freeswitch/libs/libzrtp/third_party/bnlib/test/keygen.c

381 lines
10 KiB
C

/*
* Copyright (c) 1995 Colin Plumb. All rights reserved.
* For licensing and other legal details, see the file legal.c.
*
* keygen.c - generate RSA key pairs using the bignum library.
*/
#include "first.h"
#include <assert.h>
#include <stdio.h> /* For FILE type */
#include <string.h> /* For memset */
#include "bn.h"
#include "prime.h"
#include "keygen.h"
#include "keys.h" /* Key structures */
#include "random.h" /* Good random number generator */
#if BNDEBUG
#include "bnprint.h"
#define bndPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")
#define bndPrintf printf
#else
#define bndPut(prompt, bn) ((void)(prompt),(void)(bn))
#define bndPrintf (void)
#endif
#include "kludge.h"
/*
* Generate a random bignum of a specified length, with the given
* high and low 8 bits. "High" is merged into the high 8 bits of the
* number. For example, set it to 0x80 to ensure that the number is
* exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits).
* "Low" is merged into the low 8 bits. For example, set it to
* 1 to ensure that you generate an odd number.
*/
static int
genRandBn(struct BigNum *bn, unsigned bits, byte high, byte low)
{
unsigned char buf[64];
unsigned bytes;
unsigned l;
int err;
bnSetQ(bn, 0);
bytes = (bits+7) / 8;
l = bytes < sizeof(buf) ? bytes : sizeof(buf);
randBytes(buf, l);
/* Mask off excess high bits */
buf[0] &= 255 >> (-bits & 7);
/* Merge in specified high bits */
buf[0] |= high >> (-bits & 7);
if (bits & 7)
buf[1] |= high << (bits & 7);
for (;;) {
bytes -= l;
if (!bytes) /* Last word - merge in low bits */
buf[l-1] |= low;
err = bnInsertBigBytes(bn, buf, bytes, l);
if (!bytes || err < 0)
break;
l = bytes < sizeof(buf) ? bytes : sizeof(buf);
randBytes(buf, l);
}
memset(buf, 0, sizeof(buf));
return err;
}
/*
* Generate a new RSA key, with the specified number of bits and
* public exponent. The high two bits of each prime are always
* set to make the number more difficult to factor by forcing the
* number into the high end of the range.
*/
struct Progress {
FILE *f;
unsigned column;
unsigned wrap;
};
static int
genProgress(void *arg, int c)
{
struct Progress *p = arg;
if (++p->column > p->wrap) {
putc('\n', p->f);
p->column = 1;
}
putc(c, p->f);
fflush(p->f);
return 0;
}
int
genRsaKey(struct PubKey *pub, struct SecKey *sec,
unsigned bits, unsigned exp, FILE *file)
{
int modexps = 0;
struct BigNum t; /* Temporary */
int i;
struct Progress progress;
progress.f = file;
progress.column = 0;
progress.wrap = 78;
if (bnSetQ(&pub->e, exp))
return -1;
/* Find p - choose a starting place */
if (genRandBn(&sec->p, bits/2, 0xC0, 1) < 0)
return -1;
/* And search for a prime */
i = primeGen(&sec->p, randRange, file ? genProgress : 0, &progress,
exp, 0);
if (i < 0)
goto error;
modexps = i;
assert(bnModQ(&sec->p, exp) != 1);
bndPut("p = ", &sec->p);
do {
/* Visual separator between the two progress indicators */
if (file)
genProgress(&progress, ' ');
if (genRandBn(&sec->q, (bits+1)/2, 0xC0, 1) < 0)
goto error;
if (bnCopy(&pub->n, &sec->q) < 0)
goto error;
if (bnSub(&pub->n, &sec->p) < 0)
goto error;
/* Note that bnSub(a,b) returns abs(a-b) */
} while (bnBits(&pub->n) < bits/2-5);
if (file)
fflush(file); /* Ensure the separators are visible */
i = primeGen(&sec->q, randRange, file ? genProgress : 0, &progress,
exp, 0);
if (i < 0)
goto error;
modexps += i;
assert(bnModQ(&sec->p, exp) != 1);
bndPut("q = ", &sec->q);
/* Wash the random number pool. */
randFlush();
/* Ensure that q is larger */
if (bnCmp(&sec->p, &sec->q) > 0)
bnSwap(&sec->p, &sec->q);
bndPut("p = ", &sec->p);
bndPut("q = ", &sec->q);
/*
* Now we dive into a large amount of fiddling to compute d,
* the decryption exponent, from the encryption exponent.
* We require that e*d == 1 (mod p-1) and e*d == 1 (mod q-1).
* This can alomost be done via the Chinese Remainder Algorithm,
* but it doesn't quite apply, because p-1 and q-1 are not
* realitvely prime. Our task is to massage these into
* two numbers a and b such that a*b = lcm(p-1,q-1) and
* gcd(a,b) = 1. The technique is not well documented,
* so I'll describe it here.
* First, let d = gcd(p-1,q-1), then let a' = (p-1)/d and
* b' = (q-1)/d. By the definition of the gcd, gcd(a',b') at
* this point is 1, but a'*b' is a factor of d shy of the desired
* value. We have to produce a = a' * d1 and b = b' * d2 such
* d1*d2 = d and gcd(a,b) is 1. This will be the case iff
* gcd(a,d2) = gcd(b,d1) = 1. Since GCD is associative and
* (gcd(x,y,z) = gcd(x,gcd(y,z)) = gcd(gcd(x,y),z), etc.),
* gcd(a',b') = 1 implies that gcd(a',b',d) = 1 which implies
* that gcd(a',gcd(b',d)) = gcd(gcd(a',d),b') = 1. So you can
* extract gcd(b',d) from d and make it part of d2, and the
* same for d1. And iterate? A pessimal example is x = 2*6^k
* and y = 3*6^k. gcd(x,y) = 6^k and we have to divvy it up
* somehow so that all the factors of 2 go to x and all the
* factors of 3 go to y, ending up with a = 2*2^k and b = 3*3^k.
*
* Aah, fuck it. It's simpler to do one big inverse for now.
* Later I'll figure out how to get this to work properly.
*/
/* Decrement q temporarily */
(void)bnSubQ(&sec->q, 1);
/* And u = p-1, to be divided by gcd(p-1,q-1) */
if (bnCopy(&sec->u, &sec->p) < 0)
goto error;
(void)bnSubQ(&sec->u, 1);
bndPut("p-1 = ", &sec->u);
bndPut("q-1 = ", &sec->q);
/* Use t to store gcd(p-1,q-1) */
bnBegin(&t);
if (bnGcd(&t, &sec->q, &sec->u) < 0) {
bnEnd(&t);
goto error;
}
bndPut("t = gcd(p-1,q-1) = ", &t);
/* Let d = (p-1) / gcd(p-1,q-1) (n is scratch for the remainder) */
i = bnDivMod(&sec->d, &pub->n, &sec->u, &t);
bndPut("(p-1)/t = ", &sec->d);
bndPut("(p-1)%t = ", &pub->n);
bnEnd(&t);
if (i < 0)
goto error;
assert(bnBits(&pub->n) == 0);
/* Now we have q-1 and d = (p-1) / gcd(p-1,q-1) */
/* Find the product, n = lcm(p-1,q-1) = c * d */
if (bnMul(&pub->n, &sec->q, &sec->d) < 0)
goto error;
bndPut("(p-1)*(q-1)/t = ", &pub->n);
/* Find the inverse of the exponent mod n */
i = bnInv(&sec->d, &pub->e, &pub->n);
bndPut("e = ", &pub->e);
bndPut("d = ", &sec->d);
if (i < 0)
goto error;
assert(!i); /* We should NOT get an error here */
/*
* Now we have the comparatively simple task of computing
* u = p^-1 mod q.
*/
#if BNDEBUG
bnMul(&sec->u, &sec->d, &pub->e);
bndPut("d * e = ", &sec->u);
bnMod(&pub->n, &sec->u, &sec->q);
bndPut("d * e = ", &sec->u);
bndPut("q-1 = ", &sec->q);
bndPut("d * e % (q-1)= ", &pub->n);
bnNorm(&pub->n);
bnSubQ(&sec->p, 1);
bndPut("d * e = ", &sec->u);
bnMod(&sec->u, &sec->u, &sec->p);
bndPut("p-1 = ", &sec->p);
bndPut("d * e % (p-1)= ", &sec->u);
bnNorm(&sec->u);
bnAddQ(&sec->p, 1);
#endif
/* But it *would* be nice to have q back first. */
(void)bnAddQ(&sec->q, 1);
bndPut("p = ", &sec->p);
bndPut("q = ", &sec->q);
/* Now compute u = p^-1 mod q */
i = bnInv(&sec->u, &sec->p, &sec->q);
if (i < 0)
goto error;
bndPut("u = p^-1 % q = ", &sec->u);
assert(!i); /* p and q had better be relatively prime! */
#if BNDEBUG
bnMul(&pub->n, &sec->u, &sec->p);
bndPut("u * p = ", &pub->n);
bnMod(&pub->n, &pub->n, &sec->q);
bndPut("u * p % q = ", &pub->n);
bnNorm(&pub->n);
#endif
/* And finally, n = p * q */
if (bnMul(&pub->n, &sec->p, &sec->q) < 0)
goto error;
bndPut("n = p * q = ", &pub->n);
/* And that's it... success! */
if (file)
putc('\n', file); /* Signal done */
return modexps;
error:
if (file)
fputs("?\n", file); /* Signal error */
return -1;
}
/*
* Chinese Remainder Theorem refresher.
* The theorem is actually that, "given x mod a, x mod b, x mod c, x mod d,
* etc., the value of x mod lcm(a, b, c, d, ...) is uniquely determined",
* But everyone seems to use the name "theorem" to refer to the algorithm
* to put the number back together.
*
* Doing it for multiple numbers efficiently is a bit hairier, so I'll
* just consider it for two moduli, a and b. We assume that the inputs
* are in the canonical equivalence class (0 <= xa = x mod a < a, and
* 0 <= xb = x mod b < b), and we want the output in the same form.
*
* First, divide one or the other by gcd(a,b) to reduce the problem to
* one of relatively prime numbers. You'll have to reduce the corresponding
* xa or xb modulo the new modulus.
*
* Then, note that if xa == x (mod a), then x = xa + a*k. The problem
* lies in finding k so that xa + a*k == xb (mod b). Rearranging
* gives a*k == xb - xa (mod b), and then multiplying both sides by
* a^-1, the inverse of a mod b, gives k == a^-1 * (xb-xa) (mod b).
* If k is reduced mod b, then xa + a*k <= (a-1) + a * (b-1) =
* a + a*(b-1) - 1 = a*b - 1, which is exactly as it should be to
* be reduced mod a*b. And if all the inputs are >= 0, the output
* will be non-negative.
*
* For multiple numbers, you can get the number into a similar mixed-
* radix form x = xa + a*(k1 + b*(k2 + c*(k3 +...))). All the math
* to do this is modulo the small numbers (and thus faster); only the
* final summing has to be performed at large sizes. For the greatest
* efficiency, order the numbers so a > b > c >..., so as many computations
* as possible are small.
*
* So the total procedure for two numbers is:
* - Let a be the larger and b be the smaller of the numbers.
* - Divide b by gcd(a,b) to make it even smaller.
* - Find a^-1 mod b.
* - Find (xb-xa) mod b.
* - Multiply (xb-xa) by a^-1, modulo b.
* - Multiply that by a, without any modular reduction
* - Add xa.
*/
#if 0
/* A simple test driver */
#include "bnprint.h"
#include <time.h>
int
main(void)
{
struct BigNum p, q, d, u;
int i;
clock_t interval;
static unsigned const sizetable[] = {
384, 512, 513, 514, 515, 768, 1024, 1536, 2048, 0
};
unsigned const *sizeptr = sizetable;
bnInit();
bnRandSeed(1);
bnBegin(&p);
bnBegin(&q);
bnBegin(&d);
bnBegin(&u);
while (*sizeptr) {
printf("Generating a %u-bit RSA key\n", *sizeptr);
interval = clock();
i = genRsaKey(&p, &q, &d, &u, *sizeptr, 17, stdout);
interval = clock() - interval;
printf("genRsaKey returned %d. %ld.%06ld s\n", i,
interval / 1000000, interval % 1000000);
fputs("p = ", stdout);
bnPrint(stdout, &p);
fputs("\nq = ", stdout);
bnPrint(stdout, &q);
fputs("\nd = ", stdout);
bnPrint(stdout, &d);
fputs("\nu = ", stdout);
bnPrint(stdout, &u);
putchar('\n');
sizeptr++;
}
bnEnd(&p);
bnEnd(&q);
bnEnd(&d);
bnEnd(&u);
return 0;
}
#endif