freeswitch/libs/spandsp/src/complex_vector_float.c

232 lines
6.3 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* complex_vector_float.c - Floating complex vector arithmetic routines.
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2006 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id: complex_vector_float.c,v 1.15 2009/02/03 16:28:39 steveu Exp $
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#if defined(HAVE_TGMATH_H)
#include <tgmath.h>
#endif
#if defined(HAVE_MATH_H)
#include <math.h>
#endif
#include "floating_fudge.h"
#include <assert.h>
#if defined(SPANDSP_USE_MMX)
#include <mmintrin.h>
#endif
#if defined(SPANDSP_USE_SSE)
#include <xmmintrin.h>
#endif
#if defined(SPANDSP_USE_SSE2)
#include <emmintrin.h>
#endif
#if defined(SPANDSP_USE_SSE3)
#include <pmmintrin.h>
#endif
#if defined(SPANDSP_USE_SSE4_1)
#include <smmintrin.h>
#endif
#if defined(SPANDSP_USE_SSE4_2)
#include <nmmintrin.h>
#endif
#if defined(SPANDSP_USE_SSE4A)
#include <ammintrin.h>
#endif
#if defined(SPANDSP_USE_SSE5)
#include <bmmintrin.h>
#endif
#include "spandsp/telephony.h"
#include "spandsp/logging.h"
#include "spandsp/complex.h"
#include "spandsp/vector_float.h"
#include "spandsp/complex_vector_float.h"
#if defined(__GNUC__) && defined(SPANDSP_USE_SSE3)
SPAN_DECLARE(void) cvec_mulf(complexf_t z[], const complexf_t x[], const complexf_t y[], int n)
{
int i;
__m128 n0;
__m128 n1;
__m128 n2;
__m128 n3;
if ((i = n & ~1))
{
i <<= 1;
for (i -= 4; i >= 0; i -= 4)
{
n3 = _mm_loadu_ps((float *) x + i);
n0 = _mm_moveldup_ps(n3);
n1 = _mm_loadu_ps((float *) y + i);
n0 = _mm_mul_ps(n0, n1);
n1 = _mm_shuffle_ps(n1, n1, 0xB1);
n2 = _mm_movehdup_ps(n3);
n2 = _mm_mul_ps(n2, n1);
n0 = _mm_addsub_ps(n0, n2);
_mm_storeu_ps((float *) z + i, n0);
}
}
/* Now deal with the last element, which doesn't fill an SSE2 register */
switch (n & 1)
{
case 1:
z[n - 1].re = x[n - 1].re*y[n - 1].re - x[n - 1].im*y[n - 1].im;
z[n - 1].im = x[n - 1].re*y[n - 1].im + x[n - 1].im*y[n - 1].re;
}
}
#else
SPAN_DECLARE(void) cvec_mulf(complexf_t z[], const complexf_t x[], const complexf_t y[], int n)
{
int i;
for (i = 0; i < n; i++)
{
z[i].re = x[i].re*y[i].re - x[i].im*y[i].im;
z[i].im = x[i].re*y[i].im + x[i].im*y[i].re;
}
}
#endif
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) cvec_mul(complex_t z[], const complex_t x[], const complex_t y[], int n)
{
int i;
for (i = 0; i < n; i++)
{
z[i].re = x[i].re*y[i].re - x[i].im*y[i].im;
z[i].im = x[i].re*y[i].im + x[i].im*y[i].re;
}
}
/*- End of function --------------------------------------------------------*/
#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) cvec_mull(complexl_t z[], const complexl_t x[], const complexl_t y[], int n)
{
int i;
for (i = 0; i < n; i++)
{
z[i].re = x[i].re*y[i].re - x[i].im*y[i].im;
z[i].im = x[i].re*y[i].im + x[i].im*y[i].re;
}
}
/*- End of function --------------------------------------------------------*/
#endif
SPAN_DECLARE(complexf_t) cvec_dot_prodf(const complexf_t x[], const complexf_t y[], int n)
{
int i;
complexf_t z;
z = complex_setf(0.0f, 0.0f);
for (i = 0; i < n; i++)
{
z.re += (x[i].re*y[i].re - x[i].im*y[i].im);
z.im += (x[i].re*y[i].im + x[i].im*y[i].re);
}
return z;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(complex_t) cvec_dot_prod(const complex_t x[], const complex_t y[], int n)
{
int i;
complex_t z;
z = complex_set(0.0, 0.0);
for (i = 0; i < n; i++)
{
z.re += (x[i].re*y[i].re - x[i].im*y[i].im);
z.im += (x[i].re*y[i].im + x[i].im*y[i].re);
}
return z;
}
/*- End of function --------------------------------------------------------*/
#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(complexl_t) cvec_dot_prodl(const complexl_t x[], const complexl_t y[], int n)
{
int i;
complexl_t z;
z = complex_setl(0.0L, 0.0L);
for (i = 0; i < n; i++)
{
z.re += (x[i].re*y[i].re - x[i].im*y[i].im);
z.im += (x[i].re*y[i].im + x[i].im*y[i].re);
}
return z;
}
/*- End of function --------------------------------------------------------*/
#endif
SPAN_DECLARE(complexf_t) cvec_circular_dot_prodf(const complexf_t x[], const complexf_t y[], int n, int pos)
{
complexf_t z;
complexf_t z1;
z = cvec_dot_prodf(&x[pos], &y[0], n - pos);
z1 = cvec_dot_prodf(&x[0], &y[n - pos], pos);
z = complex_addf(&z, &z1);
return z;
}
/*- End of function --------------------------------------------------------*/
#define LMS_LEAK_RATE 0.9999f
SPAN_DECLARE(void) cvec_lmsf(const complexf_t x[], complexf_t y[], int n, const complexf_t *error)
{
int i;
for (i = 0; i < n; i++)
{
/* Leak a little to tame uncontrolled wandering */
y[i].re = y[i].re*LMS_LEAK_RATE + (x[i].im*error->im + x[i].re*error->re);
y[i].im = y[i].im*LMS_LEAK_RATE + (x[i].re*error->im - x[i].im*error->re);
}
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) cvec_circular_lmsf(const complexf_t x[], complexf_t y[], int n, int pos, const complexf_t *error)
{
cvec_lmsf(&x[pos], &y[0], n - pos, error);
cvec_lmsf(&x[0], &y[n - pos], pos, error);
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/