683 lines
24 KiB
C
683 lines
24 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef APR_POOLS_H
|
|
#define APR_POOLS_H
|
|
|
|
/**
|
|
* @file apr_pools.h
|
|
* @brief APR memory allocation
|
|
*
|
|
* Resource allocation routines...
|
|
*
|
|
* designed so that we don't have to keep track of EVERYTHING so that
|
|
* it can be explicitly freed later (a fundamentally unsound strategy ---
|
|
* particularly in the presence of die()).
|
|
*
|
|
* Instead, we maintain pools, and allocate items (both memory and I/O
|
|
* handlers) from the pools --- currently there are two, one for per
|
|
* transaction info, and one for config info. When a transaction is over,
|
|
* we can delete everything in the per-transaction apr_pool_t without fear,
|
|
* and without thinking too hard about it either.
|
|
*/
|
|
|
|
#include "apr.h"
|
|
#include "apr_errno.h"
|
|
#include "apr_general.h" /* for APR_STRINGIFY */
|
|
#define APR_WANT_MEMFUNC /**< for no good reason? */
|
|
#include "apr_want.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @defgroup apr_pools Memory Pool Functions
|
|
* @ingroup APR
|
|
* @{
|
|
*/
|
|
|
|
/** The fundamental pool type */
|
|
typedef struct apr_pool_t apr_pool_t;
|
|
|
|
|
|
/**
|
|
* Declaration helper macro to construct apr_foo_pool_get()s.
|
|
*
|
|
* This standardized macro is used by opaque (APR) data types to return
|
|
* the apr_pool_t that is associated with the data type.
|
|
*
|
|
* APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the
|
|
* accessor function. A typical usage and result would be:
|
|
* <pre>
|
|
* APR_POOL_DECLARE_ACCESSOR(file);
|
|
* becomes:
|
|
* APR_DECLARE(apr_pool_t *) apr_file_pool_get(apr_file_t *ob);
|
|
* </pre>
|
|
* @remark Doxygen unwraps this macro (via doxygen.conf) to provide
|
|
* actual help for each specific occurance of apr_foo_pool_get.
|
|
* @remark the linkage is specified for APR. It would be possible to expand
|
|
* the macros to support other linkages.
|
|
*/
|
|
#define APR_POOL_DECLARE_ACCESSOR(type) \
|
|
APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
|
|
(const apr_##type##_t *the##type)
|
|
|
|
/**
|
|
* Implementation helper macro to provide apr_foo_pool_get()s.
|
|
*
|
|
* In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to
|
|
* actually define the function. It assumes the field is named "pool".
|
|
*/
|
|
#define APR_POOL_IMPLEMENT_ACCESSOR(type) \
|
|
APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
|
|
(const apr_##type##_t *the##type) \
|
|
{ return the##type->pool; }
|
|
|
|
|
|
/**
|
|
* Pool debug levels
|
|
*
|
|
* <pre>
|
|
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|
|
* ---------------------------------
|
|
* | | | | | | | | x | General debug code enabled (useful in
|
|
* combination with --with-efence).
|
|
*
|
|
* | | | | | | | x | | Verbose output on stderr (report
|
|
* CREATE, CLEAR, DESTROY).
|
|
*
|
|
* | | | | x | | | | | Verbose output on stderr (report
|
|
* PALLOC, PCALLOC).
|
|
*
|
|
* | | | | | | x | | | Lifetime checking. On each use of a
|
|
* pool, check its lifetime. If the pool
|
|
* is out of scope, abort().
|
|
* In combination with the verbose flag
|
|
* above, it will output LIFE in such an
|
|
* event prior to aborting.
|
|
*
|
|
* | | | | | x | | | | Pool owner checking. On each use of a
|
|
* pool, check if the current thread is the
|
|
* pools owner. If not, abort(). In
|
|
* combination with the verbose flag above,
|
|
* it will output OWNER in such an event
|
|
* prior to aborting. Use the debug
|
|
* function apr_pool_owner_set() to switch
|
|
* a pools ownership.
|
|
*
|
|
* When no debug level was specified, assume general debug mode.
|
|
* If level 0 was specified, debugging is switched off
|
|
* </pre>
|
|
*/
|
|
#if defined(APR_POOL_DEBUG)
|
|
/* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */
|
|
#if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1)
|
|
#undef APR_POOL_DEBUG
|
|
#define APR_POOL_DEBUG 1
|
|
#endif
|
|
#else
|
|
#define APR_POOL_DEBUG 0
|
|
#endif
|
|
|
|
/** the place in the code where the particular function was called */
|
|
#define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__)
|
|
|
|
|
|
|
|
/** A function that is called when allocation fails. */
|
|
typedef int (*apr_abortfunc_t)(int retcode);
|
|
|
|
/*
|
|
* APR memory structure manipulators (pools, tables, and arrays).
|
|
*/
|
|
|
|
/*
|
|
* Initialization
|
|
*/
|
|
|
|
/**
|
|
* Setup all of the internal structures required to use pools
|
|
* @remark Programs do NOT need to call this directly. APR will call this
|
|
* automatically from apr_initialize.
|
|
* @internal
|
|
*/
|
|
APR_DECLARE(apr_status_t) apr_pool_initialize(void);
|
|
|
|
/**
|
|
* Tear down all of the internal structures required to use pools
|
|
* @remark Programs do NOT need to call this directly. APR will call this
|
|
* automatically from apr_terminate.
|
|
* @internal
|
|
*/
|
|
APR_DECLARE(void) apr_pool_terminate(void);
|
|
|
|
|
|
/*
|
|
* Pool creation/destruction
|
|
*/
|
|
|
|
#include "apr_allocator.h"
|
|
|
|
/**
|
|
* Create a new pool.
|
|
* @param newpool The pool we have just created.
|
|
* @param parent The parent pool. If this is NULL, the new pool is a root
|
|
* pool. If it is non-NULL, the new pool will inherit all
|
|
* of its parent pool's attributes, except the apr_pool_t will
|
|
* be a sub-pool.
|
|
* @param abort_fn A function to use if the pool cannot allocate more memory.
|
|
* @param allocator The allocator to use with the new pool. If NULL the
|
|
* allocator of the parent pool will be used.
|
|
*/
|
|
APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
|
|
apr_pool_t *parent,
|
|
apr_abortfunc_t abort_fn,
|
|
apr_allocator_t *allocator);
|
|
|
|
/**
|
|
* Debug version of apr_pool_create_ex.
|
|
* @param newpool @see apr_pool_create.
|
|
* @param parent @see apr_pool_create.
|
|
* @param abort_fn @see apr_pool_create.
|
|
* @param allocator @see apr_pool_create.
|
|
* @param file_line Where the function is called from.
|
|
* This is usually APR_POOL__FILE_LINE__.
|
|
* @remark Only available when APR_POOL_DEBUG is defined.
|
|
* Call this directly if you have you apr_pool_create_ex
|
|
* calls in a wrapper function and wish to override
|
|
* the file_line argument to reflect the caller of
|
|
* your wrapper function. If you do not have
|
|
* apr_pool_create_ex in a wrapper, trust the macro
|
|
* and don't call apr_pool_create_ex_debug directly.
|
|
*/
|
|
APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
|
|
apr_pool_t *parent,
|
|
apr_abortfunc_t abort_fn,
|
|
apr_allocator_t *allocator,
|
|
const char *file_line);
|
|
|
|
#if APR_POOL_DEBUG
|
|
#define apr_pool_create_ex(newpool, parent, abort_fn, allocator) \
|
|
apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \
|
|
APR_POOL__FILE_LINE__)
|
|
#endif
|
|
|
|
/**
|
|
* Create a new pool.
|
|
* @param newpool The pool we have just created.
|
|
* @param parent The parent pool. If this is NULL, the new pool is a root
|
|
* pool. If it is non-NULL, the new pool will inherit all
|
|
* of its parent pool's attributes, except the apr_pool_t will
|
|
* be a sub-pool.
|
|
*/
|
|
#if defined(DOXYGEN)
|
|
APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool,
|
|
apr_pool_t *parent);
|
|
#else
|
|
#if APR_POOL_DEBUG
|
|
#define apr_pool_create(newpool, parent) \
|
|
apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \
|
|
APR_POOL__FILE_LINE__)
|
|
#else
|
|
#define apr_pool_create(newpool, parent) \
|
|
apr_pool_create_ex(newpool, parent, NULL, NULL)
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Find the pools allocator
|
|
* @param pool The pool to get the allocator from.
|
|
*/
|
|
APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool);
|
|
|
|
/**
|
|
* Clear all memory in the pool and run all the cleanups. This also destroys all
|
|
* subpools.
|
|
* @param p The pool to clear
|
|
* @remark This does not actually free the memory, it just allows the pool
|
|
* to re-use this memory for the next allocation.
|
|
* @see apr_pool_destroy()
|
|
*/
|
|
APR_DECLARE(void) apr_pool_clear(apr_pool_t *p);
|
|
|
|
/**
|
|
* Debug version of apr_pool_clear.
|
|
* @param p See: apr_pool_clear.
|
|
* @param file_line Where the function is called from.
|
|
* This is usually APR_POOL__FILE_LINE__.
|
|
* @remark Only available when APR_POOL_DEBUG is defined.
|
|
* Call this directly if you have you apr_pool_clear
|
|
* calls in a wrapper function and wish to override
|
|
* the file_line argument to reflect the caller of
|
|
* your wrapper function. If you do not have
|
|
* apr_pool_clear in a wrapper, trust the macro
|
|
* and don't call apr_pool_destroy_clear directly.
|
|
*/
|
|
APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p,
|
|
const char *file_line);
|
|
|
|
#if APR_POOL_DEBUG
|
|
#define apr_pool_clear(p) \
|
|
apr_pool_clear_debug(p, APR_POOL__FILE_LINE__)
|
|
#endif
|
|
|
|
/**
|
|
* Destroy the pool. This takes similar action as apr_pool_clear() and then
|
|
* frees all the memory.
|
|
* @param p The pool to destroy
|
|
* @remark This will actually free the memory
|
|
*/
|
|
APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p);
|
|
|
|
/**
|
|
* Debug version of apr_pool_destroy.
|
|
* @param p See: apr_pool_destroy.
|
|
* @param file_line Where the function is called from.
|
|
* This is usually APR_POOL__FILE_LINE__.
|
|
* @remark Only available when APR_POOL_DEBUG is defined.
|
|
* Call this directly if you have you apr_pool_destroy
|
|
* calls in a wrapper function and wish to override
|
|
* the file_line argument to reflect the caller of
|
|
* your wrapper function. If you do not have
|
|
* apr_pool_destroy in a wrapper, trust the macro
|
|
* and don't call apr_pool_destroy_debug directly.
|
|
*/
|
|
APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p,
|
|
const char *file_line);
|
|
|
|
#if APR_POOL_DEBUG
|
|
#define apr_pool_destroy(p) \
|
|
apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__)
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Memory allocation
|
|
*/
|
|
|
|
/**
|
|
* Allocate a block of memory from a pool
|
|
* @param p The pool to allocate from
|
|
* @param size The amount of memory to allocate
|
|
* @return The allocated memory
|
|
*/
|
|
APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size);
|
|
|
|
/**
|
|
* Debug version of apr_palloc
|
|
* @param p See: apr_palloc
|
|
* @param size See: apr_palloc
|
|
* @param file_line Where the function is called from.
|
|
* This is usually APR_POOL__FILE_LINE__.
|
|
* @return See: apr_palloc
|
|
*/
|
|
APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size,
|
|
const char *file_line);
|
|
|
|
#if APR_POOL_DEBUG
|
|
#define apr_palloc(p, size) \
|
|
apr_palloc_debug(p, size, APR_POOL__FILE_LINE__)
|
|
#endif
|
|
|
|
/**
|
|
* Allocate a block of memory from a pool and set all of the memory to 0
|
|
* @param p The pool to allocate from
|
|
* @param size The amount of memory to allocate
|
|
* @return The allocated memory
|
|
*/
|
|
#if defined(DOXYGEN)
|
|
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size);
|
|
#elif !APR_POOL_DEBUG
|
|
#define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size)
|
|
#endif
|
|
|
|
/**
|
|
* Debug version of apr_pcalloc
|
|
* @param p See: apr_pcalloc
|
|
* @param size See: apr_pcalloc
|
|
* @param file_line Where the function is called from.
|
|
* This is usually APR_POOL__FILE_LINE__.
|
|
* @return See: apr_pcalloc
|
|
*/
|
|
APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size,
|
|
const char *file_line);
|
|
|
|
#if APR_POOL_DEBUG
|
|
#define apr_pcalloc(p, size) \
|
|
apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__)
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Pool Properties
|
|
*/
|
|
|
|
/**
|
|
* Set the function to be called when an allocation failure occurs.
|
|
* @remark If the program wants APR to exit on a memory allocation error,
|
|
* then this function can be called to set the callback to use (for
|
|
* performing cleanup and then exiting). If this function is not called,
|
|
* then APR will return an error and expect the calling program to
|
|
* deal with the error accordingly.
|
|
*/
|
|
APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc,
|
|
apr_pool_t *pool);
|
|
|
|
/**
|
|
* Get the abort function associated with the specified pool.
|
|
* @param pool The pool for retrieving the abort function.
|
|
* @return The abort function for the given pool.
|
|
*/
|
|
APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool);
|
|
|
|
/**
|
|
* Get the parent pool of the specified pool.
|
|
* @param pool The pool for retrieving the parent pool.
|
|
* @return The parent of the given pool.
|
|
*/
|
|
APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool);
|
|
|
|
/**
|
|
* Determine if pool a is an ancestor of pool b.
|
|
* @param a The pool to search
|
|
* @param b The pool to search for
|
|
* @return True if a is an ancestor of b, NULL is considered an ancestor
|
|
* of all pools.
|
|
* @remark if compiled with APR_POOL_DEBUG, this function will also
|
|
* return true if A is a pool which has been guaranteed by the caller
|
|
* (using apr_pool_join) to have a lifetime at least as long as some
|
|
* ancestor of pool B.
|
|
*/
|
|
APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b);
|
|
|
|
/**
|
|
* Tag a pool (give it a name)
|
|
* @param pool The pool to tag
|
|
* @param tag The tag
|
|
*/
|
|
APR_DECLARE(char *) apr_pool_tag(apr_pool_t *pool, const char *tag);
|
|
|
|
#if APR_HAS_THREADS
|
|
/**
|
|
* Add a mutex to a pool to make it suitable to use from multiple threads.
|
|
* @param pool The pool to add the mutex to
|
|
* @param mutex The mutex
|
|
* @remark The mutex does not protect the destroy operation just the low level allocs.
|
|
*/
|
|
APR_DECLARE(void) apr_pool_mutex_set(apr_pool_t *pool,
|
|
apr_thread_mutex_t *mutex);
|
|
#endif
|
|
|
|
|
|
/*
|
|
* User data management
|
|
*/
|
|
|
|
/**
|
|
* Set the data associated with the current pool
|
|
* @param data The user data associated with the pool.
|
|
* @param key The key to use for association
|
|
* @param cleanup The cleanup program to use to cleanup the data (NULL if none)
|
|
* @param pool The current pool
|
|
* @warning The data to be attached to the pool should have a life span
|
|
* at least as long as the pool it is being attached to.
|
|
*
|
|
* Users of APR must take EXTREME care when choosing a key to
|
|
* use for their data. It is possible to accidentally overwrite
|
|
* data by choosing a key that another part of the program is using.
|
|
* Therefore it is advised that steps are taken to ensure that unique
|
|
* keys are used for all of the userdata objects in a particular pool
|
|
* (the same key in two different pools or a pool and one of its
|
|
* subpools is okay) at all times. Careful namespace prefixing of
|
|
* key names is a typical way to help ensure this uniqueness.
|
|
*
|
|
*/
|
|
|
|
APR_DECLARE(apr_status_t) apr_pool_userdata_set(
|
|
const void *data,
|
|
const char *key,
|
|
apr_status_t (*cleanup)(void *),
|
|
apr_pool_t *pool);
|
|
|
|
/**
|
|
* Set the data associated with the current pool
|
|
* @param data The user data associated with the pool.
|
|
* @param key The key to use for association
|
|
* @param cleanup The cleanup program to use to cleanup the data (NULL if none)
|
|
* @param pool The current pool
|
|
* @note same as apr_pool_userdata_set(), except that this version doesn't
|
|
* make a copy of the key (this function is useful, for example, when
|
|
* the key is a string literal)
|
|
* @warning This should NOT be used if the key could change addresses by
|
|
* any means between the apr_pool_userdata_setn() call and a
|
|
* subsequent apr_pool_userdata_get() on that key, such as if a
|
|
* static string is used as a userdata key in a DSO and the DSO could
|
|
* be unloaded and reloaded between the _setn() and the _get(). You
|
|
* MUST use apr_pool_userdata_set() in such cases.
|
|
* @warning More generally, the key and the data to be attached to the
|
|
* pool should have a life span at least as long as the pool itself.
|
|
*
|
|
*/
|
|
APR_DECLARE(apr_status_t) apr_pool_userdata_setn(
|
|
const void *data,
|
|
const char *key,
|
|
apr_status_t (*cleanup)(void *),
|
|
apr_pool_t *pool);
|
|
|
|
/**
|
|
* Return the data associated with the current pool.
|
|
* @param data The user data associated with the pool.
|
|
* @param key The key for the data to retrieve
|
|
* @param pool The current pool.
|
|
*/
|
|
APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
|
|
apr_pool_t *pool);
|
|
|
|
|
|
/**
|
|
* @defgroup PoolCleanup Pool Cleanup Functions
|
|
*
|
|
* Cleanups are performed in the reverse order they were registered. That is:
|
|
* Last In, First Out. A cleanup function can safely allocate memory from
|
|
* the pool that is being cleaned up. It can also safely register additional
|
|
* cleanups which will be run LIFO, directly after the current cleanup
|
|
* terminates. Cleanups have to take caution in calling functions that
|
|
* create subpools. Subpools, created during cleanup will NOT automatically
|
|
* be cleaned up. In other words, cleanups are to clean up after themselves.
|
|
*
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* Register a function to be called when a pool is cleared or destroyed
|
|
* @param p The pool register the cleanup with
|
|
* @param data The data to pass to the cleanup function.
|
|
* @param plain_cleanup The function to call when the pool is cleared
|
|
* or destroyed
|
|
* @param child_cleanup The function to call when a child process is about
|
|
* to exec - this function is called in the child, obviously!
|
|
*/
|
|
APR_DECLARE(void) apr_pool_cleanup_register(
|
|
apr_pool_t *p,
|
|
const void *data,
|
|
apr_status_t (*plain_cleanup)(void *),
|
|
apr_status_t (*child_cleanup)(void *));
|
|
|
|
/**
|
|
* Remove a previously registered cleanup function.
|
|
*
|
|
* The cleanup most recently registered with @a p having the same values of
|
|
* @a data and @a cleanup will be removed.
|
|
*
|
|
* @param p The pool to remove the cleanup from
|
|
* @param data The data of the registered cleanup
|
|
* @param cleanup The function to remove from cleanup
|
|
* @remarks For some strange reason only the plain_cleanup is handled by this
|
|
* function
|
|
*/
|
|
APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
|
|
apr_status_t (*cleanup)(void *));
|
|
|
|
/**
|
|
* Replace the child cleanup function of a previously registered cleanup.
|
|
*
|
|
* The cleanup most recently registered with @a p having the same values of
|
|
* @a data and @a plain_cleanup will have the registered child cleanup
|
|
* function replaced with @a child_cleanup.
|
|
*
|
|
* @param p The pool of the registered cleanup
|
|
* @param data The data of the registered cleanup
|
|
* @param plain_cleanup The plain cleanup function of the registered cleanup
|
|
* @param child_cleanup The function to register as the child cleanup
|
|
*/
|
|
APR_DECLARE(void) apr_pool_child_cleanup_set(
|
|
apr_pool_t *p,
|
|
const void *data,
|
|
apr_status_t (*plain_cleanup)(void *),
|
|
apr_status_t (*child_cleanup)(void *));
|
|
|
|
/**
|
|
* Run the specified cleanup function immediately and unregister it.
|
|
*
|
|
* The cleanup most recently registered with @a p having the same values of
|
|
* @a data and @a cleanup will be removed and @a cleanup will be called
|
|
* with @a data as the argument.
|
|
*
|
|
* @param p The pool to remove the cleanup from
|
|
* @param data The data to remove from cleanup
|
|
* @param cleanup The function to remove from cleanup
|
|
*/
|
|
APR_DECLARE(apr_status_t) apr_pool_cleanup_run(
|
|
apr_pool_t *p,
|
|
void *data,
|
|
apr_status_t (*cleanup)(void *));
|
|
|
|
/**
|
|
* An empty cleanup function.
|
|
*
|
|
* Passed to apr_pool_cleanup_register() when no cleanup is required.
|
|
*
|
|
* @param data The data to cleanup, will not be used by this function.
|
|
*/
|
|
APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data);
|
|
|
|
/**
|
|
* Run all registered child cleanups, in preparation for an exec()
|
|
* call in a forked child -- close files, etc., but *don't* flush I/O
|
|
* buffers, *don't* wait for subprocesses, and *don't* free any
|
|
* memory.
|
|
*/
|
|
APR_DECLARE(void) apr_pool_cleanup_for_exec(void);
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
* @defgroup PoolDebug Pool Debugging functions.
|
|
*
|
|
* pools have nested lifetimes -- sub_pools are destroyed when the
|
|
* parent pool is cleared. We allow certain liberties with operations
|
|
* on things such as tables (and on other structures in a more general
|
|
* sense) where we allow the caller to insert values into a table which
|
|
* were not allocated from the table's pool. The table's data will
|
|
* remain valid as long as all the pools from which its values are
|
|
* allocated remain valid.
|
|
*
|
|
* For example, if B is a sub pool of A, and you build a table T in
|
|
* pool B, then it's safe to insert data allocated in A or B into T
|
|
* (because B lives at most as long as A does, and T is destroyed when
|
|
* B is cleared/destroyed). On the other hand, if S is a table in
|
|
* pool A, it is safe to insert data allocated in A into S, but it
|
|
* is *not safe* to insert data allocated from B into S... because
|
|
* B can be cleared/destroyed before A is (which would leave dangling
|
|
* pointers in T's data structures).
|
|
*
|
|
* In general we say that it is safe to insert data into a table T
|
|
* if the data is allocated in any ancestor of T's pool. This is the
|
|
* basis on which the APR_POOL_DEBUG code works -- it tests these ancestor
|
|
* relationships for all data inserted into tables. APR_POOL_DEBUG also
|
|
* provides tools (apr_pool_find, and apr_pool_is_ancestor) for other
|
|
* folks to implement similar restrictions for their own data
|
|
* structures.
|
|
*
|
|
* However, sometimes this ancestor requirement is inconvenient --
|
|
* sometimes it's necessary to create a sub pool where the sub pool is
|
|
* guaranteed to have the same lifetime as the parent pool. This is a
|
|
* guarantee implemented by the *caller*, not by the pool code. That
|
|
* is, the caller guarantees they won't destroy the sub pool
|
|
* individually prior to destroying the parent pool.
|
|
*
|
|
* In this case the caller must call apr_pool_join() to indicate this
|
|
* guarantee to the APR_POOL_DEBUG code.
|
|
*
|
|
* These functions are only implemented when #APR_POOL_DEBUG is set.
|
|
*
|
|
* @{
|
|
*/
|
|
#if APR_POOL_DEBUG || defined(DOXYGEN)
|
|
/**
|
|
* Guarantee that a subpool has the same lifetime as the parent.
|
|
* @param p The parent pool
|
|
* @param sub The subpool
|
|
*/
|
|
APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub);
|
|
|
|
/**
|
|
* Find a pool from something allocated in it.
|
|
* @param mem The thing allocated in the pool
|
|
* @return The pool it is allocated in
|
|
*/
|
|
APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem);
|
|
|
|
/**
|
|
* Report the number of bytes currently in the pool
|
|
* @param p The pool to inspect
|
|
* @param recurse Recurse/include the subpools' sizes
|
|
* @return The number of bytes
|
|
*/
|
|
APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse);
|
|
|
|
/**
|
|
* Lock a pool
|
|
* @param pool The pool to lock
|
|
* @param flag The flag
|
|
*/
|
|
APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag);
|
|
|
|
/* @} */
|
|
|
|
#else /* APR_POOL_DEBUG or DOXYGEN */
|
|
|
|
#ifdef apr_pool_join
|
|
#undef apr_pool_join
|
|
#endif
|
|
#define apr_pool_join(a,b)
|
|
|
|
#ifdef apr_pool_lock
|
|
#undef apr_pool_lock
|
|
#endif
|
|
#define apr_pool_lock(pool, lock)
|
|
|
|
#endif /* APR_POOL_DEBUG or DOXYGEN */
|
|
|
|
/** @} */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* !APR_POOLS_H */
|