freeswitch/libs/libvpx/vp9/common/vp9_idct.c

426 lines
13 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
#include "vpx_dsp/inv_txfm.h"
#include "vpx_ports/mem.h"
void vp9_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
const transform_2d IHT_4[] = {
{ idct4_c, idct4_c }, // DCT_DCT = 0
{ iadst4_c, idct4_c }, // ADST_DCT = 1
{ idct4_c, iadst4_c }, // DCT_ADST = 2
{ iadst4_c, iadst4_c } // ADST_ADST = 3
};
int i, j;
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
tran_low_t temp_in[4], temp_out[4];
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, outptr);
input += 4;
outptr += 4;
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i];
IHT_4[tx_type].cols(temp_in, temp_out);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 4));
}
}
}
static const transform_2d IHT_8[] = {
{ idct8_c, idct8_c }, // DCT_DCT = 0
{ iadst8_c, idct8_c }, // ADST_DCT = 1
{ idct8_c, iadst8_c }, // DCT_ADST = 2
{ iadst8_c, iadst8_c } // ADST_ADST = 3
};
void vp9_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
int i, j;
tran_low_t out[8 * 8];
tran_low_t *outptr = out;
tran_low_t temp_in[8], temp_out[8];
const transform_2d ht = IHT_8[tx_type];
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
ht.rows(input, outptr);
input += 8;
outptr += 8;
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 5));
}
}
}
static const transform_2d IHT_16[] = {
{ idct16_c, idct16_c }, // DCT_DCT = 0
{ iadst16_c, idct16_c }, // ADST_DCT = 1
{ idct16_c, iadst16_c }, // DCT_ADST = 2
{ iadst16_c, iadst16_c } // ADST_ADST = 3
};
void vp9_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
int i, j;
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
tran_low_t temp_in[16], temp_out[16];
const transform_2d ht = IHT_16[tx_type];
// Rows
for (i = 0; i < 16; ++i) {
ht.rows(input, outptr);
input += 16;
outptr += 16;
}
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 6));
}
}
}
// idct
void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
vpx_idct4x4_16_add(input, dest, stride);
else
vpx_idct4x4_1_add(input, dest, stride);
}
void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
vpx_iwht4x4_16_add(input, dest, stride);
else
vpx_iwht4x4_1_add(input, dest, stride);
}
void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
if (eob == 1)
// DC only DCT coefficient
vpx_idct8x8_1_add(input, dest, stride);
else if (eob <= 12)
vpx_idct8x8_12_add(input, dest, stride);
else
vpx_idct8x8_64_add(input, dest, stride);
}
void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
/* The calculation can be simplified if there are not many non-zero dct
* coefficients. Use eobs to separate different cases. */
if (eob == 1) /* DC only DCT coefficient. */
vpx_idct16x16_1_add(input, dest, stride);
else if (eob <= 10)
vpx_idct16x16_10_add(input, dest, stride);
else
vpx_idct16x16_256_add(input, dest, stride);
}
void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob == 1)
vpx_idct32x32_1_add(input, dest, stride);
else if (eob <= 34)
// non-zero coeff only in upper-left 8x8
vpx_idct32x32_34_add(input, dest, stride);
else if (eob <= 135)
// non-zero coeff only in upper-left 16x16
vpx_idct32x32_135_add(input, dest, stride);
else
vpx_idct32x32_1024_add(input, dest, stride);
}
// iht
void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest,
int stride, int eob) {
if (tx_type == DCT_DCT)
vp9_idct4x4_add(input, dest, stride, eob);
else
vp9_iht4x4_16_add(input, dest, stride, tx_type);
}
void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest,
int stride, int eob) {
if (tx_type == DCT_DCT) {
vp9_idct8x8_add(input, dest, stride, eob);
} else {
vp9_iht8x8_64_add(input, dest, stride, tx_type);
}
}
void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest,
int stride, int eob) {
if (tx_type == DCT_DCT) {
vp9_idct16x16_add(input, dest, stride, eob);
} else {
vp9_iht16x16_256_add(input, dest, stride, tx_type);
}
}
#if CONFIG_VP9_HIGHBITDEPTH
// 12 signal input bits + 7 forward transform amplify bits + 1 bit
// for contingency in rounding and quantizing
#define VALID_IHT_MAGNITUDE_RANGE (1 << 20)
static INLINE int detect_invalid_iht_input(const tran_low_t *input, int size) {
int i;
for (i = 0; i < size; ++i)
if (abs(input[i]) >= VALID_IHT_MAGNITUDE_RANGE) return 1;
return 0;
}
void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
const highbd_transform_2d IHT_4[] = {
{ vpx_highbd_idct4_c, vpx_highbd_idct4_c }, // DCT_DCT = 0
{ vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // ADST_DCT = 1
{ vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_ADST = 2
{ vpx_highbd_iadst4_c, vpx_highbd_iadst4_c } // ADST_ADST = 3
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
tran_low_t temp_in[4], temp_out[4];
if (detect_invalid_iht_input(input, 16)) {
#if CONFIG_COEFFICIENT_RANGE_CHECKING
assert(0 && "invalid highbd iht input");
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
return;
}
// Inverse transform row vectors.
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, outptr, bd);
input += 4;
outptr += 4;
}
// Inverse transform column vectors.
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i];
IHT_4[tx_type].cols(temp_in, temp_out, bd);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd);
}
}
}
static const highbd_transform_2d HIGH_IHT_8[] = {
{ vpx_highbd_idct8_c, vpx_highbd_idct8_c }, // DCT_DCT = 0
{ vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // ADST_DCT = 1
{ vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_ADST = 2
{ vpx_highbd_iadst8_c, vpx_highbd_iadst8_c } // ADST_ADST = 3
};
void vp9_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
int i, j;
tran_low_t out[8 * 8];
tran_low_t *outptr = out;
tran_low_t temp_in[8], temp_out[8];
const highbd_transform_2d ht = HIGH_IHT_8[tx_type];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
if (detect_invalid_iht_input(input, 64)) {
#if CONFIG_COEFFICIENT_RANGE_CHECKING
assert(0 && "invalid highbd iht input");
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
return;
}
// Inverse transform row vectors.
for (i = 0; i < 8; ++i) {
ht.rows(input, outptr, bd);
input += 8;
outptr += 8;
}
// Inverse transform column vectors.
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i];
ht.cols(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
}
static const highbd_transform_2d HIGH_IHT_16[] = {
{ vpx_highbd_idct16_c, vpx_highbd_idct16_c }, // DCT_DCT = 0
{ vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // ADST_DCT = 1
{ vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_ADST = 2
{ vpx_highbd_iadst16_c, vpx_highbd_iadst16_c } // ADST_ADST = 3
};
void vp9_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
int i, j;
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
tran_low_t temp_in[16], temp_out[16];
const highbd_transform_2d ht = HIGH_IHT_16[tx_type];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
if (detect_invalid_iht_input(input, 256)) {
#if CONFIG_COEFFICIENT_RANGE_CHECKING
assert(0 && "invalid highbd iht input");
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
return;
}
// Rows
for (i = 0; i < 16; ++i) {
ht.rows(input, outptr, bd);
input += 16;
outptr += 16;
}
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i];
ht.cols(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
// idct
void vp9_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
vpx_highbd_idct4x4_16_add(input, dest, stride, bd);
else
vpx_highbd_idct4x4_1_add(input, dest, stride, bd);
}
void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
vpx_highbd_iwht4x4_16_add(input, dest, stride, bd);
else
vpx_highbd_iwht4x4_1_add(input, dest, stride, bd);
}
void vp9_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// DC only DCT coefficient
if (eob == 1) {
vpx_highbd_idct8x8_1_add(input, dest, stride, bd);
} else if (eob <= 10) {
vpx_highbd_idct8x8_10_add(input, dest, stride, bd);
} else {
vpx_highbd_idct8x8_64_add(input, dest, stride, bd);
}
}
void vp9_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to separate different cases.
// DC only DCT coefficient.
if (eob == 1) {
vpx_highbd_idct16x16_1_add(input, dest, stride, bd);
} else if (eob <= 10) {
vpx_highbd_idct16x16_10_add(input, dest, stride, bd);
} else {
vpx_highbd_idct16x16_256_add(input, dest, stride, bd);
}
}
void vp9_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// Non-zero coeff only in upper-left 8x8
if (eob == 1) {
vpx_highbd_idct32x32_1_add(input, dest, stride, bd);
} else if (eob <= 34) {
vpx_highbd_idct32x32_34_add(input, dest, stride, bd);
} else {
vpx_highbd_idct32x32_1024_add(input, dest, stride, bd);
}
}
// iht
void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd) {
if (tx_type == DCT_DCT)
vp9_highbd_idct4x4_add(input, dest, stride, eob, bd);
else
vp9_highbd_iht4x4_16_add(input, dest, stride, tx_type, bd);
}
void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd) {
if (tx_type == DCT_DCT) {
vp9_highbd_idct8x8_add(input, dest, stride, eob, bd);
} else {
vp9_highbd_iht8x8_64_add(input, dest, stride, tx_type, bd);
}
}
void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd) {
if (tx_type == DCT_DCT) {
vp9_highbd_idct16x16_add(input, dest, stride, eob, bd);
} else {
vp9_highbd_iht16x16_256_add(input, dest, stride, tx_type, bd);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH