freeswitch/libs/apr-util/crypto/apr_sha1.c

373 lines
11 KiB
C

/* Copyright 2000-2005 The Apache Software Foundation or its licensors, as
* applicable.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The exported function:
*
* apr_sha1_base64(const char *clear, int len, char *out);
*
* provides a means to SHA1 crypt/encode a plaintext password in
* a way which makes password files compatible with those commonly
* used in netscape web and ldap installations. It was put together
* by Clinton Wong <clintdw@netcom.com>, who also notes that:
*
* Note: SHA1 support is useful for migration purposes, but is less
* secure than Apache's password format, since Apache's (MD5)
* password format uses a random eight character salt to generate
* one of many possible hashes for the same password. Netscape
* uses plain SHA1 without a salt, so the same password
* will always generate the same hash, making it easier
* to break since the search space is smaller.
*
* See also the documentation in support/SHA1 as to hints on how to
* migrate an existing netscape installation and other supplied utitlites.
*
* This software also makes use of the following component:
*
* NIST Secure Hash Algorithm
* heavily modified by Uwe Hollerbach uh@alumni.caltech edu
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* This code is hereby placed in the public domain
*/
#include "apr_sha1.h"
#include "apr_base64.h"
#include "apr_strings.h"
#include "apr_lib.h"
#if APR_CHARSET_EBCDIC
#include "apr_xlate.h"
#endif /*APR_CHARSET_EBCDIC*/
#include <string.h>
/* a bit faster & bigger, if defined */
#define UNROLL_LOOPS
/* NIST's proposed modification to SHA, 7/11/94 */
#define USE_MODIFIED_SHA
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* 32-bit rotate */
#define ROT32(x,n) ((x << n) | (x >> (32 - n)))
#define FUNC(n,i) \
temp = ROT32(A,5) + f##n(B,C,D) + E + W[i] + CONST##n; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define SHA_BLOCKSIZE 64
#if APR_CHARSET_EBCDIC
static apr_xlate_t *ebcdic2ascii_xlate;
APU_DECLARE(apr_status_t) apr_SHA1InitEBCDIC(apr_xlate_t *x)
{
apr_status_t rv;
int onoff;
/* Only single-byte conversion is supported.
*/
rv = apr_xlate_sb_get(x, &onoff);
if (rv) {
return rv;
}
if (!onoff) { /* If conversion is not single-byte-only */
return APR_EINVAL;
}
ebcdic2ascii_xlate = x;
return APR_SUCCESS;
}
#endif
/* do SHA transformation */
static void sha_transform(apr_sha1_ctx_t *sha_info)
{
int i;
apr_uint32_t temp, A, B, C, D, E, W[80];
for (i = 0; i < 16; ++i) {
W[i] = sha_info->data[i];
}
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#ifdef USE_MODIFIED_SHA
W[i] = ROT32(W[i], 1);
#endif /* USE_MODIFIED_SHA */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
#ifdef UNROLL_LOOPS
FUNC(1, 0); FUNC(1, 1); FUNC(1, 2); FUNC(1, 3); FUNC(1, 4);
FUNC(1, 5); FUNC(1, 6); FUNC(1, 7); FUNC(1, 8); FUNC(1, 9);
FUNC(1,10); FUNC(1,11); FUNC(1,12); FUNC(1,13); FUNC(1,14);
FUNC(1,15); FUNC(1,16); FUNC(1,17); FUNC(1,18); FUNC(1,19);
FUNC(2,20); FUNC(2,21); FUNC(2,22); FUNC(2,23); FUNC(2,24);
FUNC(2,25); FUNC(2,26); FUNC(2,27); FUNC(2,28); FUNC(2,29);
FUNC(2,30); FUNC(2,31); FUNC(2,32); FUNC(2,33); FUNC(2,34);
FUNC(2,35); FUNC(2,36); FUNC(2,37); FUNC(2,38); FUNC(2,39);
FUNC(3,40); FUNC(3,41); FUNC(3,42); FUNC(3,43); FUNC(3,44);
FUNC(3,45); FUNC(3,46); FUNC(3,47); FUNC(3,48); FUNC(3,49);
FUNC(3,50); FUNC(3,51); FUNC(3,52); FUNC(3,53); FUNC(3,54);
FUNC(3,55); FUNC(3,56); FUNC(3,57); FUNC(3,58); FUNC(3,59);
FUNC(4,60); FUNC(4,61); FUNC(4,62); FUNC(4,63); FUNC(4,64);
FUNC(4,65); FUNC(4,66); FUNC(4,67); FUNC(4,68); FUNC(4,69);
FUNC(4,70); FUNC(4,71); FUNC(4,72); FUNC(4,73); FUNC(4,74);
FUNC(4,75); FUNC(4,76); FUNC(4,77); FUNC(4,78); FUNC(4,79);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) {
FUNC(1,i);
}
for (i = 20; i < 40; ++i) {
FUNC(2,i);
}
for (i = 40; i < 60; ++i) {
FUNC(3,i);
}
for (i = 60; i < 80; ++i) {
FUNC(4,i);
}
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] += A;
sha_info->digest[1] += B;
sha_info->digest[2] += C;
sha_info->digest[3] += D;
sha_info->digest[4] += E;
}
union endianTest {
long Long;
char Char[sizeof(long)];
};
static char isLittleEndian(void)
{
static union endianTest u;
u.Long = 1;
return (u.Char[0] == 1);
}
/* change endianness of data */
/* count is the number of bytes to do an endian flip */
static void maybe_byte_reverse(apr_uint32_t *buffer, int count)
{
int i;
apr_byte_t ct[4], *cp;
if (isLittleEndian()) { /* do the swap only if it is little endian */
count /= sizeof(apr_uint32_t);
cp = (apr_byte_t *) buffer;
for (i = 0; i < count; ++i) {
ct[0] = cp[0];
ct[1] = cp[1];
ct[2] = cp[2];
ct[3] = cp[3];
cp[0] = ct[3];
cp[1] = ct[2];
cp[2] = ct[1];
cp[3] = ct[0];
cp += sizeof(apr_uint32_t);
}
}
}
/* initialize the SHA digest */
APU_DECLARE(void) apr_sha1_init(apr_sha1_ctx_t *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
/* update the SHA digest */
APU_DECLARE(void) apr_sha1_update_binary(apr_sha1_ctx_t *sha_info,
const unsigned char *buffer,
unsigned int count)
{
unsigned int i;
if ((sha_info->count_lo + ((apr_uint32_t) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (apr_uint32_t) count << 3;
sha_info->count_hi += (apr_uint32_t) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(((apr_byte_t *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
APU_DECLARE(void) apr_sha1_update(apr_sha1_ctx_t *sha_info, const char *buf,
unsigned int count)
{
#if APR_CHARSET_EBCDIC
int i;
const apr_byte_t *buffer = (const apr_byte_t *) buf;
apr_size_t inbytes_left, outbytes_left;
if ((sha_info->count_lo + ((apr_uint32_t) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (apr_uint32_t) count << 3;
sha_info->count_hi += (apr_uint32_t) count >> 29;
/* Is there a remainder of the previous Update operation? */
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
inbytes_left = outbytes_left = i;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
((apr_byte_t *) sha_info->data) + sha_info->local,
&outbytes_left);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
inbytes_left = outbytes_left = SHA_BLOCKSIZE;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
(apr_byte_t *) sha_info->data, &outbytes_left);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
inbytes_left = outbytes_left = count;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
(apr_byte_t *) sha_info->data, &outbytes_left);
sha_info->local = count;
#else
apr_sha1_update_binary(sha_info, (const unsigned char *) buf, count);
#endif
}
/* finish computing the SHA digest */
APU_DECLARE(void) apr_sha1_final(unsigned char digest[APR_SHA1_DIGESTSIZE],
apr_sha1_ctx_t *sha_info)
{
int count, i, j;
apr_uint32_t lo_bit_count, hi_bit_count, k;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((apr_byte_t *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8) {
memset(((apr_byte_t *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
memset((apr_byte_t *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
}
else {
memset(((apr_byte_t *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 8 - count);
}
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_info->data[14] = hi_bit_count;
sha_info->data[15] = lo_bit_count;
sha_transform(sha_info);
for (i = 0, j = 0; j < APR_SHA1_DIGESTSIZE; i++) {
k = sha_info->digest[i];
digest[j++] = (unsigned char) ((k >> 24) & 0xff);
digest[j++] = (unsigned char) ((k >> 16) & 0xff);
digest[j++] = (unsigned char) ((k >> 8) & 0xff);
digest[j++] = (unsigned char) (k & 0xff);
}
}
APU_DECLARE(void) apr_sha1_base64(const char *clear, int len, char *out)
{
int l;
apr_sha1_ctx_t context;
apr_byte_t digest[APR_SHA1_DIGESTSIZE];
if (strncmp(clear, APR_SHA1PW_ID, APR_SHA1PW_IDLEN) == 0) {
clear += APR_SHA1PW_IDLEN;
}
apr_sha1_init(&context);
apr_sha1_update(&context, clear, len);
apr_sha1_final(digest, &context);
/* private marker. */
apr_cpystrn(out, APR_SHA1PW_ID, APR_SHA1PW_IDLEN + 1);
/* SHA1 hash is always 20 chars */
l = apr_base64_encode_binary(out + APR_SHA1PW_IDLEN, digest, sizeof(digest));
out[l + APR_SHA1PW_IDLEN] = '\0';
/*
* output of base64 encoded SHA1 is always 28 chars + APR_SHA1PW_IDLEN
*/
}