freeswitch/libs/spandsp/src/image_translate.c

467 lines
16 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* image_translate.c - Image translation routines for reworking colour
* and gray scale images to be bi-level images of an
* appropriate size to be FAX compatible.
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2009 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdlib.h>
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <memory.h>
#include <string.h>
#if defined(HAVE_TGMATH_H)
#include <tgmath.h>
#endif
#if defined(HAVE_MATH_H)
#include <math.h>
#endif
#include "floating_fudge.h"
#include <tiffio.h>
#include <assert.h>
#include "spandsp/telephony.h"
#include "spandsp/fast_convert.h"
#include "spandsp/logging.h"
#include "spandsp/saturated.h"
#include "spandsp/t4_rx.h"
#include "spandsp/t4_tx.h"
#if defined(SPANDSP_SUPPORT_T85)
#include "spandsp/t81_t82_arith_coding.h"
#include "spandsp/t85.h"
#endif
#include "spandsp/t4_t6_decode.h"
#include "spandsp/t4_t6_encode.h"
#include "spandsp/image_translate.h"
#include "spandsp/private/logging.h"
#if defined(SPANDSP_SUPPORT_T85)
#include "spandsp/private/t81_t82_arith_coding.h"
#include "spandsp/private/t85.h"
#endif
#include "spandsp/private/t4_t6_decode.h"
#include "spandsp/private/t4_t6_encode.h"
#include "spandsp/private/t4_rx.h"
#include "spandsp/private/t4_tx.h"
#include "spandsp/private/image_translate.h"
static int image_colour16_to_gray8_row(uint8_t mono[], uint16_t colour[], int pixels)
{
int i;
uint32_t gray;
for (i = 0; i < pixels; i++)
{
gray = colour[3*i]*19595 + colour[3*i + 1]*38469 + colour[3*i + 2]*7472;
mono[i] = saturateu8(gray >> 24);
}
return pixels;
}
/*- End of function --------------------------------------------------------*/
static int image_colour8_to_gray8_row(uint8_t mono[], uint8_t colour[], int pixels)
{
int i;
uint32_t gray;
for (i = 0; i < pixels; i++)
{
gray = colour[3*i]*19595 + colour[3*i + 1]*38469 + colour[3*i + 2]*7472;
mono[i] = saturateu8(gray >> 16);
}
return pixels;
}
/*- End of function --------------------------------------------------------*/
static int image_gray16_to_gray8_row(uint8_t mono[], uint16_t gray[], int pixels)
{
int i;
for (i = 0; i < pixels; i++)
mono[i] = gray[i] >> 8;
return pixels;
}
/*- End of function --------------------------------------------------------*/
static int get_and_scrunch_row(image_translate_state_t *s, uint8_t buf[], size_t len)
{
int row_len;
row_len = (*s->row_read_handler)(s->row_read_user_data, buf, s->input_width*s->bytes_per_pixel);
if (row_len != s->input_width*s->bytes_per_pixel)
return 0;
/* Scrunch colour down to gray, and scrunch 16 bit pixels down to 8 bit pixels */
switch (s->input_format)
{
case IMAGE_TRANSLATE_FROM_GRAY_16:
image_gray16_to_gray8_row(buf, (uint16_t *) buf, s->input_width);
break;
case IMAGE_TRANSLATE_FROM_COLOUR_16:
image_colour16_to_gray8_row(buf, (uint16_t *) buf, s->input_width);
break;
case IMAGE_TRANSLATE_FROM_COLOUR_8:
image_colour8_to_gray8_row(buf, buf, s->input_width);
break;
}
return row_len;
}
/*- End of function --------------------------------------------------------*/
static int image_resize_row(image_translate_state_t *s, uint8_t buf[], size_t len)
{
int i;
int output_width;
int output_length;
int input_width;
int input_length;
int x;
double c1;
double c2;
#if defined(SPANDSP_USE_FIXED_POINT)
int frac_row;
int frac_col;
#else
double int_part;
double frac_row;
double frac_col;
#endif
int row_len;
int skip;
uint8_t *p;
if (s->raw_output_row < 0)
return 0;
output_width = s->output_width - 1;
output_length = s->output_length - 1;
input_width = s->input_width - 1;
input_length = s->input_length - 1;
skip = s->raw_output_row*input_length/output_length;
if (skip >= s->raw_input_row)
{
skip++;
while (skip >= s->raw_input_row)
{
if (s->raw_input_row >= s->input_length)
{
s->raw_output_row = -1;
break;
}
row_len = get_and_scrunch_row(s, s->raw_pixel_row[0], s->input_width*s->bytes_per_pixel);
if (row_len != s->input_width*s->bytes_per_pixel)
{
s->raw_output_row = -1;
return 0;
}
s->raw_input_row++;
p = s->raw_pixel_row[0];
s->raw_pixel_row[0] = s->raw_pixel_row[1];
s->raw_pixel_row[1] = p;
}
}
#if defined(SPANDSP_USE_FIXED_POINT)
frac_row = s->raw_output_row*input_length/output_length;
frac_row = s->raw_output_row*input_length - frac_row*output_length;
for (i = 0; i < output_width; i++)
{
x = i*input_width/output_width;
frac_col = x - x*output_width;
c1 = s->raw_pixel_row[0][x] + (s->raw_pixel_row[0][x + 1] - s->raw_pixel_row[0][x])*frac_col;
c2 = s->raw_pixel_row[1][x] + (s->raw_pixel_row[1][x + 1] - s->raw_pixel_row[1][x])*frac_col;
buf[i] = saturateu8(c1 + (c2 - c1)*frac_row);
}
#else
frac_row = modf((double) s->raw_output_row*input_length/output_length, &int_part);
for (i = 0; i < output_width; i++)
{
frac_col = modf((double) i*input_width/output_width, &int_part);
x = int_part;
c1 = s->raw_pixel_row[0][x] + (s->raw_pixel_row[0][x + 1] - s->raw_pixel_row[0][x])*frac_col;
c2 = s->raw_pixel_row[1][x] + (s->raw_pixel_row[1][x + 1] - s->raw_pixel_row[1][x])*frac_col;
buf[i] = saturateu8(c1 + (c2 - c1)*frac_row);
}
#endif
if (++s->raw_output_row >= s->output_length)
s->raw_output_row = -1;
return len;
}
/*- End of function --------------------------------------------------------*/
static __inline__ uint8_t find_closest_palette_color(int in)
{
return (in >= 128) ? 255 : 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) image_translate_row(image_translate_state_t *s, uint8_t buf[], size_t len)
{
int x;
int y;
int i;
int j;
int limit;
int old_pixel;
int new_pixel;
int quant_error;
uint8_t *p;
uint8_t xx;
if (s->output_row < 0)
return 0;
y = s->output_row++;
/* This algorithm works over two rows, and outputs the earlier of the two. To
make this work:
- At row 0 we grab and scrunch two rows.
- From row 1 up to the last row we grab one new additional row each time.
- At the last row we dither and output, without getting an extra row in. */
for (i = (y == 0) ? 0 : 1; i < 2; i++)
{
p = s->pixel_row[0];
s->pixel_row[0] = s->pixel_row[1];
s->pixel_row[1] = p;
/* If this is the end of the image just ignore that there is now rubbish in pixel_row[1].
Mark that the end has occurred. This row will be properly output, and the next one
will fail, with the end of image condition (i.e. returning zero length) */
if (s->resize)
{
if (image_resize_row(s, s->pixel_row[1], s->output_width*s->bytes_per_pixel) != s->output_width*s->bytes_per_pixel)
s->output_row = -1;
}
else
{
if (get_and_scrunch_row(s, s->pixel_row[1], s->output_width*s->bytes_per_pixel) != s->output_width*s->bytes_per_pixel)
s->output_row = -1;
}
}
/* Apply Floyd-Steinberg dithering to the 8 bit pixels, using a bustrophodontic
scan, to reduce the grayscale image to pure black and white */
/* The first and last pixels in each row need special treatment, so we do not
step outside the row. */
if ((y & 1))
{
x = s->output_width - 1;
old_pixel = s->pixel_row[0][x];
new_pixel = find_closest_palette_color(old_pixel);
quant_error = old_pixel - new_pixel;
s->pixel_row[0][x + 0] = new_pixel;
s->pixel_row[0][x - 1] = saturateu8(s->pixel_row[0][x - 1] + (7*quant_error)/16);
s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16);
s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (1*quant_error)/16);
for ( ; x > 0; x--)
{
old_pixel = s->pixel_row[0][x];
new_pixel = find_closest_palette_color(old_pixel);
quant_error = old_pixel - new_pixel;
s->pixel_row[0][x + 0] = new_pixel;
s->pixel_row[0][x - 1] = saturateu8(s->pixel_row[0][x - 1] + (7*quant_error)/16);
s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (3*quant_error)/16);
s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16);
s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (1*quant_error)/16);
}
old_pixel = s->pixel_row[0][x];
new_pixel = find_closest_palette_color(old_pixel);
quant_error = old_pixel - new_pixel;
s->pixel_row[0][x + 0] = new_pixel;
s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (3*quant_error)/16);
s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16);
}
else
{
x = 0;
old_pixel = s->pixel_row[0][x];
new_pixel = find_closest_palette_color(old_pixel);
quant_error = old_pixel - new_pixel;
s->pixel_row[0][x + 0] = new_pixel;
s->pixel_row[0][x + 1] = saturateu8(s->pixel_row[0][x + 1] + (7*quant_error)/16);
s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16);
s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (1*quant_error)/16);
for ( ; x < s->output_width - 1; x++)
{
old_pixel = s->pixel_row[0][x];
new_pixel = find_closest_palette_color(old_pixel);
quant_error = old_pixel - new_pixel;
s->pixel_row[0][x + 0] = new_pixel;
s->pixel_row[0][x + 1] = saturateu8(s->pixel_row[0][x + 1] + (7*quant_error)/16);
s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (3*quant_error)/16);
s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16);
s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (1*quant_error)/16);
}
old_pixel = s->pixel_row[0][x];
new_pixel = find_closest_palette_color(old_pixel);
quant_error = old_pixel - new_pixel;
s->pixel_row[0][x + 0] = new_pixel;
s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (3*quant_error)/16);
s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16);
}
/* Now bit pack the pixel per byte row into a pixel per bit row. */
for (i = 0, x = 0; x < s->output_width; i++, x += 8)
{
xx = 0;
/* Allow for the possibility that the width is not a multiple of 8 */
limit = (8 <= s->output_width - x) ? 8 : (s->output_width - x);
for (j = 0; j < limit; j++)
{
if (s->pixel_row[0][x + j] <= 128)
xx |= (1 << (7 - j));
}
buf[i] = xx;
}
return i;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) image_translate_get_output_width(image_translate_state_t *s)
{
return s->output_width;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) image_translate_get_output_length(image_translate_state_t *s)
{
return s->output_length;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(image_translate_state_t *) image_translate_init(image_translate_state_t *s,
int input_format,
int input_width,
int input_length,
int output_width,
t4_row_read_handler_t row_read_handler,
void *row_read_user_data)
{
int i;
if (s == NULL)
{
if ((s = (image_translate_state_t *) malloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
s->input_format = input_format;
s->input_width = input_width;
s->input_length = input_length;
s->resize = (output_width > 0);
s->output_width = (s->resize) ? output_width : s->input_width;
s->output_length = (s->resize) ? s->input_length*s->output_width/s->input_width : s->input_length;
switch (s->input_format)
{
case IMAGE_TRANSLATE_FROM_GRAY_8:
s->bytes_per_pixel = 1;
break;
case IMAGE_TRANSLATE_FROM_GRAY_16:
s->bytes_per_pixel = 2;
break;
case IMAGE_TRANSLATE_FROM_COLOUR_8:
s->bytes_per_pixel = 3;
break;
case IMAGE_TRANSLATE_FROM_COLOUR_16:
s->bytes_per_pixel = 6;
break;
default:
s->bytes_per_pixel = 1;
break;
}
/* Allocate the two row buffers we need, using the space requirements we now have */
if (s->resize)
{
for (i = 0; i < 2; i++)
{
if ((s->raw_pixel_row[i] = (uint8_t *) malloc(s->input_width*s->bytes_per_pixel)) == NULL)
return NULL;
memset(s->raw_pixel_row[i], 0, s->input_width*s->bytes_per_pixel);
if ((s->pixel_row[i] = (uint8_t *) malloc(s->output_width*sizeof(uint8_t))) == NULL)
return NULL;
memset(s->pixel_row[i], 0, s->output_width*sizeof(uint8_t));
}
}
else
{
for (i = 0; i < 2; i++)
{
if ((s->pixel_row[i] = (uint8_t *) malloc(s->output_width*s->bytes_per_pixel)) == NULL)
return NULL;
memset(s->pixel_row[i], 0, s->output_width*s->bytes_per_pixel);
}
}
s->row_read_handler = row_read_handler;
s->row_read_user_data = row_read_user_data;
s->raw_input_row = 0;
s->raw_output_row = 0;
s->output_row = 0;
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) image_translate_release(image_translate_state_t *s)
{
int i;
for (i = 0; i < 2; i++)
{
if (s->raw_pixel_row[i])
{
free(s->raw_pixel_row[i]);
s->raw_pixel_row[i] = NULL;
}
if (s->pixel_row[i])
{
free(s->pixel_row[i]);
s->pixel_row[i] = NULL;
}
}
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) image_translate_free(image_translate_state_t *s)
{
int res;
res = image_translate_release(s);
free(s);
return res;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/