196 lines
8.1 KiB
C
196 lines
8.1 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, (subject to the limitations in the disclaimer below)
|
|
are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Skype Limited, nor the names of specific
|
|
contributors, may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
|
|
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#include "SKP_Silk_main.h"
|
|
|
|
/*********************************************/
|
|
/* Encode quantization indices of excitation */
|
|
/*********************************************/
|
|
|
|
SKP_INLINE SKP_int combine_and_check( /* return ok */
|
|
SKP_int *pulses_comb, /* O */
|
|
const SKP_int *pulses_in, /* I */
|
|
SKP_int max_pulses, /* I max value for sum of pulses */
|
|
SKP_int len /* I number of output values */
|
|
)
|
|
{
|
|
SKP_int k, sum;
|
|
|
|
for( k = 0; k < len; k++ ) {
|
|
sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ];
|
|
if( sum > max_pulses ) {
|
|
return 1;
|
|
}
|
|
pulses_comb[ k ] = sum;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Encode quantization indices of excitation */
|
|
void SKP_Silk_encode_pulses(
|
|
SKP_Silk_range_coder_state *psRC, /* I/O Range coder state */
|
|
const SKP_int sigtype, /* I Sigtype */
|
|
const SKP_int QuantOffsetType,/* I QuantOffsetType */
|
|
const SKP_int8 q[], /* I quantization indices */
|
|
const SKP_int frame_length /* I Frame length */
|
|
)
|
|
{
|
|
SKP_int i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0;
|
|
SKP_int32 abs_q, minSumBits_Q6, sumBits_Q6;
|
|
SKP_int abs_pulses[ MAX_FRAME_LENGTH ];
|
|
SKP_int sum_pulses[ MAX_NB_SHELL_BLOCKS ];
|
|
SKP_int nRshifts[ MAX_NB_SHELL_BLOCKS ];
|
|
SKP_int pulses_comb[ 8 ];
|
|
SKP_int *abs_pulses_ptr;
|
|
const SKP_int8 *pulses_ptr;
|
|
const SKP_uint16 *cdf_ptr;
|
|
const SKP_int16 *nBits_ptr;
|
|
|
|
SKP_memset( pulses_comb, 0, 8 * sizeof( SKP_int ) ); // Fixing Valgrind reported problem
|
|
|
|
/****************************/
|
|
/* Prepare for shell coding */
|
|
/****************************/
|
|
/* Calculate number of shell blocks */
|
|
iter = frame_length / SHELL_CODEC_FRAME_LENGTH;
|
|
|
|
/* Take the absolute value of the pulses */
|
|
for( i = 0; i < frame_length; i+=4 ) {
|
|
abs_pulses[i+0] = ( SKP_int )SKP_abs( q[ i + 0 ] );
|
|
abs_pulses[i+1] = ( SKP_int )SKP_abs( q[ i + 1 ] );
|
|
abs_pulses[i+2] = ( SKP_int )SKP_abs( q[ i + 2 ] );
|
|
abs_pulses[i+3] = ( SKP_int )SKP_abs( q[ i + 3 ] );
|
|
}
|
|
|
|
/* Calc sum pulses per shell code frame */
|
|
abs_pulses_ptr = abs_pulses;
|
|
for( i = 0; i < iter; i++ ) {
|
|
nRshifts[ i ] = 0;
|
|
|
|
while( 1 ) {
|
|
/* 1+1 -> 2 */
|
|
scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, SKP_Silk_max_pulses_table[ 0 ], 8 );
|
|
|
|
/* 2+2 -> 4 */
|
|
scale_down += combine_and_check( pulses_comb, pulses_comb, SKP_Silk_max_pulses_table[ 1 ], 4 );
|
|
|
|
/* 4+4 -> 8 */
|
|
scale_down += combine_and_check( pulses_comb, pulses_comb, SKP_Silk_max_pulses_table[ 2 ], 2 );
|
|
|
|
/* 8+8 -> 16 */
|
|
sum_pulses[ i ] = pulses_comb[ 0 ] + pulses_comb[ 1 ];
|
|
if( sum_pulses[ i ] > SKP_Silk_max_pulses_table[ 3 ] ) {
|
|
scale_down++;
|
|
}
|
|
|
|
if( scale_down ) {
|
|
/* We need to down scale the quantization signal */
|
|
nRshifts[ i ]++;
|
|
for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
|
|
abs_pulses_ptr[ k ] = SKP_RSHIFT( abs_pulses_ptr[ k ], 1 );
|
|
}
|
|
} else {
|
|
/* Jump out of while(1) loop and go to next shell coding frame */
|
|
break;
|
|
}
|
|
}
|
|
abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH;
|
|
}
|
|
|
|
/**************/
|
|
/* Rate level */
|
|
/**************/
|
|
/* find rate level that leads to fewest bits for coding of pulses per block info */
|
|
minSumBits_Q6 = SKP_int32_MAX;
|
|
for( k = 0; k < N_RATE_LEVELS - 1; k++ ) {
|
|
nBits_ptr = SKP_Silk_pulses_per_block_BITS_Q6[ k ];
|
|
sumBits_Q6 = SKP_Silk_rate_levels_BITS_Q6[sigtype][ k ];
|
|
for( i = 0; i < iter; i++ ) {
|
|
if( nRshifts[ i ] > 0 ) {
|
|
sumBits_Q6 += nBits_ptr[ MAX_PULSES + 1 ];
|
|
} else {
|
|
sumBits_Q6 += nBits_ptr[ sum_pulses[ i ] ];
|
|
}
|
|
}
|
|
if( sumBits_Q6 < minSumBits_Q6 ) {
|
|
minSumBits_Q6 = sumBits_Q6;
|
|
RateLevelIndex = k;
|
|
}
|
|
}
|
|
SKP_Silk_range_encoder( psRC, RateLevelIndex, SKP_Silk_rate_levels_CDF[ sigtype ] );
|
|
|
|
/***************************************************/
|
|
/* Sum-Weighted-Pulses Encoding */
|
|
/***************************************************/
|
|
cdf_ptr = SKP_Silk_pulses_per_block_CDF[ RateLevelIndex ];
|
|
for( i = 0; i < iter; i++ ) {
|
|
if( nRshifts[ i ] == 0 ) {
|
|
SKP_Silk_range_encoder( psRC, sum_pulses[ i ], cdf_ptr );
|
|
} else {
|
|
SKP_Silk_range_encoder( psRC, MAX_PULSES + 1, cdf_ptr );
|
|
for( k = 0; k < nRshifts[ i ] - 1; k++ ) {
|
|
SKP_Silk_range_encoder( psRC, MAX_PULSES + 1, SKP_Silk_pulses_per_block_CDF[ N_RATE_LEVELS - 1 ] );
|
|
}
|
|
SKP_Silk_range_encoder( psRC, sum_pulses[ i ], SKP_Silk_pulses_per_block_CDF[ N_RATE_LEVELS - 1 ] );
|
|
}
|
|
}
|
|
|
|
/******************/
|
|
/* Shell Encoding */
|
|
/******************/
|
|
for( i = 0; i < iter; i++ ) {
|
|
if( sum_pulses[ i ] > 0 ) {
|
|
SKP_Silk_shell_encoder( psRC, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] );
|
|
}
|
|
}
|
|
|
|
/****************/
|
|
/* LSB Encoding */
|
|
/****************/
|
|
for( i = 0; i < iter; i++ ) {
|
|
if( nRshifts[ i ] > 0 ) {
|
|
pulses_ptr = &q[ i * SHELL_CODEC_FRAME_LENGTH ];
|
|
nLS = nRshifts[ i ] - 1;
|
|
for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
|
|
abs_q = (SKP_int8)SKP_abs( pulses_ptr[ k ] );
|
|
for( j = nLS; j > 0; j-- ) {
|
|
bit = SKP_RSHIFT( abs_q, j ) & 1;
|
|
SKP_Silk_range_encoder( psRC, bit, SKP_Silk_lsb_CDF );
|
|
}
|
|
bit = abs_q & 1;
|
|
SKP_Silk_range_encoder( psRC, bit, SKP_Silk_lsb_CDF );
|
|
}
|
|
}
|
|
}
|
|
|
|
/****************/
|
|
/* Encode signs */
|
|
/****************/
|
|
SKP_Silk_encode_signs( psRC, q, frame_length, sigtype, QuantOffsetType, RateLevelIndex );
|
|
}
|