1);
INSERT INTO collate1t1 VALUES(12, 12);
INSERT INTO collate1t1 VALUES(NULL, NULL);
INSERT INTO collate1t1 VALUES(101, 101);
}
} {}
do_test collate1-4.1 {
execsql {
SELECT c1 FROM collate1t1 ORDER BY 1;
}
} {{} 1 12 101}
do_test collate1-4.2 {
execsql {
SELECT c2 FROM collate1t1 ORDER BY 1;
}
} {{} 1 101 12}
do_test collate1-4.3 {
execsql {
SELECT c2+0 FROM collate1t1 ORDER BY 1;
}
} {{} 1 12 101}
do_test collate1-4.4 {
execsql {
SELECT c1||'' FROM collate1t1 ORDER BY 1;
}
} {{} 1 101 12}
do_test collate1-4.5 {
execsql {
DROP TABLE collate1t1;
}
} {}
finish_test