freeswitch/libs/libzrtp/third_party/bnlib/test/rsaglue.c

472 lines
13 KiB
C

/*
* Copyright (c) 1995 Colin Plumb. All rights reserved.
* For licensing and other legal details, see the file legal.c.
*
* rsaglue.c - The interface between bignum math and RSA operations.
* This layer's primary reason for existence is to allow adaptation
* to other RSA math libraries for legal reasons.
*/
#include "first.h"
#include "bn.h"
#include "keys.h"
#include "random.h"
#include "rsaglue.h"
#include "usuals.h"
/*#define BNDEBUG 1*/
#if BNDEBUG
/* Some debugging hooks which have been left in for now. */
#include "bn/bnprint.h"
#define bndPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")
#define bndPrintf printf
#else
#define bndPut(prompt, bn) ((void)(prompt),(void)(bn))
#define bndPrintf(x) (void)0
#endif
/*
* This returns TRUE if the key is too big, returning the
* maximum number of bits that the library can accept. It
* is used if you want to use something icky from RSADSI, whose
* code is known to have satatic limits on key sizes. (BSAFE 2.1
* advertises 2048-bit key sizes. It lies. It's talking about
* conventional RC4 keys, whicah are useless to make anything like
* that large. RSA keys are limited to 1024 bits.
*/
int
rsaKeyTooBig(struct PubKey const *pub, struct SecKey const *sec)
{
(void)pub;
(void)sec;
return 0; /* Never too big! */
}
/*
* Fill the given bignum, from bytes high-1 through low (where 0 is
* the least significant byte), with non-zero random data.
*/
static int
randomPad(struct BigNum *bn, unsigned high, unsigned low)
{
unsigned i, l;
byte padding[64]; /* This can be any size (>0) whatsoever */
high -= low;
while (high) {
l = high < sizeof(padding) ? high : sizeof(padding);
randBytes(padding, l);
for (i = 0; i < l; i++) { /* Replace all zero bytes */
while(padding[i] == 0)
randBytes(padding+i, 1);
}
high -= l;
if (bnInsertBigBytes(bn, padding, high+low, l) < 0)
return RSAGLUE_NOMEM;
}
memset(padding, 0, sizeof(padding));
return 0;
}
/*
* Fill the given bignum, from bytes high-1 through low (where 0 is
* the least significant byte), with all ones (0xFF) data.
*/
static int
onesPad(struct BigNum *bn, unsigned high, unsigned low)
{
unsigned l;
static byte const padding[] = {
255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255
};
high -= low;
while (high) {
l = high < sizeof(padding) ? high : sizeof(padding);
high -= l;
if (bnInsertBigBytes(bn, padding, high+low, l) < 0)
return RSAGLUE_NOMEM;
}
return 0;
}
/*
* Wrap a PKCS type 2 wrapper around some data and RSA encrypt it.
* If the modulus is n bytes long, with the most significant byte
* being n-1 and the least significant, 0, the wrapper looks like:
*
* Position Value Function
* n-1 0 This is needed to ensure that the padded number
* is less than the modulus.
* n-2 2 The padding type (non-zero random).
* n-3..len+1 ??? Non-zero random padding bytes to "salt" the
* output and prevent duplicate plaintext attacks.
* len 0 Zero byte to mark the end of the padding
* len-1..0 data Supplied payload data.
*
* There really should be several bytes of padding, although this
* routine will not fail to encrypt unless it will not fit, even
* with no padding bytes.
*/
static byte const encryptedType = 2;
int
rsaPublicEncrypt(struct BigNum *bn, byte const *in, unsigned len,
struct PubKey const *pub)
{
unsigned bytes = (bnBits(&pub->n)+7)/8;
if (len+3 > bytes)
return RSAGLUE_TOOSMALL; /* Won't fit! */
/* Set the entire number to 0 to start */
(void)bnSetQ(bn, 0);
if (bnInsertBigBytes(bn, &encryptedType, bytes-2, 1) < 0)
return RSAGLUE_NOMEM;
if (randomPad(bn, bytes-2, len+1) < 0)
return RSAGLUE_NOMEM;
if (bnInsertBigBytes(bn, in, 0, len) < 0)
return RSAGLUE_NOMEM;
bndPrintf("RSA encrypting.\n");
bndPut("plaintext = ", bn);
return bnExpMod(bn, bn, &pub->e, &pub->n);
}
/*
* This performs a modular exponentiation using the Chinese Remainder
* Algorithm when the modulus is known to have two relatively prime
* factors n = p * q, and u = p^-1 (mod q) has been precomputed.
*
* The chinese remainder algorithm lets a computation mod n be performed
* mod p and mod q, and the results combined. Since it takes
* (considerably) more than twice as long to perform modular exponentiation
* mod n as it does to perform it mod p and mod q, time is saved.
*
* If x is the desired result, let xp and xq be the values of x mod p
* and mod q, respectively. Obviously, x = xp + p * k for some k.
* Taking this mod q, xq == xp + p*k (mod q), so p*k == xq-xp (mod q)
* and k == p^-1 * (xq-xp) (mod q), so k = u * (xq-xp mod q) mod q.
* After that, x = xp + p * k.
*
* Another savings comes from reducing the exponent d modulo phi(p)
* and phi(q). Here, we assume that p and q are prime, so phi(p) = p-1
* and phi(q) = q-1.
*/
static int
bnExpModCRA(struct BigNum *x, struct BigNum const *d,
struct BigNum const *p, struct BigNum const *q, struct BigNum const *u)
{
struct BigNum xp, xq, k;
int i;
bndPrintf("Performing CRA\n");
bndPut("x = ", x);
bndPut("p = ", p);
bndPut("q = ", q);
bndPut("d = ", d);
bndPut("u = ", u);
bnBegin(&xp);
bnBegin(&xq);
bnBegin(&k);
/* Compute xp = (x mod p) ^ (d mod p-1) mod p */
if (bnCopy(&xp, p) < 0) /* First, use xp to hold p-1 */
goto fail;
(void)bnSubQ(&xp, 1); /* p > 1, so subtracting is safe. */
if (bnMod(&k, d, &xp) < 0) /* Use k to hold the exponent */
goto fail;
bndPut("d mod p-1 = ", &k);
if (bnMod(&xp, x, p) < 0) /* Now xp = (x mod p) */
goto fail;
bndPut("x mod p = ", &xp);
if (bnExpMod(&xp, &xp, &k, p) < 0) /* xp = (x mod p)^k mod p */
goto fail;
bndPut("xp = x^d mod p = ", &xp);
/* Compute xq = (x mod q) ^ (d mod q-1) mod q */
if (bnCopy(&xq, q) < 0) /* First, use xq to hold q-1 */
goto fail;
(void)bnSubQ(&xq, 1); /* q > 1, so subtracting is safe. */
if (bnMod(&k, d, &xq) < 0) /* Use k to hold the exponent */
goto fail;
bndPut("d mod q-1 = ", &k);
if (bnMod(&xq, x, q) < 0) /* Now xq = (x mod q) */
goto fail;
bndPut("x mod q = ", &xq);
if (bnExpMod(&xq, &xq, &k, q) < 0) /* xq = (x mod q)^k mod q */
goto fail;
bndPut("xq = x^d mod q = ", &xq);
i = bnSub(&xq, &xp);
bndPut("xq - xp = ", &xq);
bndPrintf(("With sign %d\n", i));
if (i < 0)
goto fail;
if (i) {
/*
* Borrow out - xq-xp is negative, so bnSub returned
* xp-xq instead, the negative of the true answer.
* Add q back (which is subtracting from the negative)
* until the sign flips again. If p is much greater
* than q, this step could take annoyingly long.
* PGP requires that p < q, so it'll only happen once.
* You could get this stuck in a very lengthy loop by
* feeding this function a p >> q, but it seems fair
* to assume that secret keys are not constructed
* maliciously.
*
* If this becomes a concern, you can fix it up with a
* bnMod. (But watch out for the case that the correct
* answer is zero!)
*/
do {
i = bnSub(&xq, q);
bndPut("xq - xp mod q = ", &xq);
if (i < 0)
goto fail;
} while (!i);
}
/* Compute k = xq * u mod q */
if (bnMul(&k, u, &xq) < 0)
goto fail;
bndPut("(xq-xp) * u = ", &k);
if (bnMod(&k, &k, q) < 0)
goto fail;
bndPut("k = (xq-xp)*u % q = ", &k);
#if BNDEBUG /* @@@ DEBUG - do it the slow way for comparison */
if (bnMul(&xq, p, q) < 0)
goto fail;
bndPut("n = p*q = ", &xq);
if (bnExpMod(x, x, d, &xq) < 0)
goto fail;
if (bnCopy(&xq, x) < 0)
goto fail;
bndPut("x^d mod n = ", &xq);
#endif
/* Now x = k * p + xp is the final answer */
if (bnMul(x, &k, p) < 0)
goto fail;
bndPut("k * p = ", x);
if (bnAdd(x, &xp) < 0)
goto fail;
bndPut("k*p + xp = ", x);
#if BNDEBUG
if (bnCmp(x, &xq) != 0) {
bndPrintf(("Nasty!!!\n"));
goto fail;
}
bnSetQ(&k, 17);
bnMul(&xp, p, q);
bnExpMod(&xq, &xq, &k, &xp);
bndPut("x^17 mod n = ", &xq);
#endif
bnEnd(&xp);
bnEnd(&xq);
bnEnd(&k);
return 0;
fail:
bnEnd(&xp);
bnEnd(&xq);
bnEnd(&k);
return RSAGLUE_NOMEM;
}
/*
* This does an RSA signing operation, which is very similar, except
* that the padding differs. The type is 1, and the padding is all 1's
* (hex 0xFF).
*
* To summarize, the format is:
*
* Position Value Function
* n-1 0 This is needed to ensure that the padded number
* is less than the modulus.
* n-2 1 The padding type (all ones).
* n-3..len+1 255 All ones padding to ensure signatures are rare.
* len 0 Zero byte to mark the end of the padding
* len-1..0 data The payload
*
*
* The reason for the all 1's padding is an extra consistency check.
* A randomly invented signature will not decrypt to have the long
* run of ones necessary for acceptance.
*
* Oh... the public key isn't needed to decrypt, but it's passed in
* because a different glue library may need it for some reason.
*/
static const byte signedType = 1;
int
rsaPrivateEncrypt(struct BigNum *bn, byte const *in, unsigned len,
struct PubKey const *pub, struct SecKey const *sec)
{
unsigned bytes = (bnBits(&pub->n)+7)/8;
/* Set the entire number to 0 to start */
(void)bnSetQ(bn, 0);
if (len+3 > bytes)
return RSAGLUE_TOOSMALL; /* Won't fit */
if (bnInsertBigBytes(bn, &signedType, bytes-2, 1) < 0)
return RSAGLUE_NOMEM;
if (onesPad(bn, bytes-2, len+1) < 0)
return RSAGLUE_NOMEM;
if (bnInsertBigBytes(bn, in, 0, len) < 0)
return RSAGLUE_NOMEM;
bndPrintf(("RSA signing.\n"));
bndPut("plaintext = ", bn);
return bnExpModCRA(bn, &sec->d, &sec->p, &sec->q, &sec->u);
}
/*
* Searches bytes, beginning with start-1 and progressing to 0,
* until one that is not 0xff is found. The idex of the last 0xff
* byte is returned (or start if start-1 is not 0xff.)
*/
static unsigned
bnSearchNonOneFromHigh(struct BigNum const *bn, unsigned start)
{
byte buf[16]; /* Size is arbitrary */
unsigned l;
unsigned i;
while (start) {
l = start < sizeof(buf) ? start : sizeof(buf);
start -= l;
bnExtractBigBytes(bn, buf, start, l);
for (i = 0; i < l; i++) {
if (buf[i] != 0xff) {
memset(buf, 0, sizeof(buf));
return start + l - i;
}
}
}
/* Nothing found */
memset(buf, 0, sizeof(buf));
return 0;
}
/*
* Decrypt a message with a public key.
* These destroy (actually, replace with a decrypted version) the
* input bignum bn.
*
* Performs an RSA signature check. Returns a prefix of the unwrapped
* data in the given buf. Returns the length of the untruncated
* data, which may exceed "len". Returns <0 on error.
*/
int
rsaPublicDecrypt(byte *buf, unsigned len, struct BigNum *bn,
struct PubKey const *pub)
{
byte tmp[1];
unsigned bytes;
bndPrintf(("RSA signature checking.\n"));
if (bnExpMod(bn, bn, &pub->e, &pub->n) < 0)
return RSAGLUE_NOMEM;
bndPut("decrypted = ", bn);
bytes = (bnBits(&pub->n)+7)/8;
bnExtractBigBytes(bn, tmp, bytes-2, 2);
if (tmp[0] != 0 || tmp[1] != signedType) {
memset(tmp, 0, 2);
return RSAGLUE_CORRUPT;
}
bytes = bnSearchNonOneFromHigh(bn, bytes-2);
if (bytes < 1)
return RSAGLUE_CORRUPT;
bytes--;
bnExtractBigBytes(bn, tmp, bytes, 1);
if (tmp[0] != 0) {
tmp[0] = 0;
return RSAGLUE_CORRUPT;
}
/* Note: tmp isn't sensitive any more because its a constant! */
/* Success! Return the data */
if (len > bytes)
len = bytes;
bnExtractBigBytes(bn, buf, bytes-len, len);
return bytes;
}
/*
* Searches bytes, beginning with start-1 and progressing to 0,
* until finding one that is zero, or the end of the array.
* The index of the last non-zero byte is returned (0 if the array
* is all non-zero, or start if start-1 is zero).
*/
static unsigned
bnSearchZeroFromHigh(struct BigNum const *bn, unsigned start)
{
byte buf[16]; /* Size is arbitrary */
unsigned l;
unsigned i;
while (start) {
l = start < sizeof(buf) ? start : sizeof(buf);
start -= l;
bnExtractBigBytes(bn, buf, start, l);
for (i = 0; i < l; i++) {
if (buf[i] == 0) {
memset(buf, 0, sizeof(buf));
return start + l - i;
}
}
}
/* Nothing found */
memset(buf, 0, sizeof(buf));
return 0;
}
/*
* Performs an RSA decryption. Returns a prefix of the unwrapped
* data in the given buf. Returns the length of the untruncated
* data, which may exceed "len". Returns <0 on error.
*/
int
rsaPrivateDecrypt(byte *buf, unsigned len, struct BigNum *bn,
struct PubKey const *pub, struct SecKey const *sec)
{
unsigned bytes;
byte tmp[2];
bndPrintf(("RSA decrypting\n"));
if (bnExpModCRA(bn, &sec->d, &sec->p, &sec->q, &sec->u) < 0)
return RSAGLUE_NOMEM;
bndPut("decrypted = ", bn);
bytes = (bnBits(&pub->n)+7)/8;
bnExtractBigBytes(bn, tmp, bytes-2, 2);
if (tmp[0] != 0 || tmp[1] != 2) {
memset(tmp, 0, 2);
return RSAGLUE_CORRUPT;
}
bytes = bnSearchZeroFromHigh(bn, bytes-2);
if (bytes-- == 0)
return RSAGLUE_CORRUPT;
if (len > bytes)
len = bytes;
bnExtractBigBytes(bn, buf, bytes-len, len);
return bytes;
}