freeswitch/libs/srtp/crypto/kernel/crypto_kernel.c

524 lines
14 KiB
C

/*
* crypto_kernel.c
*
* header for the cryptographic kernel
*
* David A. McGrew
* Cisco Systems, Inc.
*/
/*
*
* Copyright(c) 2001-2005 Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "alloc.h"
#include "crypto_kernel.h"
/* the debug module for the crypto_kernel */
debug_module_t mod_crypto_kernel = {
0, /* debugging is off by default */
"crypto kernel" /* printable name for module */
};
/*
* other debug modules that can be included in the kernel
*/
extern debug_module_t mod_auth;
extern debug_module_t mod_cipher;
extern debug_module_t mod_stat;
extern debug_module_t mod_alloc;
/*
* cipher types that can be included in the kernel
*/
extern cipher_type_t null_cipher;
extern cipher_type_t aes_icm;
extern cipher_type_t aes_cbc;
/*
* auth func types that can be included in the kernel
*/
extern auth_type_t null_auth;
extern auth_type_t hmac;
/* crypto_kernel is a global variable, the only one of its datatype */
crypto_kernel_t
crypto_kernel = {
crypto_kernel_state_insecure, /* start off in insecure state */
NULL, /* no cipher types yet */
NULL, /* no auth types yet */
NULL /* no debug modules yet */
};
#define MAX_RNG_TRIALS 25
err_status_t
crypto_kernel_init() {
err_status_t status;
/* check the security state */
if (crypto_kernel.state == crypto_kernel_state_secure) {
/*
* we're already in the secure state, but we've been asked to
* re-initialize, so we just re-run the self-tests and then return
*/
return crypto_kernel_status();
}
/* initialize error reporting system */
status = err_reporting_init("crypto");
if (status)
return status;
/* load debug modules */
status = crypto_kernel_load_debug_module(&mod_crypto_kernel);
if (status)
return status;
status = crypto_kernel_load_debug_module(&mod_auth);
if (status)
return status;
status = crypto_kernel_load_debug_module(&mod_cipher);
if (status)
return status;
status = crypto_kernel_load_debug_module(&mod_stat);
if (status)
return status;
status = crypto_kernel_load_debug_module(&mod_alloc);
if (status)
return status;
/* initialize random number generator */
status = rand_source_init();
if (status)
return status;
/* run FIPS-140 statistical tests on rand_source */
status = stat_test_rand_source_with_repetition(rand_source_get_octet_string, MAX_RNG_TRIALS);
if (status)
return status;
/* initialize pseudorandom number generator */
status = ctr_prng_init(rand_source_get_octet_string);
if (status)
return status;
/* run FIPS-140 statistical tests on ctr_prng */
status = stat_test_rand_source_with_repetition(ctr_prng_get_octet_string, MAX_RNG_TRIALS);
if (status)
return status;
/* load cipher types */
status = crypto_kernel_load_cipher_type(&null_cipher, NULL_CIPHER);
if (status)
return status;
status = crypto_kernel_load_cipher_type(&aes_icm, AES_128_ICM);
if (status)
return status;
status = crypto_kernel_load_cipher_type(&aes_cbc, AES_128_CBC);
if (status)
return status;
/* load auth func types */
status = crypto_kernel_load_auth_type(&null_auth, NULL_AUTH);
if (status)
return status;
status = crypto_kernel_load_auth_type(&hmac, HMAC_SHA1);
if (status)
return status;
/* change state to secure */
crypto_kernel.state = crypto_kernel_state_secure;
return err_status_ok;
}
err_status_t
crypto_kernel_status() {
err_status_t status;
kernel_cipher_type_t *ctype = crypto_kernel.cipher_type_list;
kernel_auth_type_t *atype = crypto_kernel.auth_type_list;
kernel_debug_module_t *dm = crypto_kernel.debug_module_list;
/* run FIPS-140 statistical tests on rand_source */
printf("testing rand_source...");
status = stat_test_rand_source_with_repetition(rand_source_get_octet_string, MAX_RNG_TRIALS);
if (status) {
printf("failed\n");
crypto_kernel.state = crypto_kernel_state_insecure;
return status;
}
printf("passed\n");
/* for each cipher type, describe and test */
while(ctype != NULL) {
printf("cipher: %s\n", ctype->cipher_type->description);
printf(" instance count: %d\n", ctype->cipher_type->ref_count);
printf(" self-test: ");
status = cipher_type_self_test(ctype->cipher_type);
if (status) {
printf("failed with error code %d\n", status);
exit(status);
}
printf("passed\n");
ctype = ctype->next;
}
/* for each auth type, describe and test */
while(atype != NULL) {
printf("auth func: %s\n", atype->auth_type->description);
printf(" instance count: %d\n", atype->auth_type->ref_count);
printf(" self-test: ");
status = auth_type_self_test(atype->auth_type);
if (status) {
printf("failed with error code %d\n", status);
exit(status);
}
printf("passed\n");
atype = atype->next;
}
/* describe each debug module */
printf("debug modules loaded:\n");
while (dm != NULL) {
printf(" %s ", dm->mod->name);
if (dm->mod->on)
printf("(on)\n");
else
printf("(off)\n");
dm = dm->next;
}
return err_status_ok;
}
err_status_t
crypto_kernel_list_debug_modules() {
kernel_debug_module_t *dm = crypto_kernel.debug_module_list;
/* describe each debug module */
printf("debug modules loaded:\n");
while (dm != NULL) {
printf(" %s ", dm->mod->name);
if (dm->mod->on)
printf("(on)\n");
else
printf("(off)\n");
dm = dm->next;
}
return err_status_ok;
}
err_status_t
crypto_kernel_shutdown() {
err_status_t status;
/*
* free dynamic memory used in crypto_kernel at present
*/
/* walk down cipher type list, freeing memory */
while (crypto_kernel.cipher_type_list != NULL) {
kernel_cipher_type_t *ctype = crypto_kernel.cipher_type_list;
crypto_kernel.cipher_type_list = ctype->next;
debug_print(mod_crypto_kernel,
"freeing memory for cipher %s",
ctype->cipher_type->description);
crypto_free(ctype);
}
/* walk down authetication module list, freeing memory */
while (crypto_kernel.auth_type_list != NULL) {
kernel_auth_type_t *atype = crypto_kernel.auth_type_list;
crypto_kernel.auth_type_list = atype->next;
debug_print(mod_crypto_kernel,
"freeing memory for authentication %s",
atype->auth_type->description);
crypto_free(atype);
}
/* walk down debug module list, freeing memory */
while (crypto_kernel.debug_module_list != NULL) {
kernel_debug_module_t *kdm = crypto_kernel.debug_module_list;
crypto_kernel.debug_module_list = kdm->next;
debug_print(mod_crypto_kernel,
"freeing memory for debug module %s",
kdm->mod->name);
crypto_free(kdm);
}
/* de-initialize random number generator */ status = rand_source_deinit();
if (status)
return status;
/* return to insecure state */
crypto_kernel.state = crypto_kernel_state_insecure;
return err_status_ok;
}
err_status_t
crypto_kernel_load_cipher_type(cipher_type_t *new_ct, cipher_type_id_t id) {
kernel_cipher_type_t *ctype, *new;
err_status_t status;
/* defensive coding */
if (new_ct == NULL)
return err_status_bad_param;
/* check cipher type by running self-test */
status = cipher_type_self_test(new_ct);
if (status) {
return status;
}
/* walk down list, checking if this type is in the list already */
ctype = crypto_kernel.cipher_type_list;
while (ctype != NULL) {
if ((new_ct == ctype->cipher_type) || (id == ctype->id))
return err_status_bad_param;
ctype = ctype->next;
}
/* put new_ct at the head of the list */
/* allocate memory */
new = (kernel_cipher_type_t *) crypto_alloc(sizeof(kernel_cipher_type_t));
if (new == NULL)
return err_status_alloc_fail;
/* set fields */
new->cipher_type = new_ct;
new->id = id;
new->next = crypto_kernel.cipher_type_list;
/* set head of list to new cipher type */
crypto_kernel.cipher_type_list = new;
/* load debug module, if there is one present */
if (new_ct->debug != NULL)
crypto_kernel_load_debug_module(new_ct->debug);
/* we could check for errors here */
return err_status_ok;
}
err_status_t
crypto_kernel_load_auth_type(auth_type_t *new_at, auth_type_id_t id) {
kernel_auth_type_t *atype, *new;
err_status_t status;
/* defensive coding */
if (new_at == NULL)
return err_status_bad_param;
/* check auth type by running self-test */
status = auth_type_self_test(new_at);
if (status) {
return status;
}
/* walk down list, checking if this type is in the list already */
atype = crypto_kernel.auth_type_list;
while (atype != NULL) {
if ((new_at == atype->auth_type) || (id == atype->id))
return err_status_bad_param;
atype = atype->next;
}
/* put new_at at the head of the list */
/* allocate memory */
new = (kernel_auth_type_t *)crypto_alloc(sizeof(kernel_auth_type_t));
if (new == NULL)
return err_status_alloc_fail;
/* set fields */
new->auth_type = new_at;
new->id = id;
new->next = crypto_kernel.auth_type_list;
/* set head of list to new auth type */
crypto_kernel.auth_type_list = new;
/* load debug module, if there is one present */
if (new_at->debug != NULL)
crypto_kernel_load_debug_module(new_at->debug);
/* we could check for errors here */
return err_status_ok;
}
cipher_type_t *
crypto_kernel_get_cipher_type(cipher_type_id_t id) {
kernel_cipher_type_t *ctype;
/* walk down list, looking for id */
ctype = crypto_kernel.cipher_type_list;
while (ctype != NULL) {
if (id == ctype->id)
return ctype->cipher_type;
ctype = ctype->next;
}
/* haven't found the right one, indicate failure by returning NULL */
return NULL;
}
err_status_t
crypto_kernel_alloc_cipher(cipher_type_id_t id,
cipher_pointer_t *cp,
int key_len) {
cipher_type_t *ct;
/*
* if the crypto_kernel is not yet initialized, we refuse to allocate
* any ciphers - this is a bit extra-paranoid
*/
if (crypto_kernel.state != crypto_kernel_state_secure)
return err_status_init_fail;
ct = crypto_kernel_get_cipher_type(id);
if (!ct)
return err_status_fail;
return ((ct)->alloc(cp, key_len));
}
auth_type_t *
crypto_kernel_get_auth_type(auth_type_id_t id) {
kernel_auth_type_t *atype;
/* walk down list, looking for id */
atype = crypto_kernel.auth_type_list;
while (atype != NULL) {
if (id == atype->id)
return atype->auth_type;
atype = atype->next;
}
/* haven't found the right one, indicate failure by returning NULL */
return NULL;
}
err_status_t
crypto_kernel_alloc_auth(auth_type_id_t id,
auth_pointer_t *ap,
int key_len,
int tag_len) {
auth_type_t *at;
/*
* if the crypto_kernel is not yet initialized, we refuse to allocate
* any auth functions - this is a bit extra-paranoid
*/
if (crypto_kernel.state != crypto_kernel_state_secure)
return err_status_init_fail;
at = crypto_kernel_get_auth_type(id);
if (!at)
return err_status_fail;
return ((at)->alloc(ap, key_len, tag_len));
}
err_status_t
crypto_kernel_load_debug_module(debug_module_t *new_dm) {
kernel_debug_module_t *kdm, *new;
/* defensive coding */
if (new_dm == NULL)
return err_status_bad_param;
/* walk down list, checking if this type is in the list already */
kdm = crypto_kernel.debug_module_list;
while (kdm != NULL) {
if (strncmp(new_dm->name, kdm->mod->name, 64) == 0)
return err_status_bad_param;
kdm = kdm->next;
}
/* put new_dm at the head of the list */
/* allocate memory */
new = (kernel_debug_module_t *)crypto_alloc(sizeof(kernel_debug_module_t));
if (new == NULL)
return err_status_alloc_fail;
/* set fields */
new->mod = new_dm;
new->next = crypto_kernel.debug_module_list;
/* set head of list to new cipher type */
crypto_kernel.debug_module_list = new;
return err_status_ok;
}
err_status_t
crypto_kernel_set_debug_module(char *name, int on) {
kernel_debug_module_t *kdm;
/* walk down list, checking if this type is in the list already */
kdm = crypto_kernel.debug_module_list;
while (kdm != NULL) {
if (strncmp(name, kdm->mod->name, 64) == 0) {
kdm->mod->on = on;
return err_status_ok;
}
kdm = kdm->next;
}
return err_status_fail;
}
err_status_t
crypto_get_random(unsigned char *buffer, unsigned int length) {
if (crypto_kernel.state == crypto_kernel_state_secure)
return ctr_prng_get_octet_string(buffer, length);
else
return err_status_fail;
}