1962 lines
68 KiB
C
1962 lines
68 KiB
C
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the Netscape Portable Runtime (NSPR).
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 1998-2000
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/*
|
|
* prtime.c --
|
|
*
|
|
* NSPR date and time functions
|
|
*
|
|
*/
|
|
|
|
#include "prinit.h"
|
|
#include "prtime.h"
|
|
#include "prlock.h"
|
|
#include "prprf.h"
|
|
#include "prlog.h"
|
|
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
|
|
#ifdef XP_MAC
|
|
#include <time.h>
|
|
#endif
|
|
|
|
/*
|
|
* The COUNT_LEAPS macro counts the number of leap years passed by
|
|
* till the start of the given year Y. At the start of the year 4
|
|
* A.D. the number of leap years passed by is 0, while at the start of
|
|
* the year 5 A.D. this count is 1. The number of years divisible by
|
|
* 100 but not divisible by 400 (the non-leap years) is deducted from
|
|
* the count to get the correct number of leap years.
|
|
*
|
|
* The COUNT_DAYS macro counts the number of days since 01/01/01 till the
|
|
* start of the given year Y. The number of days at the start of the year
|
|
* 1 is 0 while the number of days at the start of the year 2 is 365
|
|
* (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
|
|
* midnight 00:00:00.
|
|
*/
|
|
|
|
#define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
|
|
#define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
|
|
#define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Static variables used by functions in this file
|
|
*/
|
|
|
|
/*
|
|
* The following array contains the day of year for the last day of
|
|
* each month, where index 1 is January, and day 0 is January 1.
|
|
*/
|
|
|
|
static const int lastDayOfMonth[2][13] = {
|
|
{-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
|
|
{-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
|
|
};
|
|
|
|
/*
|
|
* The number of days in a month
|
|
*/
|
|
|
|
static const PRInt8 nDays[2][12] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
|
};
|
|
|
|
/*
|
|
* Declarations for internal functions defined later in this file.
|
|
*/
|
|
|
|
static void ComputeGMT(PRTime time, PRExplodedTime *gmt);
|
|
static int IsLeapYear(PRInt16 year);
|
|
static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset);
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* ComputeGMT --
|
|
*
|
|
* Caveats:
|
|
* - we ignore leap seconds
|
|
* - our leap-year calculation is only correct for years 1901-2099
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
|
|
static void
|
|
ComputeGMT(PRTime time, PRExplodedTime *gmt)
|
|
{
|
|
PRInt32 tmp, rem;
|
|
PRInt32 numDays;
|
|
PRInt64 numDays64, rem64;
|
|
int isLeap;
|
|
PRInt64 sec;
|
|
PRInt64 usec;
|
|
PRInt64 usecPerSec;
|
|
PRInt64 secPerDay;
|
|
|
|
/*
|
|
* We first do the usec, sec, min, hour thing so that we do not
|
|
* have to do LL arithmetic.
|
|
*/
|
|
|
|
LL_I2L(usecPerSec, 1000000L);
|
|
LL_DIV(sec, time, usecPerSec);
|
|
LL_MOD(usec, time, usecPerSec);
|
|
LL_L2I(gmt->tm_usec, usec);
|
|
/* Correct for weird mod semantics so the remainder is always positive */
|
|
if (gmt->tm_usec < 0) {
|
|
PRInt64 one;
|
|
|
|
LL_I2L(one, 1L);
|
|
LL_SUB(sec, sec, one);
|
|
gmt->tm_usec += 1000000L;
|
|
}
|
|
|
|
LL_I2L(secPerDay, 86400L);
|
|
LL_DIV(numDays64, sec, secPerDay);
|
|
LL_MOD(rem64, sec, secPerDay);
|
|
/* We are sure both of these numbers can fit into PRInt32 */
|
|
LL_L2I(numDays, numDays64);
|
|
LL_L2I(rem, rem64);
|
|
if (rem < 0) {
|
|
numDays--;
|
|
rem += 86400L;
|
|
}
|
|
|
|
/* Compute day of week. Epoch started on a Thursday. */
|
|
|
|
gmt->tm_wday = (numDays + 4) % 7;
|
|
if (gmt->tm_wday < 0) {
|
|
gmt->tm_wday += 7;
|
|
}
|
|
|
|
/* Compute the time of day. */
|
|
|
|
gmt->tm_hour = rem / 3600;
|
|
rem %= 3600;
|
|
gmt->tm_min = rem / 60;
|
|
gmt->tm_sec = rem % 60;
|
|
|
|
/* Compute the four-year span containing the specified time */
|
|
|
|
tmp = numDays / (4 * 365 + 1);
|
|
rem = numDays % (4 * 365 + 1);
|
|
|
|
if (rem < 0) {
|
|
tmp--;
|
|
rem += (4 * 365 + 1);
|
|
}
|
|
|
|
/*
|
|
* Compute the year after 1900 by taking the four-year span and
|
|
* adjusting for the remainder. This works because 2000 is a
|
|
* leap year, and 1900 and 2100 are out of the range.
|
|
*/
|
|
|
|
tmp = (tmp * 4) + 1970;
|
|
isLeap = 0;
|
|
|
|
/*
|
|
* 1970 has 365 days
|
|
* 1971 has 365 days
|
|
* 1972 has 366 days (leap year)
|
|
* 1973 has 365 days
|
|
*/
|
|
|
|
if (rem >= 365) { /* 1971, etc. */
|
|
tmp++;
|
|
rem -= 365;
|
|
if (rem >= 365) { /* 1972, etc. */
|
|
tmp++;
|
|
rem -= 365;
|
|
if (rem >= 366) { /* 1973, etc. */
|
|
tmp++;
|
|
rem -= 366;
|
|
} else {
|
|
isLeap = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
gmt->tm_year = tmp;
|
|
gmt->tm_yday = rem;
|
|
|
|
/* Compute the month and day of month. */
|
|
|
|
for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) {
|
|
}
|
|
gmt->tm_month = --tmp;
|
|
gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp];
|
|
|
|
gmt->tm_params.tp_gmt_offset = 0;
|
|
gmt->tm_params.tp_dst_offset = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* PR_ExplodeTime --
|
|
*
|
|
* Cf. struct tm *gmtime(const time_t *tp) and
|
|
* struct tm *localtime(const time_t *tp)
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
|
|
PR_IMPLEMENT(void)
|
|
PR_ExplodeTime(
|
|
PRTime usecs,
|
|
PRTimeParamFn params,
|
|
PRExplodedTime *exploded)
|
|
{
|
|
ComputeGMT(usecs, exploded);
|
|
exploded->tm_params = params(exploded);
|
|
ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset
|
|
+ exploded->tm_params.tp_dst_offset);
|
|
}
|
|
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* PR_ImplodeTime --
|
|
*
|
|
* Cf. time_t mktime(struct tm *tp)
|
|
* Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
#if defined(HAVE_WATCOM_BUG_2)
|
|
PRTime __pascal __export __loadds
|
|
#else
|
|
PR_IMPLEMENT(PRTime)
|
|
#endif
|
|
PR_ImplodeTime(const PRExplodedTime *exploded)
|
|
{
|
|
PRExplodedTime copy;
|
|
PRTime retVal;
|
|
PRInt64 secPerDay, usecPerSec;
|
|
PRInt64 temp;
|
|
PRInt64 numSecs64;
|
|
PRInt32 numDays;
|
|
PRInt32 numSecs;
|
|
|
|
/* Normalize first. Do this on our copy */
|
|
copy = *exploded;
|
|
PR_NormalizeTime(©, PR_GMTParameters);
|
|
|
|
numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
|
|
|
|
numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600
|
|
+ copy.tm_min * 60 + copy.tm_sec;
|
|
|
|
LL_I2L(temp, numDays);
|
|
LL_I2L(secPerDay, 86400);
|
|
LL_MUL(temp, temp, secPerDay);
|
|
LL_I2L(numSecs64, numSecs);
|
|
LL_ADD(numSecs64, numSecs64, temp);
|
|
|
|
/* apply the GMT and DST offsets */
|
|
LL_I2L(temp, copy.tm_params.tp_gmt_offset);
|
|
LL_SUB(numSecs64, numSecs64, temp);
|
|
LL_I2L(temp, copy.tm_params.tp_dst_offset);
|
|
LL_SUB(numSecs64, numSecs64, temp);
|
|
|
|
LL_I2L(usecPerSec, 1000000L);
|
|
LL_MUL(temp, numSecs64, usecPerSec);
|
|
LL_I2L(retVal, copy.tm_usec);
|
|
LL_ADD(retVal, retVal, temp);
|
|
|
|
return retVal;
|
|
}
|
|
|
|
/*
|
|
*-------------------------------------------------------------------------
|
|
*
|
|
* IsLeapYear --
|
|
*
|
|
* Returns 1 if the year is a leap year, 0 otherwise.
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
static int IsLeapYear(PRInt16 year)
|
|
{
|
|
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 'secOffset' should be less than 86400 (i.e., a day).
|
|
* 'time' should point to a normalized PRExplodedTime.
|
|
*/
|
|
|
|
static void
|
|
ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
|
|
{
|
|
time->tm_sec += secOffset;
|
|
|
|
/* Note that in this implementation we do not count leap seconds */
|
|
if (time->tm_sec < 0 || time->tm_sec >= 60) {
|
|
time->tm_min += time->tm_sec / 60;
|
|
time->tm_sec %= 60;
|
|
if (time->tm_sec < 0) {
|
|
time->tm_sec += 60;
|
|
time->tm_min--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_min < 0 || time->tm_min >= 60) {
|
|
time->tm_hour += time->tm_min / 60;
|
|
time->tm_min %= 60;
|
|
if (time->tm_min < 0) {
|
|
time->tm_min += 60;
|
|
time->tm_hour--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_hour < 0) {
|
|
/* Decrement mday, yday, and wday */
|
|
time->tm_hour += 24;
|
|
time->tm_mday--;
|
|
time->tm_yday--;
|
|
if (time->tm_mday < 1) {
|
|
time->tm_month--;
|
|
if (time->tm_month < 0) {
|
|
time->tm_month = 11;
|
|
time->tm_year--;
|
|
if (IsLeapYear(time->tm_year))
|
|
time->tm_yday = 365;
|
|
else
|
|
time->tm_yday = 364;
|
|
}
|
|
time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
}
|
|
time->tm_wday--;
|
|
if (time->tm_wday < 0)
|
|
time->tm_wday = 6;
|
|
} else if (time->tm_hour > 23) {
|
|
/* Increment mday, yday, and wday */
|
|
time->tm_hour -= 24;
|
|
time->tm_mday++;
|
|
time->tm_yday++;
|
|
if (time->tm_mday >
|
|
nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
|
|
time->tm_mday = 1;
|
|
time->tm_month++;
|
|
if (time->tm_month > 11) {
|
|
time->tm_month = 0;
|
|
time->tm_year++;
|
|
time->tm_yday = 0;
|
|
}
|
|
}
|
|
time->tm_wday++;
|
|
if (time->tm_wday > 6)
|
|
time->tm_wday = 0;
|
|
}
|
|
}
|
|
|
|
PR_IMPLEMENT(void)
|
|
PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
|
|
{
|
|
int daysInMonth;
|
|
PRInt32 numDays;
|
|
|
|
/* Get back to GMT */
|
|
time->tm_sec -= time->tm_params.tp_gmt_offset
|
|
+ time->tm_params.tp_dst_offset;
|
|
time->tm_params.tp_gmt_offset = 0;
|
|
time->tm_params.tp_dst_offset = 0;
|
|
|
|
/* Now normalize GMT */
|
|
|
|
if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
|
|
time->tm_sec += time->tm_usec / 1000000;
|
|
time->tm_usec %= 1000000;
|
|
if (time->tm_usec < 0) {
|
|
time->tm_usec += 1000000;
|
|
time->tm_sec--;
|
|
}
|
|
}
|
|
|
|
/* Note that we do not count leap seconds in this implementation */
|
|
if (time->tm_sec < 0 || time->tm_sec >= 60) {
|
|
time->tm_min += time->tm_sec / 60;
|
|
time->tm_sec %= 60;
|
|
if (time->tm_sec < 0) {
|
|
time->tm_sec += 60;
|
|
time->tm_min--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_min < 0 || time->tm_min >= 60) {
|
|
time->tm_hour += time->tm_min / 60;
|
|
time->tm_min %= 60;
|
|
if (time->tm_min < 0) {
|
|
time->tm_min += 60;
|
|
time->tm_hour--;
|
|
}
|
|
}
|
|
|
|
if (time->tm_hour < 0 || time->tm_hour >= 24) {
|
|
time->tm_mday += time->tm_hour / 24;
|
|
time->tm_hour %= 24;
|
|
if (time->tm_hour < 0) {
|
|
time->tm_hour += 24;
|
|
time->tm_mday--;
|
|
}
|
|
}
|
|
|
|
/* Normalize month and year before mday */
|
|
if (time->tm_month < 0 || time->tm_month >= 12) {
|
|
time->tm_year += time->tm_month / 12;
|
|
time->tm_month %= 12;
|
|
if (time->tm_month < 0) {
|
|
time->tm_month += 12;
|
|
time->tm_year--;
|
|
}
|
|
}
|
|
|
|
/* Now that month and year are in proper range, normalize mday */
|
|
|
|
if (time->tm_mday < 1) {
|
|
/* mday too small */
|
|
do {
|
|
/* the previous month */
|
|
time->tm_month--;
|
|
if (time->tm_month < 0) {
|
|
time->tm_month = 11;
|
|
time->tm_year--;
|
|
}
|
|
time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
} while (time->tm_mday < 1);
|
|
} else {
|
|
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
while (time->tm_mday > daysInMonth) {
|
|
/* mday too large */
|
|
time->tm_mday -= daysInMonth;
|
|
time->tm_month++;
|
|
if (time->tm_month > 11) {
|
|
time->tm_month = 0;
|
|
time->tm_year++;
|
|
}
|
|
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
|
|
}
|
|
}
|
|
|
|
/* Recompute yday and wday */
|
|
time->tm_yday = time->tm_mday +
|
|
lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
|
|
|
|
numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
|
|
time->tm_wday = (numDays + 4) % 7;
|
|
if (time->tm_wday < 0) {
|
|
time->tm_wday += 7;
|
|
}
|
|
|
|
/* Recompute time parameters */
|
|
|
|
time->tm_params = params(time);
|
|
|
|
ApplySecOffset(time, time->tm_params.tp_gmt_offset
|
|
+ time->tm_params.tp_dst_offset);
|
|
}
|
|
|
|
|
|
/*
|
|
*-------------------------------------------------------------------------
|
|
*
|
|
* PR_LocalTimeParameters --
|
|
*
|
|
* returns the time parameters for the local time zone
|
|
*
|
|
* The following uses localtime() from the standard C library.
|
|
* (time.h) This is our fallback implementation. Unix and PC
|
|
* use this version. Mac has its own machine-dependent
|
|
* implementation of this function.
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include <time.h>
|
|
|
|
#if defined(HAVE_INT_LOCALTIME_R)
|
|
|
|
/*
|
|
* In this case we could define the macro as
|
|
* #define MT_safe_localtime(timer, result) \
|
|
* (localtime_r(timer, result) == 0 ? result : NULL)
|
|
* I chose to compare the return value of localtime_r with -1 so
|
|
* that I can catch the cases where localtime_r returns a pointer
|
|
* to struct tm. The macro definition above would not be able to
|
|
* detect such mistakes because it is legal to compare a pointer
|
|
* with 0.
|
|
*/
|
|
|
|
#define MT_safe_localtime(timer, result) \
|
|
(localtime_r(timer, result) == -1 ? NULL: result)
|
|
|
|
#elif defined(HAVE_POINTER_LOCALTIME_R)
|
|
|
|
#define MT_safe_localtime localtime_r
|
|
|
|
#else
|
|
|
|
#if defined(XP_MAC)
|
|
extern struct tm *Maclocaltime(const time_t * t);
|
|
#endif
|
|
|
|
static PRLock *monitor = NULL;
|
|
|
|
static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result)
|
|
{
|
|
struct tm *tmPtr;
|
|
int needLock = PR_Initialized(); /* We need to use a lock to protect
|
|
* against NSPR threads only when the
|
|
* NSPR thread system is activated. */
|
|
|
|
if (needLock) {
|
|
if (monitor == NULL) {
|
|
monitor = PR_NewLock();
|
|
}
|
|
PR_Lock(monitor);
|
|
}
|
|
|
|
/*
|
|
* Microsoft (all flavors) localtime() returns a NULL pointer if 'clock'
|
|
* represents a time before midnight January 1, 1970. In
|
|
* that case, we also return a NULL pointer and the struct tm
|
|
* object pointed to by 'result' is not modified.
|
|
*
|
|
* Watcom C/C++ 11.0 localtime() treats time_t as unsigned long
|
|
* hence, does not recognize negative values of clock as pre-1/1/70.
|
|
* We have to manually check (WIN16 only) for negative value of
|
|
* clock and return NULL.
|
|
*
|
|
* With negative values of clock, emx returns the struct tm for
|
|
* clock plus ULONG_MAX. So we also have to check for the invalid
|
|
* structs returned for timezones west of Greenwich when clock == 0.
|
|
*/
|
|
|
|
#if defined(XP_MAC)
|
|
tmPtr = Maclocaltime(clock);
|
|
#else
|
|
tmPtr = localtime(clock);
|
|
#endif
|
|
|
|
#if defined(WIN16) || defined(XP_OS2_EMX)
|
|
if ( (PRInt32) *clock < 0 ||
|
|
( (PRInt32) *clock == 0 && tmPtr->tm_year != 70))
|
|
result = NULL;
|
|
else
|
|
*result = *tmPtr;
|
|
#else
|
|
if (tmPtr) {
|
|
*result = *tmPtr;
|
|
} else {
|
|
result = NULL;
|
|
}
|
|
#endif /* WIN16 */
|
|
|
|
if (needLock) PR_Unlock(monitor);
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* definition of MT_safe_localtime() */
|
|
|
|
#if defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS)
|
|
|
|
PR_IMPLEMENT(PRTimeParameters)
|
|
PR_LocalTimeParameters(const PRExplodedTime *gmt)
|
|
{
|
|
|
|
PRTimeParameters retVal;
|
|
struct tm localTime;
|
|
time_t secs;
|
|
PRTime secs64;
|
|
PRInt64 usecPerSec;
|
|
PRInt64 usecPerSec_1;
|
|
PRInt64 maxInt32;
|
|
PRInt64 minInt32;
|
|
PRInt32 dayOffset;
|
|
PRInt32 offset2Jan1970;
|
|
PRInt32 offsetNew;
|
|
int isdst2Jan1970;
|
|
|
|
/*
|
|
* Calculate the GMT offset. First, figure out what is
|
|
* 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400
|
|
* seconds, since the epoch) in local time. Then we calculate
|
|
* the difference between local time and GMT in seconds:
|
|
* gmt_offset = local_time - GMT
|
|
*
|
|
* Caveat: the validity of this calculation depends on two
|
|
* assumptions:
|
|
* 1. Daylight saving time was not in effect on Jan. 2, 1970.
|
|
* 2. The time zone of the geographic location has not changed
|
|
* since Jan. 2, 1970.
|
|
*/
|
|
|
|
secs = 86400L;
|
|
(void) MT_safe_localtime(&secs, &localTime);
|
|
|
|
/* GMT is 00:00:00, 2nd of Jan. */
|
|
|
|
offset2Jan1970 = (PRInt32)localTime.tm_sec
|
|
+ 60L * (PRInt32)localTime.tm_min
|
|
+ 3600L * (PRInt32)localTime.tm_hour
|
|
+ 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L);
|
|
|
|
isdst2Jan1970 = localTime.tm_isdst;
|
|
|
|
/*
|
|
* Now compute DST offset. We calculate the overall offset
|
|
* of local time from GMT, similar to above. The overall
|
|
* offset has two components: gmt offset and dst offset.
|
|
* We subtract gmt offset from the overall offset to get
|
|
* the dst offset.
|
|
* overall_offset = local_time - GMT
|
|
* overall_offset = gmt_offset + dst_offset
|
|
* ==> dst_offset = local_time - GMT - gmt_offset
|
|
*/
|
|
|
|
secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */
|
|
LL_I2L(usecPerSec, PR_USEC_PER_SEC);
|
|
LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1);
|
|
/* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */
|
|
if (LL_GE_ZERO(secs64)) {
|
|
LL_DIV(secs64, secs64, usecPerSec);
|
|
} else {
|
|
LL_NEG(secs64, secs64);
|
|
LL_ADD(secs64, secs64, usecPerSec_1);
|
|
LL_DIV(secs64, secs64, usecPerSec);
|
|
LL_NEG(secs64, secs64);
|
|
}
|
|
LL_I2L(maxInt32, PR_INT32_MAX);
|
|
LL_I2L(minInt32, PR_INT32_MIN);
|
|
if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) {
|
|
/* secs64 is too large or too small for time_t (32-bit integer) */
|
|
retVal.tp_gmt_offset = offset2Jan1970;
|
|
retVal.tp_dst_offset = 0;
|
|
return retVal;
|
|
}
|
|
LL_L2I(secs, secs64);
|
|
|
|
/*
|
|
* On Windows, localtime() (and our MT_safe_localtime() too)
|
|
* returns a NULL pointer for time before midnight January 1,
|
|
* 1970 GMT. In that case, we just use the GMT offset for
|
|
* Jan 2, 1970 and assume that DST was not in effect.
|
|
*/
|
|
|
|
if (MT_safe_localtime(&secs, &localTime) == NULL) {
|
|
retVal.tp_gmt_offset = offset2Jan1970;
|
|
retVal.tp_dst_offset = 0;
|
|
return retVal;
|
|
}
|
|
|
|
/*
|
|
* dayOffset is the offset between local time and GMT in
|
|
* the day component, which can only be -1, 0, or 1. We
|
|
* use the day of the week to compute dayOffset.
|
|
*/
|
|
|
|
dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday;
|
|
|
|
/*
|
|
* Need to adjust for wrapping around of day of the week from
|
|
* 6 back to 0.
|
|
*/
|
|
|
|
if (dayOffset == -6) {
|
|
/* Local time is Sunday (0) and GMT is Saturday (6) */
|
|
dayOffset = 1;
|
|
} else if (dayOffset == 6) {
|
|
/* Local time is Saturday (6) and GMT is Sunday (0) */
|
|
dayOffset = -1;
|
|
}
|
|
|
|
offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec
|
|
+ 60L * ((PRInt32)localTime.tm_min - gmt->tm_min)
|
|
+ 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour)
|
|
+ 86400L * (PRInt32)dayOffset;
|
|
|
|
if (localTime.tm_isdst <= 0) {
|
|
/* DST is not in effect */
|
|
retVal.tp_gmt_offset = offsetNew;
|
|
retVal.tp_dst_offset = 0;
|
|
} else {
|
|
/* DST is in effect */
|
|
if (isdst2Jan1970 <=0) {
|
|
/*
|
|
* DST was not in effect back in 2 Jan. 1970.
|
|
* Use the offset back then as the GMT offset,
|
|
* assuming the time zone has not changed since then.
|
|
*/
|
|
retVal.tp_gmt_offset = offset2Jan1970;
|
|
retVal.tp_dst_offset = offsetNew - offset2Jan1970;
|
|
} else {
|
|
/*
|
|
* DST was also in effect back in 2 Jan. 1970.
|
|
* Then our clever trick (or rather, ugly hack) fails.
|
|
* We will just assume DST offset is an hour.
|
|
*/
|
|
retVal.tp_gmt_offset = offsetNew - 3600;
|
|
retVal.tp_dst_offset = 3600;
|
|
}
|
|
}
|
|
|
|
return retVal;
|
|
}
|
|
|
|
#endif /* defined(XP_UNIX) !! defined(XP_PC) */
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* PR_USPacificTimeParameters --
|
|
*
|
|
* The time parameters function for the US Pacific Time Zone.
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
|
|
PR_IMPLEMENT(PRTimeParameters)
|
|
PR_USPacificTimeParameters(const PRExplodedTime *gmt)
|
|
{
|
|
PRTimeParameters retVal;
|
|
PRExplodedTime st;
|
|
|
|
/*
|
|
* Based on geographic location and GMT, figure out offset of
|
|
* standard time from GMT. In this example implementation, we
|
|
* assume the local time zone is US Pacific Time.
|
|
*/
|
|
|
|
retVal.tp_gmt_offset = -8L * 3600L;
|
|
|
|
/*
|
|
* Make a copy of GMT. Note that the tm_params field of this copy
|
|
* is ignored.
|
|
*/
|
|
|
|
st.tm_usec = gmt->tm_usec;
|
|
st.tm_sec = gmt->tm_sec;
|
|
st.tm_min = gmt->tm_min;
|
|
st.tm_hour = gmt->tm_hour;
|
|
st.tm_mday = gmt->tm_mday;
|
|
st.tm_month = gmt->tm_month;
|
|
st.tm_year = gmt->tm_year;
|
|
st.tm_wday = gmt->tm_wday;
|
|
st.tm_yday = gmt->tm_yday;
|
|
|
|
/* Apply the offset to GMT to obtain the local standard time */
|
|
ApplySecOffset(&st, retVal.tp_gmt_offset);
|
|
|
|
/*
|
|
* Apply the rules on standard time or GMT to obtain daylight saving
|
|
* time offset. In this implementation, we use the US DST rule.
|
|
*/
|
|
if (st.tm_month < 3) {
|
|
retVal.tp_dst_offset = 0L;
|
|
} else if (st.tm_month == 3) {
|
|
if (st.tm_wday == 0) {
|
|
/* A Sunday */
|
|
if (st.tm_mday <= 7) {
|
|
/* First Sunday */
|
|
/* 01:59:59 PST -> 03:00:00 PDT */
|
|
if (st.tm_hour < 2) {
|
|
retVal.tp_dst_offset = 0L;
|
|
} else {
|
|
retVal.tp_dst_offset = 3600L;
|
|
}
|
|
} else {
|
|
/* Not first Sunday */
|
|
retVal.tp_dst_offset = 3600L;
|
|
}
|
|
} else {
|
|
/* Not a Sunday. See if before first Sunday or after */
|
|
if (st.tm_wday + 1 <= st.tm_mday) {
|
|
/* After first Sunday */
|
|
retVal.tp_dst_offset = 3600L;
|
|
} else {
|
|
/* Before first Sunday */
|
|
retVal.tp_dst_offset = 0L;
|
|
}
|
|
}
|
|
} else if (st.tm_month < 9) {
|
|
retVal.tp_dst_offset = 3600L;
|
|
} else if (st.tm_month == 9) {
|
|
if (st.tm_wday == 0) {
|
|
if (31 - st.tm_mday < 7) {
|
|
/* Last Sunday */
|
|
/* 01:59:59 PDT -> 01:00:00 PST */
|
|
if (st.tm_hour < 1) {
|
|
retVal.tp_dst_offset = 3600L;
|
|
} else {
|
|
retVal.tp_dst_offset = 0L;
|
|
}
|
|
} else {
|
|
/* Not last Sunday */
|
|
retVal.tp_dst_offset = 3600L;
|
|
}
|
|
} else {
|
|
/* See if before or after last Sunday */
|
|
if (7 - st.tm_wday <= 31 - st.tm_mday) {
|
|
/* before last Sunday */
|
|
retVal.tp_dst_offset = 3600L;
|
|
} else {
|
|
retVal.tp_dst_offset = 0L;
|
|
}
|
|
}
|
|
} else {
|
|
retVal.tp_dst_offset = 0L;
|
|
}
|
|
return retVal;
|
|
}
|
|
|
|
/*
|
|
*------------------------------------------------------------------------
|
|
*
|
|
* PR_GMTParameters --
|
|
*
|
|
* Returns the PRTimeParameters for Greenwich Mean Time.
|
|
* Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
|
|
*
|
|
*------------------------------------------------------------------------
|
|
*/
|
|
|
|
PR_IMPLEMENT(PRTimeParameters)
|
|
PR_GMTParameters(const PRExplodedTime *gmt)
|
|
{
|
|
#if defined(XP_MAC)
|
|
#pragma unused (gmt)
|
|
#endif
|
|
|
|
PRTimeParameters retVal = { 0, 0 };
|
|
return retVal;
|
|
}
|
|
|
|
/*
|
|
* The following code implements PR_ParseTimeString(). It is based on
|
|
* ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
|
|
*/
|
|
|
|
/*
|
|
* We only recognize the abbreviations of a small subset of time zones
|
|
* in North America, Europe, and Japan.
|
|
*
|
|
* PST/PDT: Pacific Standard/Daylight Time
|
|
* MST/MDT: Mountain Standard/Daylight Time
|
|
* CST/CDT: Central Standard/Daylight Time
|
|
* EST/EDT: Eastern Standard/Daylight Time
|
|
* AST: Atlantic Standard Time
|
|
* NST: Newfoundland Standard Time
|
|
* GMT: Greenwich Mean Time
|
|
* BST: British Summer Time
|
|
* MET: Middle Europe Time
|
|
* EET: Eastern Europe Time
|
|
* JST: Japan Standard Time
|
|
*/
|
|
|
|
typedef enum
|
|
{
|
|
TT_UNKNOWN,
|
|
|
|
TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
|
|
|
|
TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
|
|
TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
|
|
|
|
TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
|
|
TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
|
|
} TIME_TOKEN;
|
|
|
|
/*
|
|
* This parses a time/date string into a PRTime
|
|
* (microseconds after "1-Jan-1970 00:00:00 GMT").
|
|
* It returns PR_SUCCESS on success, and PR_FAILURE
|
|
* if the time/date string can't be parsed.
|
|
*
|
|
* Many formats are handled, including:
|
|
*
|
|
* 14 Apr 89 03:20:12
|
|
* 14 Apr 89 03:20 GMT
|
|
* Fri, 17 Mar 89 4:01:33
|
|
* Fri, 17 Mar 89 4:01 GMT
|
|
* Mon Jan 16 16:12 PDT 1989
|
|
* Mon Jan 16 16:12 +0130 1989
|
|
* 6 May 1992 16:41-JST (Wednesday)
|
|
* 22-AUG-1993 10:59:12.82
|
|
* 22-AUG-1993 10:59pm
|
|
* 22-AUG-1993 12:59am
|
|
* 22-AUG-1993 12:59 PM
|
|
* Friday, August 04, 1995 3:54 PM
|
|
* 06/21/95 04:24:34 PM
|
|
* 20/06/95 21:07
|
|
* 95-06-08 19:32:48 EDT
|
|
*
|
|
* If the input string doesn't contain a description of the timezone,
|
|
* we consult the `default_to_gmt' to decide whether the string should
|
|
* be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
|
|
* The correct value for this argument depends on what standard specified
|
|
* the time string which you are parsing.
|
|
*/
|
|
|
|
PR_IMPLEMENT(PRStatus)
|
|
PR_ParseTimeString(
|
|
const char *string,
|
|
PRBool default_to_gmt,
|
|
PRTime *result)
|
|
{
|
|
PRExplodedTime tm;
|
|
TIME_TOKEN dotw = TT_UNKNOWN;
|
|
TIME_TOKEN month = TT_UNKNOWN;
|
|
TIME_TOKEN zone = TT_UNKNOWN;
|
|
int zone_offset = -1;
|
|
int date = -1;
|
|
PRInt32 year = -1;
|
|
int hour = -1;
|
|
int min = -1;
|
|
int sec = -1;
|
|
|
|
const char *rest = string;
|
|
|
|
#ifdef DEBUG
|
|
int iterations = 0;
|
|
#endif
|
|
|
|
PR_ASSERT(string && result);
|
|
if (!string || !result) return PR_FAILURE;
|
|
|
|
while (*rest)
|
|
{
|
|
|
|
#ifdef DEBUG
|
|
if (iterations++ > 1000)
|
|
{
|
|
PR_ASSERT(0);
|
|
return PR_FAILURE;
|
|
}
|
|
#endif
|
|
|
|
switch (*rest)
|
|
{
|
|
case 'a': case 'A':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'p' || rest[1] == 'P') &&
|
|
(rest[2] == 'r' || rest[2] == 'R'))
|
|
month = TT_APR;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 's') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_AST;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'g' || rest[2] == 'G'))
|
|
month = TT_AUG;
|
|
break;
|
|
case 'b': case 'B':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_BST;
|
|
break;
|
|
case 'c': case 'C':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_CDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_CST;
|
|
break;
|
|
case 'd': case 'D':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'c' || rest[2] == 'C'))
|
|
month = TT_DEC;
|
|
break;
|
|
case 'e': case 'E':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_EDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_EET;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_EST;
|
|
break;
|
|
case 'f': case 'F':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'b' || rest[2] == 'B'))
|
|
month = TT_FEB;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'r' || rest[1] == 'R') &&
|
|
(rest[2] == 'i' || rest[2] == 'I'))
|
|
dotw = TT_FRI;
|
|
break;
|
|
case 'g': case 'G':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'm' || rest[1] == 'M') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_GMT;
|
|
break;
|
|
case 'j': case 'J':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
month = TT_JAN;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_JST;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'l' || rest[2] == 'L'))
|
|
month = TT_JUL;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
month = TT_JUN;
|
|
break;
|
|
case 'm': case 'M':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 'r' || rest[2] == 'R'))
|
|
month = TT_MAR;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 'y' || rest[2] == 'Y'))
|
|
month = TT_MAY;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_MDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_MET;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'o' || rest[1] == 'O') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
dotw = TT_MON;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_MST;
|
|
break;
|
|
case 'n': case 'N':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'o' || rest[1] == 'O') &&
|
|
(rest[2] == 'v' || rest[2] == 'V'))
|
|
month = TT_NOV;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_NST;
|
|
break;
|
|
case 'o': case 'O':
|
|
if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'c' || rest[1] == 'C') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
month = TT_OCT;
|
|
break;
|
|
case 'p': case 'P':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 'd' || rest[1] == 'D') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_PDT;
|
|
else if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 's' || rest[1] == 'S') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
zone = TT_PST;
|
|
break;
|
|
case 's': case 'S':
|
|
if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'a' || rest[1] == 'A') &&
|
|
(rest[2] == 't' || rest[2] == 'T'))
|
|
dotw = TT_SAT;
|
|
else if (month == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'p' || rest[2] == 'P'))
|
|
month = TT_SEP;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'n' || rest[2] == 'N'))
|
|
dotw = TT_SUN;
|
|
break;
|
|
case 't': case 'T':
|
|
if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'h' || rest[1] == 'H') &&
|
|
(rest[2] == 'u' || rest[2] == 'U'))
|
|
dotw = TT_THU;
|
|
else if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'u' || rest[1] == 'U') &&
|
|
(rest[2] == 'e' || rest[2] == 'E'))
|
|
dotw = TT_TUE;
|
|
break;
|
|
case 'u': case 'U':
|
|
if (zone == TT_UNKNOWN &&
|
|
(rest[1] == 't' || rest[1] == 'T') &&
|
|
!(rest[2] >= 'A' && rest[2] <= 'Z') &&
|
|
!(rest[2] >= 'a' && rest[2] <= 'z'))
|
|
/* UT is the same as GMT but UTx is not. */
|
|
zone = TT_GMT;
|
|
break;
|
|
case 'w': case 'W':
|
|
if (dotw == TT_UNKNOWN &&
|
|
(rest[1] == 'e' || rest[1] == 'E') &&
|
|
(rest[2] == 'd' || rest[2] == 'D'))
|
|
dotw = TT_WED;
|
|
break;
|
|
|
|
case '+': case '-':
|
|
{
|
|
const char *end;
|
|
int sign;
|
|
if (zone_offset != -1)
|
|
{
|
|
/* already got one... */
|
|
rest++;
|
|
break;
|
|
}
|
|
if (zone != TT_UNKNOWN && zone != TT_GMT)
|
|
{
|
|
/* GMT+0300 is legal, but PST+0300 is not. */
|
|
rest++;
|
|
break;
|
|
}
|
|
|
|
sign = ((*rest == '+') ? 1 : -1);
|
|
rest++; /* move over sign */
|
|
end = rest;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
if (rest == end) /* no digits here */
|
|
break;
|
|
|
|
if ((end - rest) == 4)
|
|
/* offset in HHMM */
|
|
zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
|
|
(((rest[2]-'0')*10) + (rest[3]-'0')));
|
|
else if ((end - rest) == 2)
|
|
/* offset in hours */
|
|
zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
|
|
else if ((end - rest) == 1)
|
|
/* offset in hours */
|
|
zone_offset = (rest[0]-'0') * 60;
|
|
else
|
|
/* 3 or >4 */
|
|
break;
|
|
|
|
zone_offset *= sign;
|
|
zone = TT_GMT;
|
|
break;
|
|
}
|
|
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
{
|
|
int tmp_hour = -1;
|
|
int tmp_min = -1;
|
|
int tmp_sec = -1;
|
|
const char *end = rest + 1;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
|
|
/* end is now the first character after a range of digits. */
|
|
|
|
if (*end == ':')
|
|
{
|
|
if (hour >= 0 && min >= 0) /* already got it */
|
|
break;
|
|
|
|
/* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
|
|
if ((end - rest) > 2)
|
|
/* it is [0-9][0-9][0-9]+: */
|
|
break;
|
|
else if ((end - rest) == 2)
|
|
tmp_hour = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
else
|
|
tmp_hour = (rest[0]-'0');
|
|
|
|
while (*rest && *rest != ':')
|
|
rest++;
|
|
rest++;
|
|
|
|
/* move over the colon, and parse minutes */
|
|
|
|
end = rest + 1;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
|
|
if (end == rest)
|
|
/* no digits after first colon? */
|
|
break;
|
|
else if ((end - rest) > 2)
|
|
/* it is [0-9][0-9][0-9]+: */
|
|
break;
|
|
else if ((end - rest) == 2)
|
|
tmp_min = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
else
|
|
tmp_min = (rest[0]-'0');
|
|
|
|
/* now go for seconds */
|
|
rest = end;
|
|
if (*rest == ':')
|
|
rest++;
|
|
end = rest;
|
|
while (*end >= '0' && *end <= '9')
|
|
end++;
|
|
|
|
if (end == rest)
|
|
/* no digits after second colon - that's ok. */
|
|
;
|
|
else if ((end - rest) > 2)
|
|
/* it is [0-9][0-9][0-9]+: */
|
|
break;
|
|
else if ((end - rest) == 2)
|
|
tmp_sec = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
else
|
|
tmp_sec = (rest[0]-'0');
|
|
|
|
/* If we made it here, we've parsed hour and min,
|
|
and possibly sec, so it worked as a unit. */
|
|
|
|
/* skip over whitespace and see if there's an AM or PM
|
|
directly following the time.
|
|
*/
|
|
if (tmp_hour <= 12)
|
|
{
|
|
const char *s = end;
|
|
while (*s && (*s == ' ' || *s == '\t'))
|
|
s++;
|
|
if ((s[0] == 'p' || s[0] == 'P') &&
|
|
(s[1] == 'm' || s[1] == 'M'))
|
|
/* 10:05pm == 22:05, and 12:05pm == 12:05 */
|
|
tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
|
|
else if (tmp_hour == 12 &&
|
|
(s[0] == 'a' || s[0] == 'A') &&
|
|
(s[1] == 'm' || s[1] == 'M'))
|
|
/* 12:05am == 00:05 */
|
|
tmp_hour = 0;
|
|
}
|
|
|
|
hour = tmp_hour;
|
|
min = tmp_min;
|
|
sec = tmp_sec;
|
|
rest = end;
|
|
break;
|
|
}
|
|
else if ((*end == '/' || *end == '-') &&
|
|
end[1] >= '0' && end[1] <= '9')
|
|
{
|
|
/* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
|
|
or even 95-06-05...
|
|
#### But it doesn't handle 1995-06-22.
|
|
*/
|
|
int n1, n2, n3;
|
|
const char *s;
|
|
|
|
if (month != TT_UNKNOWN)
|
|
/* if we saw a month name, this can't be. */
|
|
break;
|
|
|
|
s = rest;
|
|
|
|
n1 = (*s++ - '0'); /* first 1 or 2 digits */
|
|
if (*s >= '0' && *s <= '9')
|
|
n1 = n1*10 + (*s++ - '0');
|
|
|
|
if (*s != '/' && *s != '-') /* slash */
|
|
break;
|
|
s++;
|
|
|
|
if (*s < '0' || *s > '9') /* second 1 or 2 digits */
|
|
break;
|
|
n2 = (*s++ - '0');
|
|
if (*s >= '0' && *s <= '9')
|
|
n2 = n2*10 + (*s++ - '0');
|
|
|
|
if (*s != '/' && *s != '-') /* slash */
|
|
break;
|
|
s++;
|
|
|
|
if (*s < '0' || *s > '9') /* third 1, 2, or 4 digits */
|
|
break;
|
|
n3 = (*s++ - '0');
|
|
if (*s >= '0' && *s <= '9')
|
|
n3 = n3*10 + (*s++ - '0');
|
|
|
|
if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */
|
|
{
|
|
n3 = n3*10 + (*s++ - '0');
|
|
if (*s < '0' || *s > '9')
|
|
break;
|
|
n3 = n3*10 + (*s++ - '0');
|
|
}
|
|
|
|
if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
|
|
(*s >= 'A' && *s <= 'Z') ||
|
|
(*s >= 'a' && *s <= 'z'))
|
|
break;
|
|
|
|
/* Ok, we parsed three 1-2 digit numbers, with / or -
|
|
between them. Now decide what the hell they are
|
|
(DD/MM/YY or MM/DD/YY or YY/MM/DD.)
|
|
*/
|
|
|
|
if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
|
|
{
|
|
if (n2 > 12) break;
|
|
if (n3 > 31) break;
|
|
year = n1;
|
|
if (year < 70)
|
|
year += 2000;
|
|
else if (year < 100)
|
|
year += 1900;
|
|
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
|
|
date = n3;
|
|
rest = s;
|
|
break;
|
|
}
|
|
|
|
if (n1 > 12 && n2 > 12) /* illegal */
|
|
{
|
|
rest = s;
|
|
break;
|
|
}
|
|
|
|
if (n3 < 70)
|
|
n3 += 2000;
|
|
else if (n3 < 100)
|
|
n3 += 1900;
|
|
|
|
if (n1 > 12) /* must be DD/MM/YY */
|
|
{
|
|
date = n1;
|
|
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
|
|
year = n3;
|
|
}
|
|
else /* assume MM/DD/YY */
|
|
{
|
|
/* #### In the ambiguous case, should we consult the
|
|
locale to find out the local default? */
|
|
month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
|
|
date = n2;
|
|
year = n3;
|
|
}
|
|
rest = s;
|
|
}
|
|
else if ((*end >= 'A' && *end <= 'Z') ||
|
|
(*end >= 'a' && *end <= 'z'))
|
|
/* Digits followed by non-punctuation - what's that? */
|
|
;
|
|
else if ((end - rest) == 4) /* four digits is a year */
|
|
year = (year < 0
|
|
? ((rest[0]-'0')*1000L +
|
|
(rest[1]-'0')*100L +
|
|
(rest[2]-'0')*10L +
|
|
(rest[3]-'0'))
|
|
: year);
|
|
else if ((end - rest) == 2) /* two digits - date or year */
|
|
{
|
|
int n = ((rest[0]-'0')*10 +
|
|
(rest[1]-'0'));
|
|
/* If we don't have a date (day of the month) and we see a number
|
|
less than 32, then assume that is the date.
|
|
|
|
Otherwise, if we have a date and not a year, assume this is the
|
|
year. If it is less than 70, then assume it refers to the 21st
|
|
century. If it is two digits (>= 70), assume it refers to this
|
|
century. Otherwise, assume it refers to an unambiguous year.
|
|
|
|
The world will surely end soon.
|
|
*/
|
|
if (date < 0 && n < 32)
|
|
date = n;
|
|
else if (year < 0)
|
|
{
|
|
if (n < 70)
|
|
year = 2000 + n;
|
|
else if (n < 100)
|
|
year = 1900 + n;
|
|
else
|
|
year = n;
|
|
}
|
|
/* else what the hell is this. */
|
|
}
|
|
else if ((end - rest) == 1) /* one digit - date */
|
|
date = (date < 0 ? (rest[0]-'0') : date);
|
|
/* else, three or more than four digits - what's that? */
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Skip to the end of this token, whether we parsed it or not.
|
|
Tokens are delimited by whitespace, or ,;-/
|
|
But explicitly not :+-.
|
|
*/
|
|
while (*rest &&
|
|
*rest != ' ' && *rest != '\t' &&
|
|
*rest != ',' && *rest != ';' &&
|
|
*rest != '-' && *rest != '+' &&
|
|
*rest != '/' &&
|
|
*rest != '(' && *rest != ')' && *rest != '[' && *rest != ']')
|
|
rest++;
|
|
/* skip over uninteresting chars. */
|
|
SKIP_MORE:
|
|
while (*rest &&
|
|
(*rest == ' ' || *rest == '\t' ||
|
|
*rest == ',' || *rest == ';' || *rest == '/' ||
|
|
*rest == '(' || *rest == ')' || *rest == '[' || *rest == ']'))
|
|
rest++;
|
|
|
|
/* "-" is ignored at the beginning of a token if we have not yet
|
|
parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
|
|
the character after the dash is not a digit. */
|
|
if (*rest == '-' && ((rest > string && isalpha(rest[-1]) && year < 0)
|
|
|| rest[1] < '0' || rest[1] > '9'))
|
|
{
|
|
rest++;
|
|
goto SKIP_MORE;
|
|
}
|
|
|
|
}
|
|
|
|
if (zone != TT_UNKNOWN && zone_offset == -1)
|
|
{
|
|
switch (zone)
|
|
{
|
|
case TT_PST: zone_offset = -8 * 60; break;
|
|
case TT_PDT: zone_offset = -7 * 60; break;
|
|
case TT_MST: zone_offset = -7 * 60; break;
|
|
case TT_MDT: zone_offset = -6 * 60; break;
|
|
case TT_CST: zone_offset = -6 * 60; break;
|
|
case TT_CDT: zone_offset = -5 * 60; break;
|
|
case TT_EST: zone_offset = -5 * 60; break;
|
|
case TT_EDT: zone_offset = -4 * 60; break;
|
|
case TT_AST: zone_offset = -4 * 60; break;
|
|
case TT_NST: zone_offset = -3 * 60 - 30; break;
|
|
case TT_GMT: zone_offset = 0 * 60; break;
|
|
case TT_BST: zone_offset = 1 * 60; break;
|
|
case TT_MET: zone_offset = 1 * 60; break;
|
|
case TT_EET: zone_offset = 2 * 60; break;
|
|
case TT_JST: zone_offset = 9 * 60; break;
|
|
default:
|
|
PR_ASSERT (0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we didn't find a year, month, or day-of-the-month, we can't
|
|
possibly parse this, and in fact, mktime() will do something random
|
|
(I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
|
|
a numerologically significant date... */
|
|
if (month == TT_UNKNOWN || date == -1 || year == -1)
|
|
return PR_FAILURE;
|
|
|
|
memset(&tm, 0, sizeof(tm));
|
|
if (sec != -1)
|
|
tm.tm_sec = sec;
|
|
if (min != -1)
|
|
tm.tm_min = min;
|
|
if (hour != -1)
|
|
tm.tm_hour = hour;
|
|
if (date != -1)
|
|
tm.tm_mday = date;
|
|
if (month != TT_UNKNOWN)
|
|
tm.tm_month = (((int)month) - ((int)TT_JAN));
|
|
if (year != -1)
|
|
tm.tm_year = year;
|
|
if (dotw != TT_UNKNOWN)
|
|
tm.tm_wday = (((int)dotw) - ((int)TT_SUN));
|
|
|
|
if (zone == TT_UNKNOWN && default_to_gmt)
|
|
{
|
|
/* No zone was specified, so pretend the zone was GMT. */
|
|
zone = TT_GMT;
|
|
zone_offset = 0;
|
|
}
|
|
|
|
if (zone_offset == -1)
|
|
{
|
|
/* no zone was specified, and we're to assume that everything
|
|
is local. */
|
|
struct tm localTime;
|
|
time_t secs;
|
|
|
|
PR_ASSERT(tm.tm_month > -1
|
|
&& tm.tm_mday > 0
|
|
&& tm.tm_hour > -1
|
|
&& tm.tm_min > -1
|
|
&& tm.tm_sec > -1);
|
|
|
|
/*
|
|
* To obtain time_t from a tm structure representing the local
|
|
* time, we call mktime(). However, we need to see if we are
|
|
* on 1-Jan-1970 or before. If we are, we can't call mktime()
|
|
* because mktime() will crash on win16. In that case, we
|
|
* calculate zone_offset based on the zone offset at
|
|
* 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
|
|
* date we are parsing to transform the date to GMT. We also
|
|
* do so if mktime() returns (time_t) -1 (time out of range).
|
|
*/
|
|
|
|
/* month, day, hours, mins and secs are always non-negative
|
|
so we dont need to worry about them. */
|
|
if(tm.tm_year >= 1970)
|
|
{
|
|
PRInt64 usec_per_sec;
|
|
|
|
localTime.tm_sec = tm.tm_sec;
|
|
localTime.tm_min = tm.tm_min;
|
|
localTime.tm_hour = tm.tm_hour;
|
|
localTime.tm_mday = tm.tm_mday;
|
|
localTime.tm_mon = tm.tm_month;
|
|
localTime.tm_year = tm.tm_year - 1900;
|
|
/* Set this to -1 to tell mktime "I don't care". If you set
|
|
it to 0 or 1, you are making assertions about whether the
|
|
date you are handing it is in daylight savings mode or not;
|
|
and if you're wrong, it will "fix" it for you. */
|
|
localTime.tm_isdst = -1;
|
|
secs = mktime(&localTime);
|
|
if (secs != (time_t) -1)
|
|
{
|
|
#if defined(XP_MAC) && (__MSL__ < 0x6000)
|
|
/*
|
|
* The mktime() routine in MetroWerks MSL C
|
|
* Runtime library returns seconds since midnight,
|
|
* 1 Jan. 1900, not 1970 - in versions of MSL (Metrowerks Standard
|
|
* Library) prior to version 6. Only for older versions of
|
|
* MSL do we adjust the value of secs to the NSPR epoch
|
|
*/
|
|
secs -= ((365 * 70UL) + 17) * 24 * 60 * 60;
|
|
#endif
|
|
LL_I2L(*result, secs);
|
|
LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
|
|
LL_MUL(*result, *result, usec_per_sec);
|
|
return PR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
/* So mktime() can't handle this case. We assume the
|
|
zone_offset for the date we are parsing is the same as
|
|
the zone offset on 00:00:00 2 Jan 1970 GMT. */
|
|
secs = 86400;
|
|
(void) MT_safe_localtime(&secs, &localTime);
|
|
zone_offset = localTime.tm_min
|
|
+ 60 * localTime.tm_hour
|
|
+ 1440 * (localTime.tm_mday - 2);
|
|
}
|
|
|
|
/* Adjust the hours and minutes before handing them to
|
|
PR_ImplodeTime(). Note that it's ok for them to be <0 or >24/60
|
|
|
|
We adjust the time to GMT before going into PR_ImplodeTime().
|
|
The zone_offset represents the difference between the time
|
|
zone parsed and GMT
|
|
*/
|
|
tm.tm_hour -= (zone_offset / 60);
|
|
tm.tm_min -= (zone_offset % 60);
|
|
|
|
*result = PR_ImplodeTime(&tm);
|
|
|
|
return PR_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
*******************************************************************
|
|
*******************************************************************
|
|
**
|
|
** OLD COMPATIBILITY FUNCTIONS
|
|
**
|
|
*******************************************************************
|
|
*******************************************************************
|
|
*/
|
|
|
|
|
|
/*
|
|
*-----------------------------------------------------------------------
|
|
*
|
|
* PR_FormatTime --
|
|
*
|
|
* Format a time value into a buffer. Same semantics as strftime().
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
|
|
PR_IMPLEMENT(PRUint32)
|
|
PR_FormatTime(char *buf, int buflen, const char *fmt, const PRExplodedTime *tm)
|
|
{
|
|
struct tm a;
|
|
a.tm_sec = tm->tm_sec;
|
|
a.tm_min = tm->tm_min;
|
|
a.tm_hour = tm->tm_hour;
|
|
a.tm_mday = tm->tm_mday;
|
|
a.tm_mon = tm->tm_month;
|
|
a.tm_wday = tm->tm_wday;
|
|
a.tm_year = tm->tm_year - 1900;
|
|
a.tm_yday = tm->tm_yday;
|
|
a.tm_isdst = tm->tm_params.tp_dst_offset ? 1 : 0;
|
|
|
|
/*
|
|
* On some platforms, for example SunOS 4, struct tm has two additional
|
|
* fields: tm_zone and tm_gmtoff.
|
|
*/
|
|
|
|
#if defined(SUNOS4) || (__GLIBC__ >= 2) || defined(XP_BEOS) \
|
|
|| defined(NETBSD) || defined(OPENBSD) || defined(FREEBSD) \
|
|
|| defined(DARWIN)
|
|
a.tm_zone = NULL;
|
|
a.tm_gmtoff = tm->tm_params.tp_gmt_offset + tm->tm_params.tp_dst_offset;
|
|
#endif
|
|
|
|
return strftime(buf, buflen, fmt, &a);
|
|
}
|
|
|
|
|
|
/*
|
|
* The following string arrays and macros are used by PR_FormatTimeUSEnglish().
|
|
*/
|
|
|
|
static const char* abbrevDays[] =
|
|
{
|
|
"Sun","Mon","Tue","Wed","Thu","Fri","Sat"
|
|
};
|
|
|
|
static const char* days[] =
|
|
{
|
|
"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"
|
|
};
|
|
|
|
static const char* abbrevMonths[] =
|
|
{
|
|
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
|
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
|
|
};
|
|
|
|
static const char* months[] =
|
|
{
|
|
"January", "February", "March", "April", "May", "June",
|
|
"July", "August", "September", "October", "November", "December"
|
|
};
|
|
|
|
|
|
/*
|
|
* Add a single character to the given buffer, incrementing the buffer pointer
|
|
* and decrementing the buffer size. Return 0 on error.
|
|
*/
|
|
#define ADDCHAR( buf, bufSize, ch ) \
|
|
do \
|
|
{ \
|
|
if( bufSize < 1 ) \
|
|
{ \
|
|
*(--buf) = '\0'; \
|
|
return 0; \
|
|
} \
|
|
*buf++ = ch; \
|
|
bufSize--; \
|
|
} \
|
|
while(0)
|
|
|
|
|
|
/*
|
|
* Add a string to the given buffer, incrementing the buffer pointer
|
|
* and decrementing the buffer size appropriately. Return 0 on error.
|
|
*/
|
|
#define ADDSTR( buf, bufSize, str ) \
|
|
do \
|
|
{ \
|
|
PRUint32 strSize = strlen( str ); \
|
|
if( strSize > bufSize ) \
|
|
{ \
|
|
if( bufSize==0 ) \
|
|
*(--buf) = '\0'; \
|
|
else \
|
|
*buf = '\0'; \
|
|
return 0; \
|
|
} \
|
|
memcpy(buf, str, strSize); \
|
|
buf += strSize; \
|
|
bufSize -= strSize; \
|
|
} \
|
|
while(0)
|
|
|
|
/* Needed by PR_FormatTimeUSEnglish() */
|
|
static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
|
|
unsigned int firstDayOfWeek);
|
|
|
|
|
|
/***********************************************************************************
|
|
*
|
|
* Description:
|
|
* This is a dumbed down version of strftime that will format the date in US
|
|
* English regardless of the setting of the global locale. This functionality is
|
|
* needed to write things like MIME headers which must always be in US English.
|
|
*
|
|
**********************************************************************************/
|
|
|
|
PR_IMPLEMENT(PRUint32)
|
|
PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize,
|
|
const char* format, const PRExplodedTime* time )
|
|
{
|
|
char* bufPtr = buf;
|
|
const char* fmtPtr;
|
|
char tmpBuf[ 40 ];
|
|
const int tmpBufSize = sizeof( tmpBuf );
|
|
|
|
|
|
for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ )
|
|
{
|
|
if( *fmtPtr != '%' )
|
|
{
|
|
ADDCHAR( bufPtr, bufSize, *fmtPtr );
|
|
}
|
|
else
|
|
{
|
|
switch( *(++fmtPtr) )
|
|
{
|
|
case '%':
|
|
/* escaped '%' character */
|
|
ADDCHAR( bufPtr, bufSize, '%' );
|
|
break;
|
|
|
|
case 'a':
|
|
/* abbreviated weekday name */
|
|
ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] );
|
|
break;
|
|
|
|
case 'A':
|
|
/* full weekday name */
|
|
ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] );
|
|
break;
|
|
|
|
case 'b':
|
|
/* abbreviated month name */
|
|
ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] );
|
|
break;
|
|
|
|
case 'B':
|
|
/* full month name */
|
|
ADDSTR(bufPtr, bufSize, months[ time->tm_month ] );
|
|
break;
|
|
|
|
case 'c':
|
|
/* Date and time. */
|
|
PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'd':
|
|
/* day of month ( 01 - 31 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'H':
|
|
/* hour ( 00 - 23 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'I':
|
|
/* hour ( 01 - 12 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",
|
|
(time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'j':
|
|
/* day number of year ( 001 - 366 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1);
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'm':
|
|
/* month number ( 01 - 12 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1);
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'M':
|
|
/* minute ( 00 - 59 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'p':
|
|
/* locale's equivalent of either AM or PM */
|
|
ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" );
|
|
break;
|
|
|
|
case 'S':
|
|
/* seconds ( 00 - 61 ), allows for leap seconds */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'U':
|
|
/* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'w':
|
|
/* weekday number ( 0 - 6 ), Sunday = 0 */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'W':
|
|
/* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'x':
|
|
/* Date representation */
|
|
PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'X':
|
|
/* Time representation. */
|
|
PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'y':
|
|
/* year within century ( 00 - 99 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'Y':
|
|
/* year as ccyy ( for example 1986 ) */
|
|
PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
case 'Z':
|
|
/* Time zone name or no characters if no time zone exists.
|
|
* Since time zone name is supposed to be independant of locale, we
|
|
* defer to PR_FormatTime() for this option.
|
|
*/
|
|
PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time );
|
|
ADDSTR( bufPtr, bufSize, tmpBuf );
|
|
break;
|
|
|
|
default:
|
|
/* Unknown format. Simply copy format into output buffer. */
|
|
ADDCHAR( bufPtr, bufSize, '%' );
|
|
ADDCHAR( bufPtr, bufSize, *fmtPtr );
|
|
break;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
ADDCHAR( bufPtr, bufSize, '\0' );
|
|
return (PRUint32)(bufPtr - buf - 1);
|
|
}
|
|
|
|
|
|
|
|
/***********************************************************************************
|
|
*
|
|
* Description:
|
|
* Returns the week number of the year (0-53) for the given time. firstDayOfWeek
|
|
* is the day on which the week is considered to start (0=Sun, 1=Mon, ...).
|
|
* Week 1 starts the first time firstDayOfWeek occurs in the year. In other words,
|
|
* a partial week at the start of the year is considered week 0.
|
|
*
|
|
**********************************************************************************/
|
|
|
|
static unsigned int
|
|
pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek)
|
|
{
|
|
int dayOfWeek;
|
|
int dayOfYear;
|
|
|
|
/* Get the day of the year for the given time then adjust it to represent the
|
|
* first day of the week containing the given time.
|
|
*/
|
|
dayOfWeek = time->tm_wday - firstDayOfWeek;
|
|
if (dayOfWeek < 0)
|
|
dayOfWeek += 7;
|
|
|
|
dayOfYear = time->tm_yday - dayOfWeek;
|
|
|
|
|
|
if( dayOfYear <= 0 )
|
|
{
|
|
/* If dayOfYear is <= 0, it is in the first partial week of the year. */
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there
|
|
* are any days left over ( dayOfYear % 7 ). Because we are only counting to
|
|
* the first day of the week containing the given time, rather than to the
|
|
* actual day representing the given time, any days in week 0 will be "absorbed"
|
|
* as extra days in the given week.
|
|
*/
|
|
return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 );
|
|
}
|
|
}
|
|
|