1463 lines
56 KiB
C
1463 lines
56 KiB
C
#define IAXMODEM_STUFF
|
|
/*
|
|
* SpanDSP - a series of DSP components for telephony
|
|
*
|
|
* v17rx.c - ITU V.17 modem receive part
|
|
*
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
*
|
|
* Copyright (C) 2004, 2005, 2006, 2007 Steve Underwood
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 2.1,
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* $Id: v17rx.c,v 1.153.4.6 2009/12/28 12:20:46 steveu Exp $
|
|
*/
|
|
|
|
/*! \file */
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#if defined(HAVE_TGMATH_H)
|
|
#include <tgmath.h>
|
|
#endif
|
|
#if defined(HAVE_MATH_H)
|
|
#include <math.h>
|
|
#endif
|
|
#include "floating_fudge.h"
|
|
|
|
#include "spandsp/telephony.h"
|
|
#include "spandsp/logging.h"
|
|
#include "spandsp/complex.h"
|
|
#include "spandsp/vector_float.h"
|
|
#include "spandsp/complex_vector_float.h"
|
|
#include "spandsp/vector_int.h"
|
|
#include "spandsp/complex_vector_int.h"
|
|
#include "spandsp/async.h"
|
|
#include "spandsp/power_meter.h"
|
|
#include "spandsp/arctan2.h"
|
|
#include "spandsp/dds.h"
|
|
#include "spandsp/complex_filters.h"
|
|
|
|
#include "spandsp/v29rx.h"
|
|
#include "spandsp/v17tx.h"
|
|
#include "spandsp/v17rx.h"
|
|
|
|
#include "spandsp/private/logging.h"
|
|
#include "spandsp/private/v17rx.h"
|
|
|
|
#include "v17_v32bis_tx_constellation_maps.h"
|
|
#include "v17_v32bis_rx_constellation_maps.h"
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
#include "v17_v32bis_rx_fixed_rrc.h"
|
|
#else
|
|
#include "v17_v32bis_rx_floating_rrc.h"
|
|
#endif
|
|
|
|
/*! The nominal frequency of the carrier, in Hertz */
|
|
#define CARRIER_NOMINAL_FREQ 1800.0f
|
|
/*! The nominal baud or symbol rate */
|
|
#define BAUD_RATE 2400
|
|
/*! The adaption rate coefficient for the equalizer during initial training */
|
|
#define EQUALIZER_DELTA 0.21f
|
|
/*! The adaption rate coefficient for the equalizer during continuous fine tuning */
|
|
#define EQUALIZER_SLOW_ADAPT_RATIO 0.1f
|
|
|
|
/* Segments of the training sequence */
|
|
/*! The length of training segment 1, in symbols */
|
|
#define V17_TRAINING_SEG_1_LEN 256
|
|
/*! The length of training segment 2 in long training mode, in symbols */
|
|
#define V17_TRAINING_SEG_2_LEN 2976
|
|
/*! The length of training segment 2 in short training mode, in symbols */
|
|
#define V17_TRAINING_SHORT_SEG_2_LEN 38
|
|
/*! The length of training segment 3, in symbols */
|
|
#define V17_TRAINING_SEG_3_LEN 64
|
|
/*! The length of training segment 4A, in symbols */
|
|
#define V17_TRAINING_SEG_4A_LEN 15
|
|
/*! The length of training segment 4, in symbols */
|
|
#define V17_TRAINING_SEG_4_LEN 48
|
|
|
|
/*! The 16 bit pattern used in the bridge section of the training sequence */
|
|
#define V17_BRIDGE_WORD 0x8880
|
|
|
|
/*! The length of the equalizer buffer */
|
|
#define V17_EQUALIZER_LEN (V17_EQUALIZER_PRE_LEN + 1 + V17_EQUALIZER_POST_LEN)
|
|
|
|
enum
|
|
{
|
|
TRAINING_STAGE_NORMAL_OPERATION = 0,
|
|
TRAINING_STAGE_SYMBOL_ACQUISITION,
|
|
TRAINING_STAGE_LOG_PHASE,
|
|
TRAINING_STAGE_SHORT_WAIT_FOR_CDBA,
|
|
TRAINING_STAGE_WAIT_FOR_CDBA,
|
|
TRAINING_STAGE_COARSE_TRAIN_ON_CDBA,
|
|
TRAINING_STAGE_FINE_TRAIN_ON_CDBA,
|
|
TRAINING_STAGE_SHORT_TRAIN_ON_CDBA_AND_TEST,
|
|
TRAINING_STAGE_TRAIN_ON_CDBA_AND_TEST,
|
|
TRAINING_STAGE_BRIDGE,
|
|
TRAINING_STAGE_TCM_WINDUP,
|
|
TRAINING_STAGE_TEST_ONES,
|
|
TRAINING_STAGE_PARKED
|
|
};
|
|
|
|
/* Coefficients for the band edge symbol timing synchroniser (alpha = 0.99) */
|
|
/* low_edge = 2.0f*M_PI*(CARRIER_NOMINAL_FREQ - BAUD_RATE/2.0f)/SAMPLE_RATE; */
|
|
/* high_edge = 2.0f*M_PI*(CARRIER_NOMINAL_FREQ + BAUD_RATE/2.0f)/SAMPLE_RATE; */
|
|
#define SIN_LOW_BAND_EDGE 0.453990499f
|
|
#define COS_LOW_BAND_EDGE 0.891006542f
|
|
#define SIN_HIGH_BAND_EDGE 0.707106781f
|
|
#define COS_HIGH_BAND_EDGE -0.707106781f
|
|
#define ALPHA 0.99f
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
#define SYNC_LOW_BAND_EDGE_COEFF_0 ((int)(FP_FACTOR*(2.0f*ALPHA*COS_LOW_BAND_EDGE)))
|
|
#define SYNC_LOW_BAND_EDGE_COEFF_1 ((int)(FP_FACTOR*(-ALPHA*ALPHA)))
|
|
#define SYNC_LOW_BAND_EDGE_COEFF_2 ((int)(FP_FACTOR*(-ALPHA*SIN_LOW_BAND_EDGE)))
|
|
#define SYNC_HIGH_BAND_EDGE_COEFF_0 ((int)(FP_FACTOR*(2.0f*ALPHA*COS_HIGH_BAND_EDGE)))
|
|
#define SYNC_HIGH_BAND_EDGE_COEFF_1 ((int)(FP_FACTOR*(-ALPHA*ALPHA)))
|
|
#define SYNC_HIGH_BAND_EDGE_COEFF_2 ((int)(FP_FACTOR*(-ALPHA*SIN_HIGH_BAND_EDGE)))
|
|
#define SYNC_MIXED_EDGES_COEFF_3 ((int)(FP_FACTOR*(-ALPHA*ALPHA*(SIN_HIGH_BAND_EDGE*COS_LOW_BAND_EDGE - SIN_LOW_BAND_EDGE*COS_HIGH_BAND_EDGE))))
|
|
#else
|
|
#define SYNC_LOW_BAND_EDGE_COEFF_0 (2.0f*ALPHA*COS_LOW_BAND_EDGE)
|
|
#define SYNC_LOW_BAND_EDGE_COEFF_1 (-ALPHA*ALPHA)
|
|
#define SYNC_LOW_BAND_EDGE_COEFF_2 (-ALPHA*SIN_LOW_BAND_EDGE)
|
|
#define SYNC_HIGH_BAND_EDGE_COEFF_0 (2.0f*ALPHA*COS_HIGH_BAND_EDGE)
|
|
#define SYNC_HIGH_BAND_EDGE_COEFF_1 (-ALPHA*ALPHA)
|
|
#define SYNC_HIGH_BAND_EDGE_COEFF_2 (-ALPHA*SIN_HIGH_BAND_EDGE)
|
|
#define SYNC_MIXED_EDGES_COEFF_3 (-ALPHA*ALPHA*(SIN_HIGH_BAND_EDGE*COS_LOW_BAND_EDGE - SIN_LOW_BAND_EDGE*COS_HIGH_BAND_EDGE))
|
|
#endif
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
static const int constellation_spacing[4] =
|
|
{
|
|
((int)(FP_FACTOR*1.414f),
|
|
((int)(FP_FACTOR*2.0f)},
|
|
((int)(FP_FACTOR*2.828f)},
|
|
((int)(FP_FACTOR*4.0f)},
|
|
};
|
|
#else
|
|
static const float constellation_spacing[4] =
|
|
{
|
|
1.414f,
|
|
2.0f,
|
|
2.828f,
|
|
4.0f
|
|
};
|
|
#endif
|
|
|
|
SPAN_DECLARE(float) v17_rx_carrier_frequency(v17_rx_state_t *s)
|
|
{
|
|
return dds_frequencyf(s->carrier_phase_rate);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(float) v17_rx_symbol_timing_correction(v17_rx_state_t *s)
|
|
{
|
|
return (float) s->total_baud_timing_correction/((float) RX_PULSESHAPER_COEFF_SETS*10.0f/3.0f);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(float) v17_rx_signal_power(v17_rx_state_t *s)
|
|
{
|
|
return power_meter_current_dbm0(&s->power) + 3.98f;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v17_rx_signal_cutoff(v17_rx_state_t *s, float cutoff)
|
|
{
|
|
/* The 0.4 factor allows for the gain of the DC blocker */
|
|
s->carrier_on_power = (int32_t) (power_meter_level_dbm0(cutoff + 2.5f)*0.4f);
|
|
s->carrier_off_power = (int32_t) (power_meter_level_dbm0(cutoff - 2.5f)*0.4f);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void report_status_change(v17_rx_state_t *s, int status)
|
|
{
|
|
if (s->status_handler)
|
|
s->status_handler(s->status_user_data, status);
|
|
else if (s->put_bit)
|
|
s->put_bit(s->put_bit_user_data, status);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
SPAN_DECLARE(int) v17_rx_equalizer_state(v17_rx_state_t *s, complexi16_t **coeffs)
|
|
#else
|
|
SPAN_DECLARE(int) v17_rx_equalizer_state(v17_rx_state_t *s, complexf_t **coeffs)
|
|
#endif
|
|
{
|
|
*coeffs = s->eq_coeff;
|
|
return V17_EQUALIZER_LEN;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void equalizer_save(v17_rx_state_t *s)
|
|
{
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
cvec_copyi16(s->eq_coeff_save, s->eq_coeff, V17_EQUALIZER_LEN);
|
|
#else
|
|
cvec_copyf(s->eq_coeff_save, s->eq_coeff, V17_EQUALIZER_LEN);
|
|
#endif
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void equalizer_restore(v17_rx_state_t *s)
|
|
{
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
cvec_copyi16(s->eq_coeff, s->eq_coeff_save, V17_EQUALIZER_LEN);
|
|
cvec_zeroi16(s->eq_buf, V17_EQUALIZER_LEN);
|
|
s->eq_delta = 32768.0f*EQUALIZER_SLOW_ADAPT_RATIO*EQUALIZER_DELTA/V17_EQUALIZER_LEN;
|
|
#else
|
|
cvec_copyf(s->eq_coeff, s->eq_coeff_save, V17_EQUALIZER_LEN);
|
|
cvec_zerof(s->eq_buf, V17_EQUALIZER_LEN);
|
|
s->eq_delta = EQUALIZER_SLOW_ADAPT_RATIO*EQUALIZER_DELTA/V17_EQUALIZER_LEN;
|
|
#endif
|
|
|
|
s->eq_put_step = RX_PULSESHAPER_COEFF_SETS*10/(3*2) - 1;
|
|
s->eq_step = 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void equalizer_reset(v17_rx_state_t *s)
|
|
{
|
|
/* Start with an equalizer based on everything being perfect */
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
cvec_zeroi16(s->eq_coeff, V17_EQUALIZER_LEN);
|
|
s->eq_coeff[V17_EQUALIZER_PRE_LEN] = complex_seti16(3*FP_FACTOR, 0);
|
|
cvec_zeroi16(s->eq_buf, V17_EQUALIZER_LEN);
|
|
s->eq_delta = 32768.0f*EQUALIZER_DELTA/V17_EQUALIZER_LEN;
|
|
#else
|
|
cvec_zerof(s->eq_coeff, V17_EQUALIZER_LEN);
|
|
s->eq_coeff[V17_EQUALIZER_PRE_LEN] = complex_setf(3.0f, 0.0f);
|
|
cvec_zerof(s->eq_buf, V17_EQUALIZER_LEN);
|
|
s->eq_delta = EQUALIZER_DELTA/V17_EQUALIZER_LEN;
|
|
#endif
|
|
|
|
s->eq_put_step = RX_PULSESHAPER_COEFF_SETS*10/(3*2) - 1;
|
|
s->eq_step = 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
static __inline__ complexi16_t equalizer_get(v17_rx_state_t *s)
|
|
#else
|
|
static __inline__ complexf_t equalizer_get(v17_rx_state_t *s)
|
|
#endif
|
|
{
|
|
return cvec_circular_dot_prodf(s->eq_buf, s->eq_coeff, V17_EQUALIZER_LEN, s->eq_step);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
static void tune_equalizer(v17_rx_state_t *s, const complexi16_t *z, const complexi16_t *target)
|
|
{
|
|
complexi16_t err;
|
|
|
|
/* Find the x and y mismatch from the exact constellation position. */
|
|
err.re = target->re*FP_FACTOR - z->re;
|
|
err.im = target->im*FP_FACTOR - z->im;
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Equalizer error %f\n", sqrt(err.re*err.re + err.im*err.im));
|
|
err.re = ((int32_t) err.re*(int32_t) s->eq_delta) >> 15;
|
|
err.im = ((int32_t) err.im*(int32_t) s->eq_delta) >> 15;
|
|
cvec_circular_lmsi16(s->eq_buf, s->eq_coeff, V17_EQUALIZER_LEN, s->eq_step, &err);
|
|
}
|
|
#else
|
|
static void tune_equalizer(v17_rx_state_t *s, const complexf_t *z, const complexf_t *target)
|
|
{
|
|
complexf_t err;
|
|
|
|
/* Find the x and y mismatch from the exact constellation position. */
|
|
err = complex_subf(target, z);
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Equalizer error %f\n", sqrt(err.re*err.re + err.im*err.im));
|
|
err.re *= s->eq_delta;
|
|
err.im *= s->eq_delta;
|
|
cvec_circular_lmsf(s->eq_buf, s->eq_coeff, V17_EQUALIZER_LEN, s->eq_step, &err);
|
|
}
|
|
#endif
|
|
|
|
static int descramble(v17_rx_state_t *s, int in_bit)
|
|
{
|
|
int out_bit;
|
|
|
|
//out_bit = (in_bit ^ (s->scramble_reg >> s->scrambler_tap) ^ (s->scramble_reg >> (23 - 1))) & 1;
|
|
out_bit = (in_bit ^ (s->scramble_reg >> (18 - 1)) ^ (s->scramble_reg >> (23 - 1))) & 1;
|
|
s->scramble_reg <<= 1;
|
|
if (s->training_stage > TRAINING_STAGE_NORMAL_OPERATION && s->training_stage < TRAINING_STAGE_TCM_WINDUP)
|
|
s->scramble_reg |= out_bit;
|
|
else
|
|
s->scramble_reg |= (in_bit & 1);
|
|
return out_bit;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void track_carrier(v17_rx_state_t *s, const complexf_t *z, const complexf_t *target)
|
|
{
|
|
float error;
|
|
|
|
/* For small errors the imaginary part of the difference between the actual and the target
|
|
positions is proportional to the phase error, for any particular target. However, the
|
|
different amplitudes of the various target positions scale things. */
|
|
error = z->im*target->re - z->re*target->im;
|
|
|
|
s->carrier_phase_rate += (int32_t) (s->carrier_track_i*error);
|
|
s->carrier_phase += (int32_t) (s->carrier_track_p*error);
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Im = %15.5f f = %15.5f\n", error, dds_frequencyf(s->carrier_phase_rate));
|
|
//printf("XXX Im = %15.5f f = %15.5f %f %f %f %f (%f %f)\n", error, dds_frequencyf(s->carrier_phase_rate), target->re, target->im, z->re, z->im, s->carrier_track_i, s->carrier_track_p);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static __inline__ void put_bit(v17_rx_state_t *s, int bit)
|
|
{
|
|
int out_bit;
|
|
|
|
/* We need to strip the last part of the training - the test period of all 1s -
|
|
before we let data go to the application. */
|
|
if (s->training_stage == TRAINING_STAGE_NORMAL_OPERATION)
|
|
{
|
|
out_bit = descramble(s, bit);
|
|
s->put_bit(s->put_bit_user_data, out_bit);
|
|
}
|
|
else if (s->training_stage == TRAINING_STAGE_TEST_ONES)
|
|
{
|
|
/* The bits during the final stage of training should be all ones. However,
|
|
buggy modems mean you cannot rely on this. Therefore we don't bother
|
|
testing for ones, but just rely on a constellation mismatch measurement. */
|
|
out_bit = descramble(s, bit);
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "A 1 is really %d\n", out_bit);
|
|
}
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
static __inline__ uint32_t dist_sq(const complexi_t *x, const complexi_t *y)
|
|
{
|
|
return (x->re - y->re)*(x->re - y->re) + (x->im - y->im)*(x->im - y->im);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
#else
|
|
static __inline__ float dist_sq(const complexf_t *x, const complexf_t *y)
|
|
{
|
|
return (x->re - y->re)*(x->re - y->re) + (x->im - y->im)*(x->im - y->im);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
#endif
|
|
|
|
static int decode_baud(v17_rx_state_t *s, complexf_t *z)
|
|
{
|
|
static const uint8_t v32bis_4800_differential_decoder[4][4] =
|
|
{
|
|
{2, 3, 0, 1},
|
|
{0, 2, 1, 3},
|
|
{3, 1, 2, 0},
|
|
{1, 0, 3, 2}
|
|
};
|
|
static const uint8_t v17_differential_decoder[4][4] =
|
|
{
|
|
{0, 1, 2, 3},
|
|
{3, 0, 1, 2},
|
|
{2, 3, 0, 1},
|
|
{1, 2, 3, 0}
|
|
};
|
|
static const uint8_t tcm_paths[8][4] =
|
|
{
|
|
{0, 6, 2, 4},
|
|
{6, 0, 4, 2},
|
|
{2, 4, 0, 6},
|
|
{4, 2, 6, 0},
|
|
{1, 3, 7, 5},
|
|
{5, 7, 3, 1},
|
|
{7, 5, 1, 3},
|
|
{3, 1, 5, 7}
|
|
};
|
|
int nearest;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
int re;
|
|
int im;
|
|
int raw;
|
|
int constellation_state;
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
#define DIST_FACTOR 2048 /* Something less than sqrt(0xFFFFFFFF/10)/10 */
|
|
complexi_t zi;
|
|
uint32_t distances[8];
|
|
uint32_t new_distances[8];
|
|
uint32_t min;
|
|
complexi_t ci;
|
|
#else
|
|
float distances[8];
|
|
float new_distances[8];
|
|
float min;
|
|
#endif
|
|
|
|
re = (int) ((z->re + 9.0f)*2.0f);
|
|
if (re > 35)
|
|
re = 35;
|
|
else if (re < 0)
|
|
re = 0;
|
|
im = (int) ((z->im + 9.0f)*2.0f);
|
|
if (im > 35)
|
|
im = 35;
|
|
else if (im < 0)
|
|
im = 0;
|
|
|
|
if (s->bits_per_symbol == 2)
|
|
{
|
|
/* 4800bps V.32bis mode, without trellis coding */
|
|
nearest = constel_map_4800[re][im];
|
|
raw = v32bis_4800_differential_decoder[s->diff][nearest];
|
|
s->diff = nearest;
|
|
put_bit(s, raw);
|
|
put_bit(s, raw >> 1);
|
|
return nearest;
|
|
}
|
|
|
|
/* Find a set of 8 candidate constellation positions, that are the closest
|
|
to the target, with different patterns in the last 3 bits. */
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
min = 0xFFFFFFFF;
|
|
zi = complex_seti(z->re*DIST_FACTOR, z->im*DIST_FACTOR);
|
|
#else
|
|
min = 9999999.0f;
|
|
#endif
|
|
j = 0;
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
nearest = constel_maps[s->space_map][re][im][i];
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
ci = complex_seti(s->constellation[nearest].re*DIST_FACTOR,
|
|
s->constellation[nearest].im*DIST_FACTOR);
|
|
distances[i] = dist_sq(&ci, &zi);
|
|
#else
|
|
distances[i] = dist_sq(&s->constellation[nearest], z);
|
|
#endif
|
|
if (min > distances[i])
|
|
{
|
|
min = distances[i];
|
|
j = i;
|
|
}
|
|
}
|
|
/* Use the nearest of these soft-decisions as the basis for DFE */
|
|
constellation_state = constel_maps[s->space_map][re][im][j];
|
|
/* Control the equalizer, carrier tracking, etc. based on the non-trellis
|
|
corrected information. The trellis correct stuff comes out a bit late. */
|
|
track_carrier(s, z, &s->constellation[constellation_state]);
|
|
//tune_equalizer(s, z, &s->constellation[constellation_state]);
|
|
|
|
/* Now do the trellis decoding */
|
|
|
|
/* TODO: change to processing blocks of stored symbols here, instead of processing
|
|
one symbol at a time, to speed up the processing. */
|
|
|
|
/* Update the minimum accumulated distance to each of the 8 states */
|
|
if (++s->trellis_ptr >= V17_TRELLIS_STORAGE_DEPTH)
|
|
s->trellis_ptr = 0;
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
min = distances[tcm_paths[i][0]] + s->distances[0];
|
|
k = 0;
|
|
for (j = 1; j < 4; j++)
|
|
{
|
|
if (min > distances[tcm_paths[i][j]] + s->distances[j << 1])
|
|
{
|
|
min = distances[tcm_paths[i][j]] + s->distances[j << 1];
|
|
k = j;
|
|
}
|
|
}
|
|
/* Use an elementary IIR filter to track the distance to date. */
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
new_distances[i] = s->distances[k << 1]*9/10 + distances[tcm_paths[i][k]]*1/10;
|
|
#else
|
|
new_distances[i] = s->distances[k << 1]*0.9f + distances[tcm_paths[i][k]]*0.1f;
|
|
#endif
|
|
s->full_path_to_past_state_locations[s->trellis_ptr][i] = constel_maps[s->space_map][re][im][tcm_paths[i][k]];
|
|
s->past_state_locations[s->trellis_ptr][i] = k << 1;
|
|
}
|
|
for (i = 4; i < 8; i++)
|
|
{
|
|
min = distances[tcm_paths[i][0]] + s->distances[1];
|
|
k = 0;
|
|
for (j = 1; j < 4; j++)
|
|
{
|
|
if (min > distances[tcm_paths[i][j]] + s->distances[(j << 1) + 1])
|
|
{
|
|
min = distances[tcm_paths[i][j]] + s->distances[(j << 1) + 1];
|
|
k = j;
|
|
}
|
|
}
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
new_distances[i] = s->distances[(k << 1) + 1]*9/10 + distances[tcm_paths[i][k]]*1/10;
|
|
#else
|
|
new_distances[i] = s->distances[(k << 1) + 1]*0.9f + distances[tcm_paths[i][k]]*0.1f;
|
|
#endif
|
|
s->full_path_to_past_state_locations[s->trellis_ptr][i] = constel_maps[s->space_map][re][im][tcm_paths[i][k]];
|
|
s->past_state_locations[s->trellis_ptr][i] = (k << 1) + 1;
|
|
}
|
|
memcpy(s->distances, new_distances, sizeof(s->distances));
|
|
|
|
/* Find the minimum distance to date. This is the start of the path back to the result. */
|
|
min = s->distances[0];
|
|
k = 0;
|
|
for (i = 1; i < 8; i++)
|
|
{
|
|
if (min > s->distances[i])
|
|
{
|
|
min = s->distances[i];
|
|
k = i;
|
|
}
|
|
}
|
|
/* Trace back through every time step, starting with the current one, and find the
|
|
state from which the path came one step before. At the end of this search, the
|
|
last state found also points to the constellation point at that state. This is the
|
|
output of the trellis. */
|
|
for (i = 0, j = s->trellis_ptr; i < V17_TRELLIS_LOOKBACK_DEPTH - 1; i++)
|
|
{
|
|
k = s->past_state_locations[j][k];
|
|
if (--j < 0)
|
|
j = V17_TRELLIS_STORAGE_DEPTH - 1;
|
|
}
|
|
nearest = s->full_path_to_past_state_locations[j][k] >> 1;
|
|
|
|
/* Differentially decode */
|
|
raw = (nearest & 0x3C) | v17_differential_decoder[s->diff][nearest & 0x03];
|
|
s->diff = nearest & 0x03;
|
|
for (i = 0; i < s->bits_per_symbol; i++)
|
|
{
|
|
put_bit(s, raw);
|
|
raw >>= 1;
|
|
}
|
|
return constellation_state;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static __inline__ void symbol_sync(v17_rx_state_t *s)
|
|
{
|
|
int i;
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
int32_t v;
|
|
int32_t p;
|
|
#else
|
|
float v;
|
|
float p;
|
|
#endif
|
|
|
|
/* This routine adapts the position of the half baud samples entering the equalizer. */
|
|
|
|
/* This symbol sync scheme is based on the technique first described by Dominique Godard in
|
|
Passband Timing Recovery in an All-Digital Modem Receiver
|
|
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-26, NO. 5, MAY 1978 */
|
|
|
|
/* This is slightly rearranged for figure 3b of the Godard paper, as this saves a couple of
|
|
maths operations */
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
/* TODO: The scalings used here need more thorough evaluation, to see if overflows are possible. */
|
|
/* Cross correlate */
|
|
v = (((s->symbol_sync_low[1] >> 5)*(s->symbol_sync_high[0] >> 4)) >> 15)*SYNC_LOW_BAND_EDGE_COEFF_2
|
|
- (((s->symbol_sync_low[0] >> 5)*(s->symbol_sync_high[1] >> 4)) >> 15)*SYNC_HIGH_BAND_EDGE_COEFF_2
|
|
+ (((s->symbol_sync_low[1] >> 5)*(s->symbol_sync_high[1] >> 4)) >> 15)*SYNC_MIXED_EDGES_COEFF_3;
|
|
/* Filter away any DC component */
|
|
p = v - s->symbol_sync_dc_filter[1];
|
|
s->symbol_sync_dc_filter[1] = s->symbol_sync_dc_filter[0];
|
|
s->symbol_sync_dc_filter[0] = v;
|
|
/* A little integration will now filter away much of the HF noise */
|
|
s->baud_phase -= p;
|
|
if (abs(s->baud_phase) > 100*FP_FACTOR)
|
|
{
|
|
if (s->baud_phase > 0)
|
|
i = (s->baud_phase > 1000*FP_FACTOR) ? 15 : 1;
|
|
else
|
|
i = (s->baud_phase < -1000*FP_FACTOR) ? -15 : -1;
|
|
//printf("v = %10.5f %5d - %f %f %d %d\n", v, i, p, s->baud_phase, s->total_baud_timing_correction);
|
|
s->eq_put_step += i;
|
|
s->total_baud_timing_correction += i;
|
|
}
|
|
#else
|
|
/* Cross correlate */
|
|
v = s->symbol_sync_low[1]*s->symbol_sync_high[0]*SYNC_LOW_BAND_EDGE_COEFF_2
|
|
- s->symbol_sync_low[0]*s->symbol_sync_high[1]*SYNC_HIGH_BAND_EDGE_COEFF_2
|
|
+ s->symbol_sync_low[1]*s->symbol_sync_high[1]*SYNC_MIXED_EDGES_COEFF_3;
|
|
/* Filter away any DC component */
|
|
p = v - s->symbol_sync_dc_filter[1];
|
|
s->symbol_sync_dc_filter[1] = s->symbol_sync_dc_filter[0];
|
|
s->symbol_sync_dc_filter[0] = v;
|
|
/* A little integration will now filter away much of the HF noise */
|
|
s->baud_phase -= p;
|
|
if (fabsf(s->baud_phase) > 100.0f)
|
|
{
|
|
if (s->baud_phase > 0.0f)
|
|
i = (s->baud_phase > 1000.0f) ? 15 : 1;
|
|
else
|
|
i = (s->baud_phase < -1000.0f) ? -15 : -1;
|
|
//printf("v = %10.5f %5d - %f %f %d\n", v, i, p, s->baud_phase, s->total_baud_timing_correction);
|
|
s->eq_put_step += i;
|
|
s->total_baud_timing_correction += i;
|
|
}
|
|
#endif
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void process_half_baud(v17_rx_state_t *s, const complexf_t *sample)
|
|
{
|
|
static const complexf_t cdba[4] =
|
|
{
|
|
{ 6.0f, 2.0f},
|
|
{-2.0f, 6.0f},
|
|
{ 2.0f, -6.0f},
|
|
{-6.0f, -2.0f}
|
|
};
|
|
complexf_t z;
|
|
complexf_t zz;
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
const complexi_t *target;
|
|
static const complexi16_t zero = {0, 0};
|
|
#else
|
|
const complexf_t *target;
|
|
static const complexf_t zero = {0, 0};
|
|
#endif
|
|
float p;
|
|
int bit;
|
|
int i;
|
|
int j;
|
|
int32_t angle;
|
|
int32_t ang;
|
|
int constellation_state;
|
|
|
|
/* This routine processes every half a baud, as we put things into the equalizer at the T/2 rate. */
|
|
|
|
/* Add a sample to the equalizer's circular buffer, but don't calculate anything at this time. */
|
|
s->eq_buf[s->eq_step] = *sample;
|
|
if (++s->eq_step >= V17_EQUALIZER_LEN)
|
|
s->eq_step = 0;
|
|
|
|
/* On alternate insertions we have a whole baud and must process it. */
|
|
if ((s->baud_half ^= 1))
|
|
return;
|
|
|
|
/* Symbol timing synchronisation */
|
|
symbol_sync(s);
|
|
|
|
z = equalizer_get(s);
|
|
|
|
constellation_state = 0;
|
|
switch (s->training_stage)
|
|
{
|
|
case TRAINING_STAGE_NORMAL_OPERATION:
|
|
/* Normal operation. */
|
|
constellation_state = decode_baud(s, &z);
|
|
target = &s->constellation[constellation_state];
|
|
break;
|
|
case TRAINING_STAGE_SYMBOL_ACQUISITION:
|
|
/* Allow time for the symbol synchronisation to settle the symbol timing. */
|
|
target = &zero;
|
|
if (++s->training_count >= 100)
|
|
{
|
|
/* Record the current phase angle */
|
|
s->angles[0] =
|
|
s->start_angles[0] = arctan2(z.im, z.re);
|
|
s->training_stage = TRAINING_STAGE_LOG_PHASE;
|
|
if (s->agc_scaling_save == 0.0f)
|
|
s->agc_scaling_save = s->agc_scaling;
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_LOG_PHASE:
|
|
/* Record the current alternate phase angle */
|
|
target = &zero;
|
|
angle = arctan2(z.im, z.re);
|
|
s->training_count = 1;
|
|
if (s->short_train)
|
|
{
|
|
/* We should already know the accurate carrier frequency. All we need to sort
|
|
out is the phase. */
|
|
/* Check if we just saw A or B */
|
|
if ((uint32_t) (angle - s->start_angles[0]) < 0x80000000U)
|
|
{
|
|
angle = s->start_angles[0];
|
|
s->angles[0] = 0xC0000000 + 219937506;
|
|
s->angles[1] = 0x80000000 + 219937506;
|
|
}
|
|
else
|
|
{
|
|
s->angles[0] = 0x80000000 + 219937506;
|
|
s->angles[1] = 0xC0000000 + 219937506;
|
|
}
|
|
/* Make a step shift in the phase, to pull it into line. We need to rotate the equalizer
|
|
buffer, as well as the carrier phase, for this to play out nicely. */
|
|
/* angle is now the difference between where A is, and where it should be */
|
|
p = 3.14159f + angle*2.0f*3.14159f/(65536.0f*65536.0f) - 0.321751f;
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Spin (short) by %.5f rads\n", p);
|
|
zz = complex_setf(cosf(p), -sinf(p));
|
|
for (i = 0; i < V17_EQUALIZER_LEN; i++)
|
|
s->eq_buf[i] = complex_mulf(&s->eq_buf[i], &zz);
|
|
s->carrier_phase += (0x80000000 + angle - 219937506);
|
|
|
|
s->carrier_track_p = 500000.0f;
|
|
|
|
s->training_stage = TRAINING_STAGE_SHORT_WAIT_FOR_CDBA;
|
|
}
|
|
else
|
|
{
|
|
s->angles[1] =
|
|
s->start_angles[1] = angle;
|
|
s->training_stage = TRAINING_STAGE_WAIT_FOR_CDBA;
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_WAIT_FOR_CDBA:
|
|
target = &zero;
|
|
angle = arctan2(z.im, z.re);
|
|
/* Look for the initial ABAB sequence to display a phase reversal, which will
|
|
signal the start of the scrambled CDBA segment */
|
|
ang = angle - s->angles[(s->training_count - 1) & 0xF];
|
|
s->angles[(s->training_count + 1) & 0xF] = angle;
|
|
|
|
/* Do a coarse frequency adjustment about half way through the reversals, as if we wait until
|
|
the end, we might have rotated too far to correct properly. */
|
|
if (s->training_count == 100)
|
|
{
|
|
i = s->training_count;
|
|
/* Avoid the possibility of a divide by zero */
|
|
if (i)
|
|
{
|
|
j = i & 0xF;
|
|
ang = (s->angles[j] - s->start_angles[0])/i
|
|
+ (s->angles[j | 0x1] - s->start_angles[1])/i;
|
|
s->carrier_phase_rate += 3*(ang/20);
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "Angles %x, %x, %x, %x, dist %d\n", s->angles[j], s->start_angles[0], s->angles[j | 0x1], s->start_angles[1], i);
|
|
|
|
s->start_angles[0] = s->angles[j];
|
|
s->start_angles[1] = s->angles[j | 0x1];
|
|
}
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "%d %d %d %d %d\n", s->angles[s->training_count & 0xF], s->start_angles[0], s->angles[(s->training_count | 0x1) & 0xF], s->start_angles[1], s->training_count);
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "First coarse carrier frequency %7.2f (%d)\n", dds_frequencyf(s->carrier_phase_rate), s->training_count);
|
|
|
|
}
|
|
if ((ang > 0x40000000 || ang < -0x40000000) && s->training_count >= 13)
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "We seem to have a reversal at symbol %d\n", s->training_count);
|
|
/* We seem to have a phase reversal */
|
|
/* Slam the carrier frequency into line, based on the total phase drift over the last
|
|
section. Use the shift from the odd bits and the shift from the even bits to get
|
|
better jitter suppression. */
|
|
/* TODO: We are supposed to deal with frequancy errors up to +-8Hz. Over 200+
|
|
symbols that is more than half a cycle. We get confused an do crazy things.
|
|
We can only cope with errors up to 5Hz right now. We need to implement
|
|
greater tolerance to be compliant, although it doesn't really matter much
|
|
these days. */
|
|
/* Step back a few symbols so we don't get ISI distorting things. */
|
|
i = (s->training_count - 8) & ~1;
|
|
/* Avoid the possibility of a divide by zero */
|
|
if (i - 100 + 8)
|
|
{
|
|
j = i & 0xF;
|
|
ang = (s->angles[j] - s->start_angles[0])/(i - 100 + 8)
|
|
+ (s->angles[j | 0x1] - s->start_angles[1])/(i - 100 + 8);
|
|
s->carrier_phase_rate += 3*(ang/20);
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Angles %x, %x, %x, %x, dist %d\n", s->angles[j], s->start_angles[0], s->angles[j | 0x1], s->start_angles[1], i);
|
|
}
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "%d %d %d %d %d\n", s->angles[s->training_count & 0xF], s->start_angles[0], s->angles[(s->training_count | 0x1) & 0xF], s->start_angles[1], s->training_count);
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Second coarse carrier frequency %7.2f (%d)\n", dds_frequencyf(s->carrier_phase_rate), s->training_count);
|
|
/* Check if the carrier frequency is plausible */
|
|
if (s->carrier_phase_rate < dds_phase_ratef(CARRIER_NOMINAL_FREQ - 20.0f)
|
|
||
|
|
s->carrier_phase_rate > dds_phase_ratef(CARRIER_NOMINAL_FREQ + 20.0f))
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (sequence failed)\n");
|
|
/* Park this modem */
|
|
s->agc_scaling_save = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
|
break;
|
|
}
|
|
|
|
/* Make a step shift in the phase, to pull it into line. We need to rotate the equalizer buffer,
|
|
as well as the carrier phase, for this to play out nicely. */
|
|
/* angle is now the difference between where C is, and where it should be */
|
|
p = angle*2.0f*3.14159f/(65536.0f*65536.0f) - 0.321751f;
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Spin (long) by %.5f rads\n", p);
|
|
zz = complex_setf(cosf(p), -sinf(p));
|
|
for (i = 0; i < V17_EQUALIZER_LEN; i++)
|
|
s->eq_buf[i] = complex_mulf(&s->eq_buf[i], &zz);
|
|
s->carrier_phase += (angle - 219937506);
|
|
|
|
/* We have just seen the first symbol of the scrambled sequence, so skip it. */
|
|
bit = descramble(s, 1);
|
|
bit = (bit << 1) | descramble(s, 1);
|
|
target = &cdba[bit];
|
|
s->training_count = 1;
|
|
s->training_stage = TRAINING_STAGE_COARSE_TRAIN_ON_CDBA;
|
|
report_status_change(s, SIG_STATUS_TRAINING_IN_PROGRESS);
|
|
break;
|
|
}
|
|
if (++s->training_count > V17_TRAINING_SEG_1_LEN)
|
|
{
|
|
/* This is bogus. There are not this many bits in this section
|
|
of a real training sequence. Note that this might be TEP. */
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (sequence failed)\n");
|
|
/* Park this modem */
|
|
s->agc_scaling_save = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_COARSE_TRAIN_ON_CDBA:
|
|
/* Train on the scrambled CDBA section. */
|
|
bit = descramble(s, 1);
|
|
bit = (bit << 1) | descramble(s, 1);
|
|
target = &cdba[bit];
|
|
track_carrier(s, &z, target);
|
|
tune_equalizer(s, &z, target);
|
|
#if defined(IAXMODEM_STUFF)
|
|
zz = complex_subf(&z, target);
|
|
s->training_error = powerf(&zz);
|
|
if (++s->training_count == V17_TRAINING_SEG_2_LEN - 2000 || s->training_error < 1.0f || s->training_error > 200.0f)
|
|
#else
|
|
if (++s->training_count == V17_TRAINING_SEG_2_LEN - 2000)
|
|
#endif
|
|
{
|
|
/* Now the equaliser adaption should be getting somewhere, slow it down, or it will never
|
|
tune very well on a noisy signal. */
|
|
s->eq_delta *= EQUALIZER_SLOW_ADAPT_RATIO;
|
|
s->carrier_track_i = 1000.0f;
|
|
s->training_stage = TRAINING_STAGE_FINE_TRAIN_ON_CDBA;
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_FINE_TRAIN_ON_CDBA:
|
|
/* Train on the scrambled CDBA section. */
|
|
bit = descramble(s, 1);
|
|
bit = (bit << 1) | descramble(s, 1);
|
|
target = &cdba[bit];
|
|
/* By this point the training should be comming into focus. */
|
|
track_carrier(s, &z, target);
|
|
tune_equalizer(s, &z, target);
|
|
if (++s->training_count >= V17_TRAINING_SEG_2_LEN - 48)
|
|
{
|
|
s->training_error = 0.0f;
|
|
s->carrier_track_i = 100.0f;
|
|
s->carrier_track_p = 500000.0f;
|
|
s->training_stage = TRAINING_STAGE_TRAIN_ON_CDBA_AND_TEST;
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_TRAIN_ON_CDBA_AND_TEST:
|
|
/* Continue training on the scrambled CDBA section, but measure the quality of training too. */
|
|
bit = descramble(s, 1);
|
|
bit = (bit << 1) | descramble(s, 1);
|
|
target = &cdba[bit];
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "%5d [%15.5f, %15.5f] [%15.5f, %15.5f]\n", s->training_count, z.re, z.im, cdba[bit].re, cdba[bit].im);
|
|
/* We ignore the last few symbols because it seems some modems do not end this
|
|
part properly, and it throws things off. */
|
|
if (++s->training_count < V17_TRAINING_SEG_2_LEN - 20)
|
|
{
|
|
track_carrier(s, &z, target);
|
|
tune_equalizer(s, &z, target);
|
|
/* Measure the training error */
|
|
zz = complex_subf(&z, &cdba[bit]);
|
|
s->training_error += powerf(&zz);
|
|
}
|
|
else if (s->training_count >= V17_TRAINING_SEG_2_LEN)
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Long training error %f\n", s->training_error);
|
|
if (s->training_error < 20.0f*1.414f*constellation_spacing[s->space_map])
|
|
{
|
|
s->training_count = 0;
|
|
s->training_error = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_BRIDGE;
|
|
}
|
|
else
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (convergence failed)\n");
|
|
/* Park this modem */
|
|
s->agc_scaling_save = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
|
}
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_BRIDGE:
|
|
descramble(s, V17_BRIDGE_WORD >> ((s->training_count & 0x7) << 1));
|
|
descramble(s, V17_BRIDGE_WORD >> (((s->training_count & 0x7) << 1) + 1));
|
|
target = &z;
|
|
if (++s->training_count >= V17_TRAINING_SEG_3_LEN)
|
|
{
|
|
s->training_count = 0;
|
|
s->training_error = 0.0f;
|
|
if (s->bits_per_symbol == 2)
|
|
{
|
|
/* Restart the differential decoder */
|
|
/* There is no trellis, so go straight to processing decoded data */
|
|
s->diff = (s->short_train) ? 0 : 1;
|
|
s->training_stage = TRAINING_STAGE_TEST_ONES;
|
|
}
|
|
else
|
|
{
|
|
/* Wait for the trellis to wind up */
|
|
s->training_stage = TRAINING_STAGE_TCM_WINDUP;
|
|
}
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_SHORT_WAIT_FOR_CDBA:
|
|
/* Look for the initial ABAB sequence to display a phase reversal, which will
|
|
signal the start of the scrambled CDBA segment */
|
|
angle = arctan2(z.im, z.re);
|
|
ang = angle - s->angles[s->training_count & 1];
|
|
if (ang > 0x40000000 || ang < -0x40000000)
|
|
{
|
|
/* We seem to have a phase reversal */
|
|
/* We have just seen the first symbol of the scrambled sequence, so skip it. */
|
|
bit = descramble(s, 1);
|
|
bit = (bit << 1) | descramble(s, 1);
|
|
target = &cdba[bit];
|
|
s->training_count = 1;
|
|
s->training_error = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_SHORT_TRAIN_ON_CDBA_AND_TEST;
|
|
break;
|
|
}
|
|
target = &cdba[(s->training_count & 1) + 2];
|
|
track_carrier(s, &z, target);
|
|
if (++s->training_count > V17_TRAINING_SEG_1_LEN)
|
|
{
|
|
/* This is bogus. There are not this many bits in this section
|
|
of a real training sequence. Note that this might be TEP. */
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (sequence failed)\n");
|
|
/* Park this modem */
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_SHORT_TRAIN_ON_CDBA_AND_TEST:
|
|
/* Short retrain on the scrambled CDBA section, but measure the quality of training too. */
|
|
bit = descramble(s, 1);
|
|
bit = (bit << 1) | descramble(s, 1);
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "%5d [%15.5f, %15.5f] [%15.5f, %15.5f] %d\n", s->training_count, z.re, z.im, cdba[bit].re, cdba[bit].im, arctan2(z.im, z.re));
|
|
target = &cdba[bit];
|
|
track_carrier(s, &z, target);
|
|
//tune_equalizer(s, &z, target);
|
|
/* Measure the training error */
|
|
if (s->training_count > 8)
|
|
{
|
|
zz = complex_subf(&z, &cdba[bit]);
|
|
s->training_error += powerf(&zz);
|
|
}
|
|
if (++s->training_count >= V17_TRAINING_SHORT_SEG_2_LEN)
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Short training error %f\n", s->training_error);
|
|
s->carrier_track_i = 100.0f;
|
|
s->carrier_track_p = 500000.0f;
|
|
/* TODO: This was increased by a factor of 10 after studying real world failures.
|
|
However, it is not clear why this is an improvement, If something gives
|
|
a huge training error, surely it shouldn't decode too well? */
|
|
if (s->training_error < (V17_TRAINING_SHORT_SEG_2_LEN - 8)*4.0f*constellation_spacing[s->space_map])
|
|
{
|
|
s->training_count = 0;
|
|
if (s->bits_per_symbol == 2)
|
|
{
|
|
/* There is no trellis, so go straight to processing decoded data */
|
|
/* Restart the differential decoder */
|
|
s->diff = (s->short_train) ? 0 : 1;
|
|
s->training_error = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_TEST_ONES;
|
|
}
|
|
else
|
|
{
|
|
/* Wait for the trellis to wind up */
|
|
s->training_stage = TRAINING_STAGE_TCM_WINDUP;
|
|
}
|
|
report_status_change(s, SIG_STATUS_TRAINING_IN_PROGRESS);
|
|
}
|
|
else
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Short training failed (convergence failed)\n");
|
|
/* Park this modem */
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
|
}
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_TCM_WINDUP:
|
|
/* We need to wait 15 bauds while the trellis fills up. */
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "%5d %15.5f, %15.5f\n", s->training_count, z.re, z.im);
|
|
constellation_state = decode_baud(s, &z);
|
|
target = &s->constellation[constellation_state];
|
|
/* Measure the training error */
|
|
zz = complex_subf(&z, target);
|
|
s->training_error += powerf(&zz);
|
|
if (++s->training_count >= V17_TRAINING_SEG_4A_LEN)
|
|
{
|
|
s->training_count = 0;
|
|
s->training_error = 0.0f;
|
|
/* Restart the differential decoder */
|
|
s->diff = (s->short_train) ? 0 : 1;
|
|
s->training_stage = TRAINING_STAGE_TEST_ONES;
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_TEST_ONES:
|
|
/* We are in the test phase, where we check that we can receive reliably.
|
|
We should get a run of 1's, 48 symbols long. */
|
|
//span_log(&s->logging, SPAN_LOG_FLOW, "%5d %15.5f, %15.5f\n", s->training_count, z.re, z.im);
|
|
constellation_state = decode_baud(s, &z);
|
|
target = &s->constellation[constellation_state];
|
|
/* Measure the training error */
|
|
zz = complex_subf(&z, target);
|
|
s->training_error += powerf(&zz);
|
|
if (++s->training_count >= V17_TRAINING_SEG_4_LEN)
|
|
{
|
|
if (s->training_error < V17_TRAINING_SEG_4_LEN*constellation_spacing[s->space_map])
|
|
{
|
|
/* We are up and running */
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training succeeded at %dbps (constellation mismatch %f)\n", s->bit_rate, s->training_error);
|
|
report_status_change(s, SIG_STATUS_TRAINING_SUCCEEDED);
|
|
/* Apply some lag to the carrier off condition, to ensure the last few bits get pushed through
|
|
the processing. */
|
|
s->signal_present = 60;
|
|
equalizer_save(s);
|
|
s->carrier_phase_rate_save = s->carrier_phase_rate;
|
|
s->short_train = TRUE;
|
|
s->training_stage = TRAINING_STAGE_NORMAL_OPERATION;
|
|
}
|
|
else
|
|
{
|
|
/* Training has failed */
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Training failed (constellation mismatch %f)\n", s->training_error);
|
|
/* Park this modem */
|
|
if (!s->short_train)
|
|
s->agc_scaling_save = 0.0f;
|
|
s->training_stage = TRAINING_STAGE_PARKED;
|
|
report_status_change(s, SIG_STATUS_TRAINING_FAILED);
|
|
}
|
|
}
|
|
break;
|
|
case TRAINING_STAGE_PARKED:
|
|
default:
|
|
/* We failed to train! */
|
|
/* Park here until the carrier drops. */
|
|
target = &zero;
|
|
break;
|
|
}
|
|
if (s->qam_report)
|
|
s->qam_report(s->qam_user_data, &z, target, constellation_state);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static __inline__ int signal_detect(v17_rx_state_t *s, int16_t amp)
|
|
{
|
|
int16_t diff;
|
|
int16_t x;
|
|
int32_t power;
|
|
|
|
/* There should be no DC in the signal, but sometimes there is.
|
|
We need to measure the power with the DC blocked, but not using
|
|
a slow to respond DC blocker. Use the most elementary HPF. */
|
|
x = amp >> 1;
|
|
/* There could be overflow here, but it isn't a problem in practice */
|
|
diff = x - s->last_sample;
|
|
s->last_sample = x;
|
|
power = power_meter_update(&(s->power), diff);
|
|
#if defined(IAXMODEM_STUFF)
|
|
/* Quick power drop fudge */
|
|
diff = abs(diff);
|
|
if (10*diff < s->high_sample)
|
|
{
|
|
if (++s->low_samples > 120)
|
|
{
|
|
power_meter_init(&(s->power), 4);
|
|
s->high_sample = 0;
|
|
s->low_samples = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
s->low_samples = 0;
|
|
if (diff > s->high_sample)
|
|
s->high_sample = diff;
|
|
}
|
|
#endif
|
|
if (s->signal_present > 0)
|
|
{
|
|
/* Look for power below turn-off threshold to turn the carrier off */
|
|
#if defined(IAXMODEM_STUFF)
|
|
if (s->carrier_drop_pending || power < s->carrier_off_power)
|
|
#else
|
|
if (power < s->carrier_off_power)
|
|
#endif
|
|
{
|
|
if (--s->signal_present <= 0)
|
|
{
|
|
/* Count down a short delay, to ensure we push the last
|
|
few bits through the filters before stopping. */
|
|
v17_rx_restart(s, s->bit_rate, s->short_train);
|
|
report_status_change(s, SIG_STATUS_CARRIER_DOWN);
|
|
return 0;
|
|
}
|
|
#if defined(IAXMODEM_STUFF)
|
|
/* Carrier has dropped, but the put_bit is pending the signal_present delay. */
|
|
s->carrier_drop_pending = TRUE;
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Look for power exceeding turn-on threshold to turn the carrier on */
|
|
if (power < s->carrier_on_power)
|
|
return 0;
|
|
s->signal_present = 1;
|
|
#if defined(IAXMODEM_STUFF)
|
|
s->carrier_drop_pending = FALSE;
|
|
#endif
|
|
report_status_change(s, SIG_STATUS_CARRIER_UP);
|
|
}
|
|
return power;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE_NONSTD(int) v17_rx(v17_rx_state_t *s, const int16_t amp[], int len)
|
|
{
|
|
int i;
|
|
int step;
|
|
complexf_t z;
|
|
complexf_t zz;
|
|
complexf_t sample;
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
int32_t vi;
|
|
#endif
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
int32_t v;
|
|
#else
|
|
float v;
|
|
#endif
|
|
int32_t power;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
s->rrc_filter[s->rrc_filter_step] = amp[i];
|
|
if (++s->rrc_filter_step >= V17_RX_FILTER_STEPS)
|
|
s->rrc_filter_step = 0;
|
|
|
|
if ((power = signal_detect(s, amp[i])) == 0)
|
|
continue;
|
|
if (s->training_stage == TRAINING_STAGE_PARKED)
|
|
continue;
|
|
/* Only spend effort processing this data if the modem is not
|
|
parked, after training failure. */
|
|
s->eq_put_step -= RX_PULSESHAPER_COEFF_SETS;
|
|
step = -s->eq_put_step;
|
|
if (step > RX_PULSESHAPER_COEFF_SETS - 1)
|
|
step = RX_PULSESHAPER_COEFF_SETS - 1;
|
|
if (step < 0)
|
|
step += RX_PULSESHAPER_COEFF_SETS;
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
vi = vec_circular_dot_prodi16(s->rrc_filter, rx_pulseshaper_re[step], V17_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
//sample.re = (vi*(int32_t) s->agc_scaling) >> 15;
|
|
sample.re = vi*s->agc_scaling;
|
|
#else
|
|
v = vec_circular_dot_prodf(s->rrc_filter, rx_pulseshaper_re[step], V17_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
sample.re = v*s->agc_scaling;
|
|
#endif
|
|
/* Symbol timing synchronisation band edge filters */
|
|
/* Low Nyquist band edge filter */
|
|
v = s->symbol_sync_low[0]*SYNC_LOW_BAND_EDGE_COEFF_0 + s->symbol_sync_low[1]*SYNC_LOW_BAND_EDGE_COEFF_1 + sample.re;
|
|
s->symbol_sync_low[1] = s->symbol_sync_low[0];
|
|
s->symbol_sync_low[0] = v;
|
|
/* High Nyquist band edge filter */
|
|
v = s->symbol_sync_high[0]*SYNC_HIGH_BAND_EDGE_COEFF_0 + s->symbol_sync_high[1]*SYNC_HIGH_BAND_EDGE_COEFF_1 + sample.re;
|
|
s->symbol_sync_high[1] = s->symbol_sync_high[0];
|
|
s->symbol_sync_high[0] = v;
|
|
|
|
/* Put things into the equalization buffer at T/2 rate. The symbol sync.
|
|
will fiddle the step to align this with the symbols. */
|
|
if (s->eq_put_step <= 0)
|
|
{
|
|
/* Only AGC until we have locked down the setting. */
|
|
if (s->agc_scaling_save == 0.0f)
|
|
s->agc_scaling = (1.0f/RX_PULSESHAPER_GAIN)*2.17f/sqrtf(power);
|
|
/* Pulse shape while still at the carrier frequency, using a quadrature
|
|
pair of filters. This results in a properly bandpass filtered complex
|
|
signal, which can be brought directly to baseband by complex mixing.
|
|
No further filtering, to remove mixer harmonics, is needed. */
|
|
step = -s->eq_put_step;
|
|
if (step > RX_PULSESHAPER_COEFF_SETS - 1)
|
|
step = RX_PULSESHAPER_COEFF_SETS - 1;
|
|
s->eq_put_step += RX_PULSESHAPER_COEFF_SETS*10/(3*2);
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
vi = vec_circular_dot_prodi16(s->rrc_filter, rx_pulseshaper_im[step], V17_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
//sample.im = (vi*(int32_t) s->agc_scaling) >> 15;
|
|
sample.im = vi*s->agc_scaling;
|
|
z = dds_lookup_complexf(s->carrier_phase);
|
|
zz.re = sample.re*z.re - sample.im*z.im;
|
|
zz.im = -sample.re*z.im - sample.im*z.re;
|
|
#else
|
|
v = vec_circular_dot_prodf(s->rrc_filter, rx_pulseshaper_im[step], V17_RX_FILTER_STEPS, s->rrc_filter_step);
|
|
sample.im = v*s->agc_scaling;
|
|
z = dds_lookup_complexf(s->carrier_phase);
|
|
zz.re = sample.re*z.re - sample.im*z.im;
|
|
zz.im = -sample.re*z.im - sample.im*z.re;
|
|
#endif
|
|
process_half_baud(s, &zz);
|
|
}
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
dds_advance(&s->carrier_phase, s->carrier_phase_rate);
|
|
#else
|
|
dds_advancef(&s->carrier_phase, s->carrier_phase_rate);
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v17_rx_fillin(v17_rx_state_t *s, int len)
|
|
{
|
|
int i;
|
|
|
|
/* We want to sustain the current state (i.e carrier on<->carrier off), and
|
|
try to sustain the carrier phase. We should probably push the filters, as well */
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Fill-in %d samples\n", len);
|
|
if (s->signal_present <= 0)
|
|
return 0;
|
|
if (s->training_stage == TRAINING_STAGE_PARKED)
|
|
return 0;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
dds_advance(&s->carrier_phase, s->carrier_phase_rate);
|
|
#else
|
|
dds_advancef(&s->carrier_phase, s->carrier_phase_rate);
|
|
#endif
|
|
/* Advance the symbol phase the appropriate amount */
|
|
s->eq_put_step -= RX_PULSESHAPER_COEFF_SETS;
|
|
if (s->eq_put_step <= 0)
|
|
s->eq_put_step += RX_PULSESHAPER_COEFF_SETS*10/(3*2);
|
|
/* TODO: Should we rotate any buffers */
|
|
}
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v17_rx_set_put_bit(v17_rx_state_t *s, put_bit_func_t put_bit, void *user_data)
|
|
{
|
|
s->put_bit = put_bit;
|
|
s->put_bit_user_data = user_data;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v17_rx_set_modem_status_handler(v17_rx_state_t *s, modem_tx_status_func_t handler, void *user_data)
|
|
{
|
|
s->status_handler = handler;
|
|
s->status_user_data = user_data;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(logging_state_t *) v17_rx_get_logging_state(v17_rx_state_t *s)
|
|
{
|
|
return &s->logging;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v17_rx_restart(v17_rx_state_t *s, int bit_rate, int short_train)
|
|
{
|
|
int i;
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Restarting V.17, %dbps, %s training\n", bit_rate, (short_train) ? "short" : "long");
|
|
switch (bit_rate)
|
|
{
|
|
case 14400:
|
|
s->constellation = v17_v32bis_14400_constellation;
|
|
s->space_map = 0;
|
|
s->bits_per_symbol = 6;
|
|
break;
|
|
case 12000:
|
|
s->constellation = v17_v32bis_12000_constellation;
|
|
s->space_map = 1;
|
|
s->bits_per_symbol = 5;
|
|
break;
|
|
case 9600:
|
|
s->constellation = v17_v32bis_9600_constellation;
|
|
s->space_map = 2;
|
|
s->bits_per_symbol = 4;
|
|
break;
|
|
case 7200:
|
|
s->constellation = v17_v32bis_7200_constellation;
|
|
s->space_map = 3;
|
|
s->bits_per_symbol = 3;
|
|
break;
|
|
case 4800:
|
|
/* This does not exist in the V.17 spec as a valid mode of operation.
|
|
However, it does exist in V.32bis, so it is here for completeness. */
|
|
s->constellation = v17_v32bis_4800_constellation;
|
|
s->space_map = 0;
|
|
s->bits_per_symbol = 2;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
s->bit_rate = bit_rate;
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
vec_zeroi16(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0]));
|
|
#else
|
|
vec_zerof(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0]));
|
|
#endif
|
|
s->rrc_filter_step = 0;
|
|
|
|
s->diff = 1;
|
|
s->scramble_reg = 0x2ECDD5;
|
|
s->training_stage = TRAINING_STAGE_SYMBOL_ACQUISITION;
|
|
s->training_count = 0;
|
|
s->training_error = 0.0f;
|
|
s->signal_present = 0;
|
|
#if defined(IAXMODEM_STUFF)
|
|
s->high_sample = 0;
|
|
s->low_samples = 0;
|
|
s->carrier_drop_pending = FALSE;
|
|
#endif
|
|
if (short_train != 2)
|
|
s->short_train = short_train;
|
|
memset(s->start_angles, 0, sizeof(s->start_angles));
|
|
memset(s->angles, 0, sizeof(s->angles));
|
|
|
|
/* Initialise the TCM decoder parameters. */
|
|
/* The accumulated distance vectors are set so state zero starts
|
|
at a value of zero, and all others start larger. This forces the
|
|
initial paths to merge at the zero states. */
|
|
for (i = 0; i < 8; i++)
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
s->distances[i] = 99*DIST_FACTOR*DIST_FACTOR;
|
|
#else
|
|
s->distances[i] = 99.0f;
|
|
#endif
|
|
memset(s->full_path_to_past_state_locations, 0, sizeof(s->full_path_to_past_state_locations));
|
|
memset(s->past_state_locations, 0, sizeof(s->past_state_locations));
|
|
s->distances[0] = 0;
|
|
s->trellis_ptr = 14;
|
|
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Phase rates %f %f\n", dds_frequencyf(s->carrier_phase_rate), dds_frequencyf(s->carrier_phase_rate_save));
|
|
s->carrier_phase = 0;
|
|
power_meter_init(&(s->power), 4);
|
|
|
|
if (s->short_train)
|
|
{
|
|
s->carrier_phase_rate = s->carrier_phase_rate_save;
|
|
s->agc_scaling = s->agc_scaling_save;
|
|
equalizer_restore(s);
|
|
/* Don't allow any frequency correction at all, until we start to pull the phase in. */
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
s->carrier_track_i = 0;
|
|
s->carrier_track_p = 40000;
|
|
#else
|
|
s->carrier_track_i = 0.0f;
|
|
s->carrier_track_p = 40000.0f;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
s->carrier_phase_rate = dds_phase_ratef(CARRIER_NOMINAL_FREQ);
|
|
equalizer_reset(s);
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
s->agc_scaling_save = 0;
|
|
s->agc_scaling = (float) FP_FACTOR*32768.0f*0.0017f/RX_PULSESHAPER_GAIN;
|
|
s->carrier_track_i = 5000;
|
|
s->carrier_track_p = 40000;
|
|
#else
|
|
s->agc_scaling_save = 0.0f;
|
|
s->agc_scaling = 0.0017f/RX_PULSESHAPER_GAIN;
|
|
s->carrier_track_i = 5000.0f;
|
|
s->carrier_track_p = 40000.0f;
|
|
#endif
|
|
}
|
|
s->last_sample = 0;
|
|
|
|
/* Initialise the working data for symbol timing synchronisation */
|
|
#if defined(SPANDSP_USE_FIXED_POINTx)
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
s->symbol_sync_low[i] = 0;
|
|
s->symbol_sync_high[i] = 0;
|
|
s->symbol_sync_dc_filter[i] = 0;
|
|
}
|
|
s->baud_phase = 0;
|
|
#else
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
s->symbol_sync_low[i] = 0.0f;
|
|
s->symbol_sync_high[i] = 0.0f;
|
|
s->symbol_sync_dc_filter[i] = 0.0f;
|
|
}
|
|
s->baud_phase = 0.0f;
|
|
#endif
|
|
s->baud_half = 0;
|
|
|
|
s->total_baud_timing_correction = 0;
|
|
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(v17_rx_state_t *) v17_rx_init(v17_rx_state_t *s, int bit_rate, put_bit_func_t put_bit, void *user_data)
|
|
{
|
|
switch (bit_rate)
|
|
{
|
|
case 14400:
|
|
case 12000:
|
|
case 9600:
|
|
case 7200:
|
|
case 4800:
|
|
/* 4800 is an extension of V.17, to provide full converage of the V.32bis modes */
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
if (s == NULL)
|
|
{
|
|
if ((s = (v17_rx_state_t *) malloc(sizeof(*s))) == NULL)
|
|
return NULL;
|
|
}
|
|
memset(s, 0, sizeof(*s));
|
|
span_log_init(&s->logging, SPAN_LOG_NONE, NULL);
|
|
span_log_set_protocol(&s->logging, "V.17 RX");
|
|
s->put_bit = put_bit;
|
|
s->put_bit_user_data = user_data;
|
|
s->short_train = FALSE;
|
|
//s->scrambler_tap = 18 - 1;
|
|
v17_rx_signal_cutoff(s, -45.5f);
|
|
s->agc_scaling = 0.0017f/RX_PULSESHAPER_GAIN;
|
|
s->agc_scaling_save = 0.0f;
|
|
s->carrier_phase_rate_save = dds_phase_ratef(CARRIER_NOMINAL_FREQ);
|
|
v17_rx_restart(s, bit_rate, s->short_train);
|
|
return s;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v17_rx_release(v17_rx_state_t *s)
|
|
{
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v17_rx_free(v17_rx_state_t *s)
|
|
{
|
|
free(s);
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v17_rx_set_qam_report_handler(v17_rx_state_t *s, qam_report_handler_t handler, void *user_data)
|
|
{
|
|
s->qam_report = handler;
|
|
s->qam_user_data = user_data;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
/*- End of file ------------------------------------------------------------*/
|