freeswitch/libs/spandsp/tests/dds_tests.c

218 lines
6.5 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* dds_tests.c
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2003 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
/*! \page dds_tests_page Direct digital synthesis tests
\section dds_tests_page_sec_1 What does it do?
???.
\section dds_tests_page_sec_2 How does it work?
???.
*/
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <sndfile.h>
#include "spandsp.h"
#include "spandsp-sim.h"
#define OUTPUT_FILE_NAME "dds.wav"
#define OUTPUT_FILE_NAME_COMPLEX "complex_dds.wav"
#define SAMPLES_PER_CHUNK 8000
int main(int argc, char *argv[])
{
int i;
uint32_t phase;
int32_t phase_inc;
int outframes;
complexf_t camp;
int16_t buf[2*SAMPLES_PER_CHUNK];
SNDFILE *outhandle;
power_meter_t meter;
power_meter_t meter_i;
power_meter_t meter_q;
int scale;
power_meter_init(&meter, 10);
printf("Non-complex DDS tests.\n");
if ((outhandle = sf_open_telephony_write(OUTPUT_FILE_NAME, 1)) == NULL)
{
fprintf(stderr, " Cannot create audio file '%s'\n", OUTPUT_FILE_NAME);
exit(2);
}
phase = 0;
printf("Test with 123.456789Hz.\n");
phase_inc = dds_phase_rate(123.456789f);
scale = dds_scaling_dbm0(-10.0f);
for (i = 0; i < SAMPLES_PER_CHUNK; i++)
{
buf[i] = alaw_to_linear(linear_to_alaw((dds(&phase, phase_inc)*scale) >> 15));
power_meter_update(&meter, buf[i]);
}
outframes = sf_writef_short(outhandle, buf, SAMPLES_PER_CHUNK);
if (outframes != SAMPLES_PER_CHUNK)
{
fprintf(stderr, " Error writing audio file\n");
exit(2);
}
printf("Level is %fdBOv/%fdBm0\n", power_meter_current_dbov(&meter), power_meter_current_dbm0(&meter));
if (fabs(power_meter_current_dbm0(&meter) + 10.0f) > 0.1f)
{
printf("Test failed.\n");
exit(2);
}
printf("Test with 12.3456789Hz.\n");
phase_inc = dds_phase_rate(12.3456789f);
for (i = 0; i < SAMPLES_PER_CHUNK; i++)
{
buf[i] = alaw_to_linear(linear_to_alaw(dds(&phase, phase_inc)));
power_meter_update(&meter, buf[i]);
}
outframes = sf_writef_short(outhandle, buf, SAMPLES_PER_CHUNK);
if (outframes != SAMPLES_PER_CHUNK)
{
fprintf(stderr, " Error writing audio file\n");
exit(2);
}
printf("Level is %fdBOv/%fdBm0\n", power_meter_current_dbov(&meter), power_meter_current_dbm0(&meter));
/* Use a wider tolerance for this very low frequency - the power meter will ripple */
if (fabs(power_meter_current_dbov(&meter) + 3.02f) > 0.2f)
{
printf("Test failed.\n");
exit(2);
}
printf("Test with 2345.6789Hz.\n");
phase_inc = dds_phase_rate(2345.6789f);
scale = dds_scaling_dbov(-10.0f);
for (i = 0; i < SAMPLES_PER_CHUNK; i++)
{
buf[i] = alaw_to_linear(linear_to_alaw((dds(&phase, phase_inc)*scale) >> 15));
power_meter_update(&meter, buf[i]);
}
outframes = sf_writef_short(outhandle, buf, SAMPLES_PER_CHUNK);
if (outframes != SAMPLES_PER_CHUNK)
{
fprintf(stderr, " Error writing audio file\n");
exit(2);
}
printf("Level is %fdBOv/%fdBm0\n", power_meter_current_dbov(&meter), power_meter_current_dbm0(&meter));
if (fabs(power_meter_current_dbov(&meter) + 10.0f) > 0.1f)
{
printf("Test failed.\n");
exit(2);
}
printf("Test with 3456.789Hz.\n");
phase_inc = dds_phase_rate(3456.789f);
for (i = 0; i < SAMPLES_PER_CHUNK; i++)
{
buf[i] = alaw_to_linear(linear_to_alaw(dds(&phase, phase_inc)));
power_meter_update(&meter, buf[i]);
}
outframes = sf_writef_short(outhandle, buf, SAMPLES_PER_CHUNK);
if (outframes != SAMPLES_PER_CHUNK)
{
fprintf(stderr, " Error writing audio file\n");
exit(2);
}
printf("Level is %fdBOv/%fdBm0\n", power_meter_current_dbov(&meter), power_meter_current_dbm0(&meter));
if (fabs(power_meter_current_dbov(&meter) + 3.02f) > 0.05f)
{
printf("Test failed.\n");
exit(2);
}
if (sf_close_telephony(outhandle))
{
fprintf(stderr, " Cannot close audio file '%s'\n", OUTPUT_FILE_NAME);
exit(2);
}
printf("Complex DDS tests,\n");
if ((outhandle = sf_open_telephony_write(OUTPUT_FILE_NAME_COMPLEX, 2)) == NULL)
{
fprintf(stderr, " Cannot create audio file '%s'\n", OUTPUT_FILE_NAME_COMPLEX);
exit(2);
}
power_meter_init(&meter_i, 7);
power_meter_init(&meter_q, 7);
phase = 0;
phase_inc = dds_phase_ratef(123.456789f);
for (i = 0; i < SAMPLES_PER_CHUNK; i++)
{
camp = dds_complexf(&phase, phase_inc);
buf[2*i] = camp.re*10000.0f;
buf[2*i + 1] = camp.im*10000.0f;
power_meter_update(&meter_i, buf[2*i]);
power_meter_update(&meter_q, buf[2*i]);
}
outframes = sf_writef_short(outhandle, buf, SAMPLES_PER_CHUNK);
if (outframes != SAMPLES_PER_CHUNK)
{
fprintf(stderr, " Error writing audio file\n");
exit(2);
}
printf("Level is %fdBOv/%fdBm0, %fdBOv/%fdBm0\n",
power_meter_current_dbov(&meter_i),
power_meter_current_dbm0(&meter_i),
power_meter_current_dbov(&meter_q),
power_meter_current_dbm0(&meter_q));
if (fabs(power_meter_current_dbov(&meter_i) + 13.42f) > 0.05f
||
fabs(power_meter_current_dbov(&meter_q) + 13.42f) > 0.05f)
{
printf("Test failed.\n");
exit(2);
}
if (sf_close_telephony(outhandle))
{
fprintf(stderr, " Cannot close audio file '%s'\n", OUTPUT_FILE_NAME_COMPLEX);
exit(2);
}
printf("Tests passed.\n");
return 0;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/